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Abstract
Alignment of an engineering object project in the field is always conducted at the points of the geodetic control network, thecoordinates of which are determined on the basis of the results of its elements survey and with connection to the national spatialreference system. The points of the national spatial reference system determined on the basis of previous surveys have specifiedcoordinates with adequate accuracy, which is included in their covariance matrix. The coordinates of the geodetic control networkpoints are determined more accurately than the points of the national spatial reference system and this means that the results ofsurveys of the geodetic control network have to be adequately incorporated into the coordinates of the reference points. In order toperform this incorporation, it may be assumed that the coordinates of the reference points are random, that is, they have acovariance matrix, which should be used in the process of adjusting the results of the geodetic control network observation.This research paper presents the principles for the estimation of the Gauss-Markov model parameters applied in case of thosegeodetic control networks in which the coordinates of the reference points have random character. On the basis of the observationequations δ + AX = L for the geodetic control network and using the weighting matrix P and the matrix of conditional covariances(P–1 + ACX AT) for the observation vector L, the parameter vector X is estimated in the form of the derived formula
X̂ = (

C–1
X + ATPA

)–1
ATP · L. The verification of these estimation principles has been illustrated by the example of a fragment of a

levelling geodetic control network consisting of three geodetic control points and two reference points of the national spatialreference system.The novel feature of the proposed solution is the application of covariance matrices of the reference point coordinates to adjust theresults of the survey of geodetic control networks and to determine limit standard deviations for the estimated coordinates ofgeodetic control network points.
Key words: Estimation of models with random parameters, establishing geodetic control networks

1 Introduction

Alignment of an engineering object project in the field is perfor-med with reference to the points of the geodetic control networkwhich have been previously determined. The coordinates of thegeodetic control network points are determined on the basis of theresults of surveys of the geodetic control network elements andwith connection to the national spatial reference system. Electro-nic tacheometers, precision levels and Global Navigation SatelliteSystems (GNSS) techniques are used to observe these elements.The accuracy of the survey of geodetic control network elements ismuch higher than the accuracy of determining the coordinates of

the reference points.In order to adjust the results of the survey of geodetic controlnetworks connected to the national spatial reference system, theGauss-Markov (G-M) model is applied most frequently, includingthe weighting matrix for the observed values and the apparent ob-servation equations (pseudo-observations) for the coordinates ofthe reference points. For the pseudo-observations, the respectiveweights resulting from the accuracy of the analysed point coordi-nates are determined as well. In this case, numerous authors ofscientific papers use sequential adjustment of survey results, thatis, adjustment conducted in several steps.The issues related to the selection of respective weights to adjust
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the survey results in geodetic point networks have been the sub-ject of many scientific papers. The ones discussed by the authors:Baarda (1968); Rao (1982); Teunissen (2000), and Cross (1985) arethe most compatible with the considerations included in this paper.One of the methods of the geodetic network optimisation is thestrategy aiming at adjusting the accuracy of observation, whichwas developed by Kampmann (1994) and Caspary (1998). Anot-her proposal for selecting observations and their weights was pre-sented by Hekimoglu (1998) and Kampmann and Krause (1996).The issue of selecting respective weights when determining thecoordinates of geodetic points is strictly related to the internal andexternal network reliability. The theory of network reliability isthe subject of several scientific papers, and the precursors of thesestudies are Baarda et al. (1967); Baarda (1968, 1977) and Pope (1976).The papers of Prószyński (1997, 2000) constitute significant achie-vements in this field. The issues related to the design of optimalgeodetic control networks and their connection to the national spa-tial reference system are solved in Dąbrowski (2014).The coordinates of the points of the national spatial referencesystem are determined on the basis of previous surveys and theyare specified with the appropriate accuracy, which is included intheir covariance matrix. The coordinates of the geodetic controlnetwork points are determined more accurately than the coordina-tes of the points of the national spatial reference system and due tothis, the results of the surveys of the geodetic control network haveto be adequately incorporated into the coordinates of the referencepoints. In order to conduct this incorporation, it may be assumedthat the coordinates of the reference points are random, that is,they have a covariance matrix, which should be used in the processof adjusting the results of the geodetic control network observation.This research paper presents the principles for the estimation of theGauss-Markov model parameters applied in case of those geodeticcontrol networks in which the coordinates of the reference pointshave random character, that is, they will have a covariance matrix.The verification of these estimation principles has been illustratedby the example of a fragment of a levelling geodetic control network,which, with regard to elevation, is connected to two points of thenational spatial reference system.

2 Theoretical principles of Gauss-Markov mo-
del (L, AX, H) with random parameters

For determining the coordinates of geodetic network points consti-tuting geodetic control, the following may be observed: horizontaland vertical angles, horizontal and spatial lengths, coordinates of3D points in the established reference system as well as elevationdifferences of the selected points. For each observed value of λ, anobservation equation in the general form may be formulated:
δλ + d(λ) = λobs – λapp (1)

where:
δλ – represents a random error to the observed valueλobs,
d(λ) – represents a differential of the function describing the va-riability of the analysed elementλ, relative to the coordinatesof the geodetic network points that define this element,
λapp – is an approximate value of the analysed element determi-ned on the basis of approximate values of the coordinates ofgeodetic network points .

Let L, with the size of n × 1, be the vector of random variablesconstituting the differences between the observed values of geo-detic point network elements and their approximate values, thatis (λobs – λapp). The average value of this vector may be describedwith the use of fixed linear models AX, where X (u × 1) is a vec-tor of unknown parameters (corrections to the approximate pointcoordinates) while A (n × u) represents the matrix of coefficients

defined with the use of values of partial derivatives occurring inthe differentials d(λ). It is assumed that for the selected unknowns(x1, x2, . . . , xi) of the vector X, it is possible to define a priori thecovariance matrix Cov(x1, x2, . . . , xi) . When completed with zerosto the square matrix of the (u × u) size, it represents the covariancematrix CX . The inverse matrix [Cov(x1, x2, . . . , xi)]–1 completedwith zeros to the square matrix of the (u × u) size, will be repre-sented by the matrix C–1
X . Let the matrix H (n × n), whose inversecorresponds to the weighing matrix P, be the matrix of observationcovariance L with fixed X, that is,

H = V (L/X) . (2)
Based on the above-mentioned assumptions, the matrix of condi-tional covariances of the observation vector L may be defined asfollows:

V (L) = E
[

V (L/X)] + V
[

E (L/X)] = H + V (AX) = H + ACX AT . (3)
Estimation of the average value of the vector L will be conductedwith the use of estimators of parameters representing vector X, thecovariance matrix (3) and the method of least squares. For thispurpose, the square form F for random deviations will be written,but with regard to the matrix of conditional covariances of the ob-servation vector L, for which the minimum relative to the vector ofunknowns X will be sought, that is,

F = [(L – AX)T (H + ACX AT)–1 (L – AX)] = min . (4)
The condition necessary for the minimum of the function (4) maybe written in the following symbolic form:

∂F
∂X = 0. (5)

Having conducted differentiation of the function (4) and afterfurther matrix transformations, an equation system is obtainedand it complies with the condition (5), that is,(
C–1

X + ATH–1A
)

· X̂ = ATH–1 · L. (6)
On the basis of the dependence (6), with regard to the relationship
H–1 = P, the final formula for calculating the estimator of the vector
X̂ is derived in the following form:

X̂ = (C–1
X + ATPA

)–1
ATP · L. (7)

In order to examine the effectiveness of this estimator, it is neces-sary to conduct full analysis of the variance with interval estimation.The vector of random deviations δ to the estimated linear model
AX̂ is the difference between the vector L and its average value
E(L) = AX̂, that is,

δ = L – AX̂. (8)
The variance for the estimated model, resulting from the mutualincompatibility of the results of the observations of the geodeticcontrol network, is defined by exemplar:

σ̂20 = δTP–1δ
n – u , (9)

where n is the number of the observed elements, and u = rank (A).The covariance matrix of the estimated vector of the parame-ters X̂ is determined by variance (9) and the matrix of covariancecoefficients in formula (7), hence it is expressed by the following
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Figure 1. Chi-square distribution quantiles

formula:
Cov

(
X̂
) = σ20

(
C–1

X + ATPA
)–1 . (10)

The elements on the diagonal of matrix (10) determine the variancesof individual estimated parameters, and their square root is thestandard deviation σ (xi) of these parameters.In order to determine the significance level of the values of theestimated parameters, it is necessary to estimate the limit valueof their standard deviation at the predetermined confidence level(1 – α).A functional relationship that defines the estimated variance
σ2 (xi) of the analysed parameter (xi) and the tested variance
σ2 (↔x i

) of this parameter, taking into account k = n – u degrees
of freedom, is denoted by chi-square (χ2) and takes the followingform:

χ2 = k · σ2(xi)
σ2(↔x i) . (11)

The chi-square distribution can be defined by its quantiles
χ2(α; k), determined based on the probability density functionand the significance indexα. The quantile χ2(α; k) is the length ofthe abscissa on the axis Oχ2, which, from the whole area under thegraph of the density function with the area of 1, cuts off the area of
α, as illustrated in Figure 1. The surface area of the area marked inFigure 1 satisfies the inequality

χ2 > χ2(αi; k),
which expresses probabilities with the value of (1 – α), called theconfidence level. This relationship can be written in the followinganalytical form:

P[χ2 > χ2(αi; k)] = 1 – α. (12)
Having substituted (11) for χ2, the relationship of the estimatedvariance and the tested variance was obtained, in conjunction withthe quantile of the distribution (χ2), that is,

P
[

k · σ2(x)
σ2(↔x ) > χ2(αi; k)

]
= 1 – α. (13)

The above dependence shall always occur if the expression in squarebrackets is satisfied, that is,
k · σ2(x)
σ2(↔x ) > χ2(αi; k). (14)

Transformation of the above inequality leads to the following condi-tion for the tested variance, which is a limit value for the confidence

Table 1. Coefficients to determine limit standard deviati-ons for the estimated parameters (coordinates ofpoints of the geodetic network
k\(1 – α) 0.99 0.95 0.90 0.80 0.60

k = 2 10.0 4.4 3.1 2.1 1.4
k = 3 5.1 2.9 2.3 1.7 1.3
k = 4 3.7 2.4 1.9 1.6 1.2
k = 5 3.0 2.1 1.8 1.5 1.2
k = 6 2.6 1.9 1.6 1.4 1.2
k = 7 2.3 1.8 1.6 1.4 1.1
k = 8 2.2 1.7 1.5 1.3 1.1
k = 9 2.1 1.6 1.5 1.3 1.1

k = 10 2.0 1.6 1.4 1.3 1.1

level of (1 – α):
σ2(↔x ) ≤

k · σ2(x)
χ2(αi; k) . (15)

The interpretation of the above inequality is as follows: at the con-fidence level of (1 –α), the maximum value of the tested variancewill always be less than, or equal to, the estimated variance multip-lied by the coefficient k/χ2(α; k). In practical surveys, the standarddeviation of the estimated parameters is used, hence formula (15)can be written in the following form:
σ(↔x ) ≤

√
k

χ2(αi; k) · σ(x). (16)
Positive values of the square root of the coefficients k/χ2(α; k),for the selected degrees of freedom from 2 to 10 and the selectedconfidence levels from 0.99 to 0.60, have been presented in Table 1.

From the analysis of formulas (10) and (16), it is evident thatselection of the elements of the covariance matrix (CX ) for the esti-mated parameters of the vector X̂ and the weighing matrix (P) forthe observation vector (L) has a direct effect on the efficiency of theestimated coordinates of the points of the geodetic control, as wellas on their reliability.

3 Gauss-Markov model with random parame-
ters – exemplary uses

The Gauss-Markov model with random parameters can be used insurveying engineering in the following cases:
i. determining point displacements based on periodic surveysandii. establishing geodetic control networks connected to the nati-onal spatial reference system.
This research paper presents the principles of using the G-Mmodel with random parameters for adjusting the results of sur-veys of geodetic control networks connected to the national spatialreference system.The use of this estimation model leads to the determination ofappropriate values of random deviations to the values observed inthe geodetic control, taking into account their accuracy weightsand, at the same time, it includes appropriate adjustments to thecoordinates of the reference points resulting from their covariancematrix. A functional square form, defining the sum of the squares ofrandom deviations to the observed values, also takes into accountthe sum of the squares of adjustments to the coordinates of thereference points. The specified condition for the minimum of thissquare form allows determining all parameters of the establishedgeodetic control.As a result of estimation of the G-M model with random parame-
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ters, the most probable random deviations to the observed valuesare obtained, which form the basis for calculating the adjusted va-lues of the elements observed in a determined control, as well asthe adjusted coordinates of the points of this control. Adjustmentsto the coordinates of the reference points unambiguously fit thenational spatial reference system, in which the coordinates of thepoints of the established geodetic control are determined. The va-lues of these adjustments indicate a degree of mutual inconsistencybetween the coordinates of the reference points in relation to theobserved elements in the geodetic control network.The accuracy of determining the coordinates of the points ofthe geodetic control network depends on the sum of squares ofrandom deviations to the observed values and on the values of thecoefficients of the covariance matrix obtained during the estimationof the G-M model with random parameters. The limit value of thestandard deviation (16) for the determined coordinates of the pointsof the geodetic control, should be used to determine the accuracyof setting-out an engineering structure, in conjunction with theconstruction tolerance.Based on the adjustment of the results of surveys of the nationalspatial reference system, the vector of the coordinates of all thepoints is obtained, and the covariance matrix for this vector takesthe following form in the symbolic matrix record:

X̂N =


x1
y1
z1
. . .

⇔

Cov
[

X̂N
] =



V(x1) cov(x1, y1) cov(x1, z1) . . .

cov(x1, y1) V(y1) cov(y1, z1) ...
cov(x1, z1) cov(y1, z1) V(z1) ...
. . . . . . . . . . . .

 (17)

If, for example, two reference points of the national spatial referencesystem are used to adjust the horizontal geodetic control networkthen, from the entire covariance matrix (17), it is necessary to selectfour blocks of the sub-matrices (of the size 2×2), which correspondto the reference points. If the reference points are denoted, forexample, by numbers 2 and 4, then the corresponding covariancematrix will take the following form:

X̂NT =


x2
y2
x4
y4

⇔

Cov
[

X̂NT
] =


V(x2) cov(x2, y2) cov(x2, x4) cov(x2, y4)cov(y2, x2) V(y2) cov(y2, x4) cov(y2, y4)cov(x4, x2) cov(x4, y2) V(x4) cov(x4, y4)cov(y4, x2) cov(y4, y2) cov(y4, x4) V(y4)

 .
(18)

The system of observation equations for the elements of thegeodetic control network should take into account all the points ofthe established control and the reference points. The form of thissystem of equations, in a symbolic matrix record, is as follows:
δ + AX = L. (19)

According to the denotations for formula (19):
δ – represents the vector of random deviations to the observedelements of the geodetic control network,
A – is the matrix of coefficients at estimated unknowns,
X – represents the vector of unknowns, containing adjustments tothe coordinates of the points of the geodetic control networkand the reference points and

L – denotes the vector of absolute terms, that is, differences bet-ween the values of the observed elements and their approxi-mate values.
To create the observation equations (19), a diagonal weightingmatrix P should be defined, whose values of the elements resultfrom the accuracy of surveys of the geometric elements in the geo-detic control. Based on this system of equations, a system of normalequations can be developed, the form of which is as follows:(

ATPA
)

· X = ATP · L. (20)
The above system of equations will always have a defect becausethe determinant from the matrix (ATPA

)will be equal to zero. The
inverse of the covariance matrix[Cov

(
X̂NT

)]–1 for the coordinates
of the reference points will be used to eliminate this defect.

The matrix [Cov
(

X̂NT
)]–1, supplemented by zeros to the size

of the matrix(ATPA
), leads to the matrix C–1

X . If we add the matrix
C–1

X to the matrix (ATPA
), then we get a system of equations in

the form (6), which implements estimation of the G-M model withrandom parameters, that is,[
C–1

X + ATPA
]
· X̂ = ATP · L. (21)

The dependence (21) forms the basis for deriving the final formulafor calculating the estimator of the vector X̂ in the following form:
X̂ = [C–1

X + ATPA
]–1

· ATP · L. (22)
The covariance matrix for such a vector of unknowns, or the es-timated coordinates of the points of the geodetic control networkand the reference points, is expressed by the formula

Cov
(

X̂
) = σ20

[
C–1

X + ATPA
]–1 . (23)

The parameterσ20 represents the variance determined based on theobtained random deviations to the observed values, that is,
σ20 = δTPδ

n – u ,
δ = L – AX̂. (24)

Based on the coefficients presented in Table 1, the limit values ofthe standard deviation for the determined coordinates of the pointscan be specified.

4 Numerical example of using Gauss-Markov
model with random parameters

In order to verify the principles of estimation of the G-M modelwith random parameters, the simplest structure of the geodeticnetwork of points was selected, in which all the observations re-gard differences in elevations only. The analysed fragment of thelevelling network of points consists of three points making up thegeodetic control network and two reference points representing thenational spatial reference system, as illustrated in Figure 2.In the analysed network of points, five elevation differences hiwere measured using the appropriate number of the level ni stands.The reference points A and B, with given elevations, have the follo-wing covariance matrix and its inverse:
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Figure 2. A fragment of levelling network of points

Cov
[

zA, zB
] =
[0.81 0.200.20 0.64

]
[mm2] ⇔

(
Cov

[
zA, zB

])–1 =
[ 1.34 –0.42–0.42 1.69

][ 1
mm2

] . (25)
To adjust the survey results, it was predetermined that for the ele-vation difference observed from one-level stand, the standard devi-ation is equal to 0.2 mm. Using the principle of adding the variances,the variance σ2

i and weight pi were calculated for each observedelevation difference:
σ21 = 0.16 mm2 p1 = 6.25,
σ22 = 0.20 mm2 p2 = 5.00,
σ23 = 0.32 mm2 p3 = 3.12,
σ24 = 0.08 mm2 p4 = 12.5,
σ25 = 0.16 mm2 p5 = 6.25.

The observation equations for measured elevation differences hialways have a linear form, and therefore their differential form isas follows:
δi + dziK – dzip = hi – (z̃iK – z̃ip). (26)

The right side of Equation (26), containing the observed elevationdifferences and approximate elevations of the points of the geodeticcontrol, as well as the exact elevations of the reference points, isan absolute term. The elevations of the reference points and theapproximate elevations of the points of the geodetic control are asfollows:
zA = 1.108 m; z̃1 = 1.200 m,
zB = 1.406 m; z̃2 = 1.280 m,

z̃3 = 1.250 m.
Based on the results of the levelling surveys demonstrated in Fi-gure 2, five observation equations can be developed, which willcontain five unknowns representing adjustments dzi to two refe-rence points and three points of the geodetic control network.

δ1 + dz1 – dzA = h1 – (z̃1 – zA),
δ2 + dz2 – dz1 = h2 – (z̃2 – z̃1),
δ3 + dzB – dz2 = h3 – (zB – z̃2),
δ4 + dz3 – dzB = h4 – (z̃3 – zB),
δ5 + dz1 – dz3 = h5 – (z̃1 – z̃3). (27)

Having taken into account the system of equations (27) and theschedule of observations, the matrix A of coefficients with the

unknowns, the matrix L of absolute terms, and the weighing matrix
P take the following form:

A =


–1 0 1 0 00 0 –1 1 00 1 0 –1 00 0 0 –1 10 0 1 0 –1

 , L =


8.03.2–7.6–0.8–1.5

 [mm],

P =


6.25 0 0 0 00 5 0 0 00 0 3.12 0 00 0 0 12.5 00 0 0 0 6.25

 .

The values of the elements of the above-mentioned matriceswere used to implement formulas (18)–(21), which led to the follo-wing calculation results:

C–1
X =


1.34 –0.42 0 0 0–0.42 1.69 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0

 ,

ATPA =


6.25 0 –6.25 0 00 3.12 0 –3.12 0–6.25 0 17.5 –5 –6.250 –3.12 –5 20.62 –12.50 0 –6.25 –12.5 18.75

 ,

C–1
X + ATPA =


7.59 –0.42 –6.25 0 0–0.42 4.81 0 –3.12 0–6.25 0 17.5 –5 –6.250 –3.12 –5 20.62 –12.50 0 –6.25 –12.5 18.75

 ,

[
C–1

X + ATPA
]–1 · ATP =

=


–0.0594 –0.0405 –0.1190 0.0135 0.02700.0430 0.0293 0.0862 –0.0098 –0.01960.0850 –0.0511 –0.1503 0.0170 0.03410.0743 0.0507 –0.1716 –0.0169 –0.03380.0779 0.0167 –0.1645 0.0478 –0.0645

 ,

X̂ = [C–1
X + ATPA

]–1
ATP · L =


–1, 180, 866, 509, 088, 19

 .

The calculated values of the vector X̂ form the basis for determiningthe most probable elevations of the points of the geodetic controlnetwork, that is,
ẑ1 = 1.200 + 0.0065 = 1.2065 m,
ẑ2 = 1.280 + 0.0091 = 1.2891 m,
ẑ3 = 1.250 + 0.0082 = 1.2582 m.

Adjustments to the elevations of the reference points with the va-lues of -1.18 mm and 0.86 mm prove that, with reference to theperformed and adjusted observations in the geodetic control net-work, the elevations of these points are inconsistent with each otherat the level of their difference, that is, 2.04 mm. The most probablerandom deviationsδto the observed point elevation differences take
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the following values:

δ = L – AX̂ =


0.30.60.60.10.2

 [mm],

σ20 = 4.0785 – 3 = 2.04 mm2.
The adjusted elevation differences, which make up the geodeticcontrol observation programme, are the differences between theirobserved values and random deviations, that is,

ĥ1 = 100.0 – 0.3 = 99.7,
ĥ2 = 83.2 – 0.6 = 82.6,
ĥ3 = 118.4 – 0.6 = 117.8,
ĥ4 = –30.8 – 0.1 = –30.9,
ĥ5 = –51.5 – 0.2 = –51.7.

The covariance matrix for the estimated parameters X̂ takes thevalues

CovX̂ = 2.04 ·


0.58 0.36 0.52 0.48 0.500.36 0.52 0.41 0.44 0.430.52 0.41 0.61 0.56 0.580.48 0.44 0.56 0.61 0.590.50 0.43 0.58 0.59 0.64

 [mm2].

The elements on the diagonal of the above matrix are the squares ofstandard deviations for the elevations of the reference points andpoints of the geodetic control network, thereforeσ(ẑ1)
σ(ẑ2)
σ(ẑ3)

 =
1.111.111.14

 [mm].

Based on the values presented in Table 1, for k = 5 – 3 = 2 and(1 –α) = 0.90, the coefficient√k/χ2(α; k) = 3.1 was determined,which defines the limit value of the standard deviation for the esti-mated parameters. Thus, the limit values of the standard deviationfor the determined elevations of the points of the geodetic controlnetwork are at the level of
σ(↔z 1)
σ(↔z 2)
σ(↔z 3)

 = 3.1 ·

1.111.111.14
 [mm]

The above relationship proves that point number 3 gets the largestlimit value of the standard deviation, which is at the level of 3.5 mm.Therefore, the determined geodetic control network can be used toset out elevations of points defining structural elements of the buil-ding’s design, for which the limit construction tolerance is greaterthan 3.5 mm.

5 Final remarks

The proposed algorithm for the estimation of the G-M model withrandom parameters for adjusting results of surveys of geodetic con-trol networks connected to the national spatial reference systemallows determining the most probable random deviations to the

observed values, which constitute the basis for calculating adjustedvalues of the elements observed in the determined control network,as well as adjusted coordinates of the points of this control. Adjus-tments to the coordinates of the reference points unambiguouslydefine the national spatial reference system in which the coordi-nates of the points of the established geodetic control network aredetermined. The values of these adjustments define a degree ofmutual inconsistency of the coordinates of the reference points inrelation to the observed elements in the geodetic control network.The accuracy of determining the coordinates of the points of thegeodetic control network depends on the sum of squares of randomdeviations to the observed values, and on the values of the covari-ance matrix coefficients obtained during the estimation of the G-Mmodel with random parameters. The limit value of the standarddeviation, for the determined coordinates of the points of the ge-odetic control network should be used to determine the accuracyof setting out an engineering structure, in conjunction with theconstruction tolerance.
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