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Abstract

Accurate and efficient detection of ships from aerial images is an intriguing and difficult task of extreme societal importance due totheir implication and association with maritime infractions, and other suspicious actions. Having an automated system with therequired capabilities indicates a substantial reduction in the related man-hours of characterization and the overall underlyingprocesses. With the advent of various image processing techniques and advancements in the field of machine learning and deeplearning, specialized methodologies can be created for the said task. An intuition for the enhancement of existing methodologieswould be a study on attention-based cognition and the development of improved neural architectures with the available attentionmodules. This paper offers a novel study and empirical analysis of the utility of various attention modules with U-Net and othersubsidiary architectures as a backbone for the task of computationally efficient and accurate ship detection. The best performingmodels are depicted and explained thoroughly, while considering their temporal performance.
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1 Introduction

Nowadays, the use of maritime transportation is growing at a break-neck speed. However, as transportation has increased, many newmarine enterprises have emerged, increasing the enormous num-ber of ships, marine pollution, and associated maritime offenses(Khan and Yunze, 2018). An automated system capable of moni-toring sea traffic accurately and efficiently implicates immoderatesocietal impacts. The obtained system would lead to the replace-ment of excessive and extreme manpower which is required for con-stant monitoring and a successful deployment acts as the primarydriver for the subsequently illustrated research. There is a needto reduce maritime infractions, related suspicious activities, andrelated pollution effects, hence the overall categorization accuracyand temporal trade-offs are important considered metrics and pa-rameters (Khan and Yunze, 2018). With the availability of a varietyof data gathering tools and technologies, aerial photographs usingsatellites, drones, and other related technologies can be acquired

feasibly (Holloway and Mengersen, 2018). A sufficient quantity ofthe available image-based data also leads to possible experimentsof predictive analysis with deep learning (Gajjar et al., 2022). Themethodologies which revolve around deep neural architecture areperceived as a highly relevant science that has shown promisingresults in a multitude of related paradigms like oil spill detection(Bianchi et al., 2020; Mehta et al., 2021), moving and stationarytarget acquisition (Coman and Thaens, 2018), and image denoising(Yu and Sapiro, 2011; Zhang et al., 2016). The subsidiary techniquesof deep learning are designed to imitate human cognitive abilities,and improvements in the architectural aspects and other additionsmight provide further improvements for a thorough predictive anal-ysis.There has been a considerable amount of work and implemen-tations in the recent literature that helped this novel study. Therelevant papers and articles associated with this study are furtherdescribed in a condensed form. The use of satellite imagery to detectships has been investigated as a problem statement for both seg-
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mentation and object detection. In the article by Zhu et al. (2010),a space-based optical picture was investigated for ship detection.To reduce the negative impacts of clouds, ocean waves, and tinyislands, the paper proposed basic shape analysis, picture segmen-tation, and a semi-supervised hierarchical classification algorithm.The study, as described in Yang et al. (2015), showed the applicationof the classic local binary pattern recognition method on higher res-olution photos to find probable ship prospects using a multi-stageapproach. An early technique proposed in the paper by Huang et al.(2011) involves the use of textural cues to distinguish between seaand ship. The confidence mapping of extracted ship candidates wasused in the procedure. Different waves, light variations, ship sizes,and bright/dark intensities do not affect the suggested technique.The disadvantage of the analysis was that there were fewer testcases. Yang et al. (2015) conducted a ship detection investigationusing the optical satellite image’s visual search technique. A shapeand neighborhood similarity analysis was conducted which elimi-nated false alarms such as clouds, islands, and waves using a globalcontrast model.Li et al. (2017b) investigated the automated detection and iden-tification of ships on the coast using big satellite photos. The scale-invariant feature transform (SIFT) record was leveraged for elimi-nating the geographical coordinate error between the port templateand the test picture. The regions of interest (ROI) are then removedand horizontally aligned. The scroll window approach is then usedto apply the learned multi models over the ROIs, resulting in shipcandidates. Finally, the fusion approach is used to merge candidates.The study, as presented in Morillas et al. (2015), indicates that theuse of breaking a high-dimensional Synthetic Aperture Radar (SAR)data sample into multiple fixed-size images was present and fur-ther offered a predictive analysis by leveraging the Support VectorMachine (SVM) methodology. In the paper by Mehta et al. (2022),the author proposed the use of V-Nets and augmentative approachesfor a related field of oil spill detection and remote sensing. Anotherset of architectures that has shown utility in statements concern-ing associated domains and object detection is the Feature PyramidNetwork, as evidenced by Shamsolmoali et al. (2021) and Zareapooret al. (2021). The Faster-R-CNN methodology was proposed in thepaper by Li et al. (2017a) to detect ships from SAR images. Thismethodology could adequately detect large ships but failed to detectsmaller ships.Analogous to psychology, the term attention can be understoodas obtaining specific concentrations or areas of interest which thesubject focuses on, concerning deep learning, technologies andadditions associated with attention also perform similarly (He andWang, 2022). The selective cognitive process does implicate su-perlative results and is a relevant and important area of research inapplied machine learning. As considerably sparse research existson the intersection of attention-assisted deep learning and the taskof accurate ship detection, this paper focuses on various attention-based implementations and uses the famous and reliable U-Netarchitecture (Ronneberger et al., 2015) as a backbone for this study.This direction of neural architectures is highly inspired by the paperby Karki and Kulkarni (2021), in which the utility of U-Nets for thisdomain of accurate ship detection was proposed. By scouring theliterature and available articles, various models were obtained thatwere based on the U-Net and established architectures that coupledvarious attention strategies with the neural network and its sub-sidiary approaches. A total of seven neural architectures were testedwhile considering their real-time utility and associated temporalanalysis, which would enable us to obtain a usable computationaltrade-off and gauge the utility of attention modules and the testedapproaches. There are four sections to this study. The Methodologyis described in Section 2. The outcomes of the trials are analyzedand discussed in Section 3, which is followed by the conclusion andthe future scope of this novel empirical study.

Figure 1. Pictorial representation for Efficient Channel Attention (ECA)and underlying procedures (Niu et al., 2021).

2 Methodology

With the motivation of testing and validating the domain-specificutility of attention mechanisms in deep learning and ship detection,a variety of models were tested. By checking the available litera-ture and by understanding the possible combinations of attentionmodules and different U-Net variants, a total of seven differentarchitectures are assessed. The architectures include the U-Net,Convolutional Block Attention Module (CBAM) based U-Net (Tre-bing et al., 2021), Efficient Channel Attention (ECA) based U-Net(Shan et al., 2021), Residual U-Net (Khan et al., 2022), CBAM basedResidual U-Net (Wang et al., 2022), U-Net++ (Zhou et al., 2020)and CBAM based U-Net++ (Zhao et al., 2021). This section containsextensive information on the two attention mechanisms and thethree U-Net types.
2.1 Attention Modules

The use of the attention layers is an enhanced cognition experiencewhere the deep architecture is assisted in memorizing large se-quences of data. The paper mainly experiments with two attentionmechanisms, ECA (Wang et al., 2020), and CBAM (Woo et al., 2018).
2.2 Efficient Channel Attention

The methodology is built on the foundation of enforcing cross-channel interaction while requiring no dimensionality reductionduring the computation of channel attention. ECA is a verylightweight and efficient channel attention module that does notrequire any dimensionality reduction during the computation ofchannel attention (Wang et al., 2020). The parametric overheadadded by ECA is small and directly comparable to the kernel sizeused in the 1-D convolution layer, which is intrinsically present inECA and can be calculated as follows: Several key core principles ofECA, such as Cross Channel Interaction (CCI) and avoiding Dimen-sionality Reduction (DR), will be discussed in detail in the followingsubsections (Wang et al., 2020). The avoidance of dimensionalityreduction and the capacity to perform efficiently and adequatelywithin the intrinsic spatial dimensions were the most significantadvancements made by the aforementioned module. The function-ality of ECA can be better understood by the Figure 1.
2.3 Convolutional Block Attention Module

Channel Attention Module (CAM) and Spatial Attention Module(SAM) are two consecutive sub-modules of the CBAM that are usedin that specific order: CAM and the SAM. The authors of the originalpaper point out that CBAM is applied at every convolutional blockin deep networks, this is proposed to acquire subsequent ‘RefinedFeature Maps’ from the input intermediate feature maps (Woo et al.,2018). The functionality of CBAM can be better understood by theFigure 2.Both the CAM and SAM play a crucial part in robust attention,and they are founded on the idea that channel attention states which
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Figure 2. Overview of the Convolutional Block Attention Module (CBAM)and the underlying modules (Woo et al., 2018).

Figure 3. The Channel Attention Module (CAM) and the Spatial Atten-tion Module (SAM) (Woo et al., 2018).

feature map is relevant for learning and improves, or further re-fines, the feature map in question. Meanwhile, spatial attentionsends information about what is important to learn inside the fea-ture map. Combining the two significantly improves the robustnessof the Feature Maps and, as a result, justifies the large gain in modelperformance. In the pipeline being used, the Channel AttentionModule is an integral component (Woo et al., 2018). The CAM essen-tially provides a weight for each channel and, as a result, enhancesthose specific channels that are most contributing to learning and,as a result, extends the prevalent model performance. The inher-ent working of CBAM and its underlying methodologies is furthermentioned below.The term ‘spatial’ refers to the domain space included insidea single feature map. Spontaneous spatial attention reflects theattention mechanism/attention mask on the feature map or a singlecross-sectional slice of the tensor, as shown in the Figure 3. Tofunction properly, the SAM must perform a three-fold sequentialaction. The first portion of it is referred to as the Channel Pool,and it consists of the Input Tensor being decomposed into twochannels, with each of the two channels representing Max Poolingand Average Pooling across the channels, respectively (Woo et al.,2018).

3 U-Net

The paper leverages experiments with three main U-Net subtypes,the standard U-Net, the U-Net++, and the Residual U-Net. Thelast two were heavily inspired by the original architecture, whichis currently perceived as an industry standard and a reliable modelchoice for a plethora of tasks. The U-Net architecture was devel-oped primarily for the semantic segmentation of biomedical images(Ronneberger et al., 2015). The contraction path, also known as theencoder, and the extension path, also known as the decoder, formthe architecture. The encoder consists of two 2×2 convolution oper-ations. Each convolution operation is an unfilled convolution usinga rectified linear unit (ReLU) after each convolution, followed by a2×2 maximum pooling operation using stride 2 for downsampling.Performing downsampling doubles the feature channels. Whilein the decoder the feature map upsampling is followed by a 2×2

Figure 4. The standard U-Net architecture as mentioned in the article(Ding et al., 2019).

convolution (‘up convolution’) that halves the number of featurechannels, a concatenation with a proportional cut feature map fromthe encoder, and two 3×3 convolutions, each of which is followedby ReLU. Cropping is used to prevent edge pixels from being losteach time you fold. Using a 1×1 convolution layer, map the featurevectors of each of the 64 components to the required number ofclasses in the final layer. The architecture has a total of 23 convolu-tional layers (Ronneberger et al., 2015). A graphical description ofthe architecture is mentioned in the Figure 4.
3.1 Residual U-Net

This is a fully collapsed neural network that enhances the standardU-Net design by allowing deep residual learning. The decoder andencoder algorithms are the same as those used by U-Net (Zhanget al., 2018). U-Net uses two 3×3 convolution functions, followedby a ReLU as the activation function. However, the residual UNet re-places these layers with pre-activated residual blocks. The encodersends the input image through the encoder block. The encoderconsists of three encoder blocks connected by the remaining pre-activated blocks and the output of each encoder block acts as a skipconnection to the corresponding decoder block. To half the spatialdimensions, it employs the same methods as U-Net (Zhang et al.,2018). The bridge consists of the remaining pre-activated blockswith a stride value of 2. The decoder is made up of three decoderblocks, each of which doubles the spatial dimensions of the featuremap and reduces the number of feature channels. The ResidualU-Net decoder follows the same pattern as the U-Net decoder forupsampling and concatenation of feature maps with skip connec-tions from the encoder block, and 1×1 convolution is used in thefinal layer to acquire the appropriate number of classes (Zhang et al.,2018).
3.2 U-Net++

The main motivation for introducing U-Net++ is that U-Net trans-fers the feature map directly from the encoder to the decoder net-work (Zhou et al., 2020). This concatenates semantically differentfeatures. U-Net++ aims to solve the described problem by includingDense block and convolutional layers between the encoder and thedecoder network. Redesigned skip pathways are depicted in purple,thick skip connections are depicted in yellow, and deep supervi-sion is depicted in blue in Figure 5. In U-Net++, the output of theconvolution layer before the same high-density block is fused withthe upsampled output of the convolution layer of the lower densityblock (Zhou et al., 2020). As a result, these skip routes assist inclosing the semantic gap between encoder and decoder subpaths.Because of the dense convolution block alongside every skip path-
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Table 1. Obtained empirical data for the proposed experimented methodologies
Model Accuracy Precision Recall F1 Score Mean IoU
U-Net 0.972 0.195 0.648 0.254 0.143Attention U-Net (CBAM) 0.978 0.211 0.609 0.255 0.159Attention U-Net (ECA) 0.979 0.194 0.581 0.246 0.167Residual U-Net 0.991 0.328 0.317 0.249 0.230Attention Residual U-Net (CBAM) 0.974 0.198 0.723 0.266 0.1599U-Net ++ 0.992 0.2531 0.317 0.219 0.248Attention U-Net++ (CBAM) 0.998 0.283 0.384 0.262 0.201

Table 2. The related temporal data
Model Training Time [s] Testing Time [s]
U-Net 219.58 5.890Attention U-Net (CBAM) 222.01 5.873Attention U-Net (ECA) 222.58 5.570Residual U-Net 312.52 11.658Attention Residual U-Net (CBAM) 372.62 16.140U-Net ++ 292.25 11.982Attention U-Net++ 490.716 18.968

Figure 5. The U-Net++ architecture as depicted in the original paper(Zhou et al., 2020).

way, dense skip connections are furnished to growth gradient waftand make certain that each preceding characteristic map is accruedand arrives at the existing node. This produces feature maps withfull resolution at many semantic levels. Deep supervision helpsthe model adjust the complexity between speed and performance(Zhou et al., 2020). The above-mentioned eccentricities provide asufficiently balanced viewpoint for the inclusion of architecture inthis study. The structure can be better understood by the Figure 5.

4 Results

The empirical analysis and the obtained results for the testedmethodologies are further described in an extensive fashion. Thepaper leverages the Airbus Ship detection dataset, as used in theresearch Karki and Kulkarni (2021), by undersampling 12788 im-ages and obtaining a relatively balanced class distribution for theleveraged subset. The images were rescaled to an image size of256×256, to support computational constraints and an efficienttraining experience. Each tested neural architecture and method-ology is tested on an identical train-test split which was designedusing a stratified strategy to ensure a balanced training regimenand to have an unbiased validation of each tested neural architec-ture. The totality of the hyperparameters like the learning rate,batch sizes, and the associated constraints are obtained throughsufficient experimentation. The train test distribution follows a

ratio of 4:1 and is generated in an offline fashion. Each network isassessed by leveraging several metrics, like the percent accuracy,Precision, Recall, F1 score, and Mean IoU as available from the com-putational module presented in Trappenberg (2019), and is trainedfor an identical number of epochs.From the Tables 1 and 2, it can be inferred that the utility ofAttention mechanisms in standard neural strategies is justifiedfor relatively simpler architectures like a vanilla U-Net, as an in-crease in 0.6 and 0.7 percent accuracy is observed for CBAM andECA enhancements respectively. Similar trends are observed forthe other tested metrics for both the attention strategies. When avanilla U-Net was considered, despite higher training periods, 2.43seconds and 2.68 seconds for CBAM and ECA respectively, the atten-tion modules have shown a decrease in the overall testing efficiency.However, the modules failed when Residual U-Nets and U-Net++were considered. The associated temporal characteristics for boththe training phase and the real-time predictive phase were also triv-ially inadequate for CBAM-based attention enhancements. Theseresults also explain that because of a smaller dataset in considera-tion and the relatively small sample size, the simpler methodologiescould be trained to a sufficient extent. So, if implementations andutilities, where a sparse dataset size is present or dataset constraintsare observed, leveraging a vanilla U-Net might not be the optimalarchitecture strategy and attention enhancements have substantialperks. But considering the recent literature, and the experiments inthe scope of this paper, for a relatively larger sample space, compu-tational capabilities, and data entities, experimentation concerningattention does implicate a plausible use case. To better apprehendthe outcomes of these strategies more suitably, sample predictionsof these networks are mentioned in the Figure 6.

5 Conclusion

This paper aimed to assess the applicability of various attentionmodules and strategies available in the recent literature for accurateand efficient segmentation and hence detection of ships from aerialimages. The research leveraged a subset of the famous publiclyavailable Airbus Ship detection dataset for obtaining a novel empir-ical study and heralds the behavior of various neural strategies in arelatively computationally constrained environment. This impli-cated the relative utility of these methodologies and helps us obtaina computational centric trade-off in various domains which resem-ble and corresponds to remote sensing and aerial object detectionand have a sparse data sample size. The thorough experimentations
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Figure 6. Here (a) represents the aerial view, (b) represents the ground truth, (c) depicts the results obtained from a standard U-Net, (d) representsthe results obtained from a CBAM enhanced U-Net, (e) depicts the ECA enhanced U-Net, (f) indicates Residual U-Net, (g) represents CBAMenhanced Residual U-Net, (h) depicts a standard U-Net++, (i) represents the CBAM enhanced U-Net++ architecture.

can be leveraged to conclude the utility of attention to enhance acomparably simple architecture as non-trivial enhancements wereobserved, however in the case of relatively complex architectureslike U-Net++ and Residual U-Nets, the technique has an inverseeffect. For future work, the authors aim to leverage novel atten-tion mechanisms for a larger spatial extent and aim to mitigate thecomputational predicaments and computing needs associated withattention-based cognition.
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