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Abstract

Alignment of an engineering object project in the field is always conducted at the points of the geodetic control network, the
coordinates of which are determined on the basis of the results of its elements survey and with connection to the national spatial
reference system. The points of the national spatial reference system determined on the basis of previous surveys have specified
coordinates with adequate accuracy, which is included in their covariance matrix. The coordinates of the geodetic control network
points are determined more accurately than the points of the national spatial reference system and this means that the results of
surveys of the geodetic control network have to be adequately incorporated into the coordinates of the reference points. In order to
perform this incorporation, it may be assumed that the coordinates of the reference points are random, that is, they have a
covariance matrix, which should be used in the process of adjusting the results of the geodetic control network observation.
This research paper presents the principles for the estimation of the Gauss-Markov model parameters applied in case of those
geodetic control networks in which the coordinates of the reference points have random character. On the basis of the observation
equations 5 + AX = L for the geodetic control network and using the weighting matrix P and the matrix of conditional covariances
(P! + ACxAT) for the observation vector L, the parameter vector X is estimated in the form of the derived formula

X=(cxt+ATPA "' ATP .. L. The verification of these estimation principles has been illustrated by the example of a fragment of a

levelling geodetic control network consisting of three geodetic control points and two reference points of the national spatial
reference system.

The novel feature of the proposed solution is the application of covariance matrices of the reference point coordinates to adjust the
results of the survey of geodetic control networks and to determine limit standard deviations for the estimated coordinates of
geodetic control network points.

Key words: Estimation of models with random parameters, establishing geodetic control networks

1 Introduction the reference points.

In order to adjust the results of the survey of geodetic control
networks connected to the national spatial reference system, the
Gauss-Markov (G-M) model is applied most frequently, including
the weighting matrix for the observed values and the apparent ob-
servation equations (pseudo-observations) for the coordinates of

the reference points. For the pseudo-observations, the respective

Alignment of an engineering object project in the field is perfor-
med with reference to the points of the geodetic control network
which have been previously determined. The coordinates of the
geodetic control network points are determined on the basis of the
results of surveys of the geodetic control network elements and

with connection to the national spatial reference system. Electro-
nic tacheometers, precision levels and Global Navigation Satellite
Systems (GNSS) techniques are used to observe these elements.
The accuracy of the survey of geodetic control network elements is
much higher than the accuracy of determining the coordinates of

weights resulting from the accuracy of the analysed point coordi-
nates are determined as well. In this case, numerous authors of
scientific papers use sequential adjustment of survey results, that
is, adjustment conducted in several steps.

The issues related to the selection of respective weights to adjust
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the survey results in geodetic point networks have been the sub-
ject of many scientific papers. The ones discussed by the authors:
Baarda (1968); Rao (1982); Teunissen (2000), and Cross (1985) are
the most compatible with the considerations included in this paper.
One of the methods of the geodetic network optimisation is the
strategy aiming at adjusting the accuracy of observation, which
was developed by Kampmann (1994) and Caspary (1998). Anot-
her proposal for selecting observations and their weights was pre-
sented by Hekimoglu (1998) and Kampmann and Krause (1996).
The issue of selecting respective weights when determining the
coordinates of geodetic points is strictly related to the internal and
external network reliability. The theory of network reliability is
the subject of several scientific papers, and the precursors of these
studies are Baarda et al. (1967); Baarda (1968, 1977) and Pope (1976).
The papers of Proszynski (1997, 2000) constitute significant achie-
vements in this field. The issues related to the design of optimal
geodetic control networks and their connection to the national spa-
tial reference system are solved in Dgbrowski (2014).

The coordinates of the points of the national spatial reference
system are determined on the basis of previous surveys and they
are specified with the appropriate accuracy, which is included in
their covariance matrix. The coordinates of the geodetic control
network points are determined more accurately than the coordina-
tes of the points of the national spatial reference system and due to
this, the results of the surveys of the geodetic control network have
to be adequately incorporated into the coordinates of the reference
points. In order to conduct this incorporation, it may be assumed
that the coordinates of the reference points are random, that is,
they have a covariance matrix, which should be used in the process
of adjusting the results of the geodetic control network observation.
This research paper presents the principles for the estimation of the
Gauss-Markov model parameters applied in case of those geodetic
control networks in which the coordinates of the reference points
have random character, that is, they will have a covariance matrix.
The verification of these estimation principles has been illustrated
by the example of a fragment of a levelling geodetic control network,
which, with regard to elevation, is connected to two points of the
national spatial reference system.

2 Theoretical principles of Gauss-Markov mo-
del (L, AX, H) with random parameters

For determining the coordinates of geodetic network points consti-
tuting geodetic control, the following may be observed: horizontal
and vertical angles, horizontal and spatial lengths, coordinates of
3D points in the established reference system as well as elevation
differences of the selected points. For each observed value of A, an
observation equation in the general form may be formulated:

8 + d(A) = Agpe — Aapp (€Y

where:

5, - represents a random error to the observed valuea y,

d(A\) — represents a differential of the function describing the va-
riability of the analysed element), relative to the coordinates
of the geodetic network points that define this element,

Agpp — isanapproximate value of the analysed element determi-
ned on the basis of approximate values of the coordinates of
geodetic network points .

Let L, with the size of n x 1, be the vector of random variables
constituting the differences between the observed values of geo-
detic point network elements and their approximate values, that
is (Aops — Aapp)- The average value of this vector may be described
with the use of fixed linear models AX, where X (u x 1) is a vec-
tor of unknown parameters (corrections to the approximate point
coordinates) while A (n x u) represents the matrix of coefficients

defined with the use of values of partial derivatives occurring in
the differentials d(A). It is assumed that for the selected unknowns
(X1, X2, ..., x;) of the vector X, it is possible to define a priori the
covariance matrix Cov(xy, x5, . . ., X;) . When completed with zeros
to the square matrix of the (u x u) size, it represents the covariance
matrix Cy. The inverse matrix [Cov(xy, X5, ..., X;)] ~1 completed
with zeros to the square matrix of the (u x u) size, will be repre-
sented by the matrix Cgl. Let the matrix H (n x n), whose inverse
corresponds to the weighing matrix P, be the matrix of observation
covariance L with fixed X, that is,

H=V(L/X). (2)

Based on the above-mentioned assumptions, the matrix of condi-
tional covariances of the observation vector L may be defined as
follows:

V(L) = E [V(L/X)] + V [E(L/X)] = H+V (AX) = H + ACxAT. (3)

Estimation of the average value of the vector L will be conducted
with the use of estimators of parameters representing vector X, the
covariance matrix (3) and the method of least squares. For this
purpose, the square form F for random deviations will be written,
but with regard to the matrix of conditional covariances of the ob-
servation vector L, for which the minimum relative to the vector of
unknowns X will be sought, that is,

F= [(L - Ax)T (H + ACXAT) - AX)} =min.  (4)

The condition necessary for the minimum of the function (4) may
be written in the following symbolic form:

oF

— = 0.

= (5)
Having conducted differentiation of the function (4) and after

further matrix transformations, an equation system is obtained

and it complies with the condition (5), that is,

(cx'+A™HTA) - R=A"H L (6)

On the basis of the dependence (6), with regard to the relationship
H™! = P, the final formula for calculating the estimator of the vector
X is derived in the following form:

%= (cx'+aTpa) T'ATp L. )

In order to examine the effectiveness of this estimator, it is neces-
sary to conduct full analysis of the variance with interval estimation.
The vector of random deviations & to the estimated linear model
AR is the difference between the vector L and its average value
E(L) = AX, that is,

5 =L-AX. (8)
The variance for the estimated model, resulting from the mutual
incompatibility of the results of the observations of the geodetic

control network, is defined by exemplar:

sTp~ls
n—u

63 = : 9)
where n is the number of the observed elements, and u = rank (A).

The covariance matrix of the estimated vector of the parame-
ters X is determined by variance (9) and the matrix of covariance
coefficients in formula (7), hence it is expressed by the following
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Figure 1. Chi-square distribution quantiles

formula:
Cov (R) = o3 (Cx* +ATRA) . (10)

The elements on the diagonal of matrix (10) determine the variances
of individual estimated parameters, and their square root is the
standard deviation o (x;) of these parameters.

In order to determine the significance level of the values of the
estimated parameters, it is necessary to estimate the limit value
of their standard deviation at the predetermined confidence level
1- ).

A functional relationship that defines the estimated variance
o2 (x;) of the analysed parameter (x;) and the tested variance

o? (71) of this parameter, taking into account k = n — u degrees

of freedom, is denoted by chi-square (x?) and takes the following
form:

2 _ k- O‘T‘_()Xi). (11)
o2(x i )

The chi-square distribution can be defined by its quantiles
x2(«; k), determined based on the probability density function
and the significance index o. The quantile x2(«; k) is the length of
the abscissa on the axis Ox2, which, from the whole area under the
graph of the density function with the area of 1, cuts off the area of
«, as illustrated in Figure 1. The surface area of the area marked in
Figure 1 satisfies the inequality

x> > x*(oy; k),

which expresses probabilities with the value of (1 — «), called the
confidence level. This relationship can be written in the following
analytical form:

Plx? > Xz(oci; K]l=1-«. (12)

Having substituted (11) for x2, the relationship of the estimated
variance and the tested variance was obtained, in conjunction with
the quantile of the distribution (x?2), that is,

2
p k~U£X)
o2(x

> xz(oc,-; K| =1-« (13)

The above dependence shall always occur if the expression in square
brackets is satisfied, that is,

k- o2(x)

= > x*(a; k). (14)
02(x)

Transformation of the above inequality leads to the following condi-
tion for the tested variance, which is a limit value for the confidence

Banasetal. | 3

Table 1. Coefficients to determine limit standard deviati-
ons for the estimated parameters (coordinates of
points of the geodetic network

kK\l-«) 099 095 090 080 0.60

k=2 100 YA 3.1 2.1 1.4
k=3 5.1 2.9 2.3 1.7 13
k=4 3.7 2.4 1.9 1.6 1.2
k=5 3.0 2.1 1.8 15 1.2
k=6 2.6 1.9 1.6 1.4 1.2
k=17 23 1.8 1.6 1.4 1.1
k=8 2.2 1.7 15 13 1.1
k=9 2.1 1.6 1.5 1.3 1.1
k=10 2.0 1.6 1.4 13 11

level of (1 — «):

2. k- o2(x)
o(x) < o 1) (15)
The interpretation of the above inequality is as follows: at the con-
fidence level of (1 — o), the maximum value of the tested variance
will always be less than, or equal to, the estimated variance multip-
lied by the coefficient k/x2(«; k). In practical surveys, the standard
deviation of the estimated parameters is used, hence formula (15)
can be written in the following form:

o / k
o(x) < o - o(x). (16)

Positive values of the square root of the coefficients k/x?(; k),
for the selected degrees of freedom from 2 to 10 and the selected
confidence levels from 0.99 to 0.60, have been presented in Table 1.

From the analysis of formulas (10) and (16), it is evident that
selection of the elements of the covariance matrix (Cy) for the esti-
mated parameters of the vector X and the weighing matrix (P) for
the observation vector (L) has a direct effect on the efficiency of the
estimated coordinates of the points of the geodetic control, as well
as on their reliability.

3 Gauss-Markov model with random parame-
ters — exemplary uses

The Gauss-Markov model with random parameters can be used in
surveying engineering in the following cases:

i. determining point displacements based on periodic surveys
and
ii. establishing geodetic control networks connected to the nati-
onal spatial reference system.

This research paper presents the principles of using the G-M
model with random parameters for adjusting the results of sur-
veys of geodetic control networks connected to the national spatial
reference system.

The use of this estimation model leads to the determination of
appropriate values of random deviations to the values observed in
the geodetic control, taking into account their accuracy weights
and, at the same time, it includes appropriate adjustments to the
coordinates of the reference points resulting from their covariance
matrix. A functional square form, defining the sum of the squares of
random deviations to the observed values, also takes into account
the sum of the squares of adjustments to the coordinates of the
reference points. The specified condition for the minimum of this
square form allows determining all parameters of the established
geodetic control.

As aresult of estimation of the G-M model with random parame-
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ters, the most probable random deviations to the observed values
are obtained, which form the basis for calculating the adjusted va-
lues of the elements observed in a determined control, as well as
the adjusted coordinates of the points of this control. Adjustments
to the coordinates of the reference points unambiguously fit the
national spatial reference system, in which the coordinates of the
points of the established geodetic control are determined. The va-
lues of these adjustments indicate a degree of mutual inconsistency
between the coordinates of the reference points in relation to the
observed elements in the geodetic control network.

The accuracy of determining the coordinates of the points of
the geodetic control network depends on the sum of squares of
random deviations to the observed values and on the values of the
coefficients of the covariance matrix obtained during the estimation
of the G-M model with random parameters. The limit value of the
standard deviation (16) for the determined coordinates of the points
of the geodetic control, should be used to determine the accuracy
of setting-out an engineering structure, in conjunction with the
construction tolerance.

Based on the adjustment of the results of surveys of the national
spatial reference system, the vector of the coordinates of all the
points is obtained, and the covariance matrix for this vector takes
the following form in the symbolic matrix record:

-
XN = 32)1 &
V(x1) cov(xy, y1)  cov(xq, z;)
Cov [ﬁw] _ |cov(xa, y1) V(y1) cov(y1, z1) 17)
cov(xy, z1)  cov(yy, z1) V(zy)

If, for example, two reference points of the national spatial reference
system are used to adjust the horizontal geodetic control network
then, from the entire covariance matrix (17), it is necessary to select
four blocks of the sub-matrices (of the size 2 x 2), which correspond
to the reference points. If the reference points are denoted, for
example, by numbers 2 and 4, then the corresponding covariance
matrix will take the following form:

X2
ﬁNT = zz =1
LY,
V(xy) cov(xa, y2)  covxy, ;)  cov(xa, y,)
_ [cov(ya, x2) V(y2) cov(ya, x,)  cov(ya, v,)
Cov [XNT] " |eov(x,, x5)  cov(xy, v5) V(x,) cov(x,, V;)
[Cov(Y,, X2)  COV(Y,, Vo) cov(Yy, x,) V(y,)
(18)

The system of observation equations for the elements of the
geodetic control network should take into account all the points of
the established control and the reference points. The form of this
system of equations, in a symbolic matrix record, is as follows:

5 +AX = L. (19)

According to the denotations for formula (19):

& — represents the vector of random deviations to the observed
elements of the geodetic control network,

A - is the matrix of coefficients at estimated unknowns,

X - represents the vector of unknowns, containing adjustments to
the coordinates of the points of the geodetic control network
and the reference points and
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L - denotes the vector of absolute terms, that is, differences bet-
ween the values of the observed elements and their approxi-
mate values.

To create the observation equations (19), a diagonal weighting
matrix P should be defined, whose values of the elements result
from the accuracy of surveys of the geometric elements in the geo-
detic control. Based on this system of equations, a system of normal
equations can be developed, the form of which is as follows:

(ATPA) .x=ATP.L. (20)

The above system of equations will always have a defect because
the determinant from the matrix (ATPA) will be equal to zero. The
-1
inverse of the covariance matrix [Cov (XNT> ] for the coordinates
of the reference points will be used to eliminate this defect.
. -1 .
The matrix [Cov (ﬁNT)] , supplemented by zeros to the size

of the matrix (ATPA) , leads to the matrix C;(l. If we add the matrix

Cx'to the matrix (ATPA) , then we get a system of equations in
the form (6), which implements estimation of the G-M model with

random parameters, that is,
[cx' +A"PA] X = AP L. (21)
The dependence (21) forms the basis for deriving the final formula
for calculating the estimator of the vector X in the following form:
%= [cxt +ATRA] " ATP L. (22)
The covariance matrix for such a vector of unknowns, or the es-
timated coordinates of the points of the geodetic control network
and the reference points, is expressed by the formula
Cov () = 03 [cx* + ATPA] . (23)

The parameter o2 represents the variance determined based on the
obtained random deviations to the observed values, that is,

T
5 _ 8TPs
%0 T
5§ =L-AX. (24)

Based on the coefficients presented in Table 1, the limit values of
the standard deviation for the determined coordinates of the points
can be specified.

.4 Numerical example of using Gauss-Markov

model with random parameters

In order to verify the principles of estimation of the G-M model
with random parameters, the simplest structure of the geodetic
network of points was selected, in which all the observations re-
gard differences in elevations only. The analysed fragment of the
levelling network of points consists of three points making up the
geodetic control network and two reference points representing the
national spatial reference system, as illustrated in Figure 2.

In the analysed network of points, five elevation differences h;
were measured using the appropriate number of the level n; stands.
The reference points A and B, with given elevations, have the follo-
wing covariance matrix and its inverse:



B, =100.0mm
4 =4 h, =118.4mm
4 @ ny = B
z, =1.1080m N @ Y
z, =1.4060m

B
hy ==51.5mn?Y"
ng=4 h, ==30.8mm
n,=2

©)

Figure 2. A fragment of levelling network of points

0.81 0.20
020 0.64

(Cov [z, ZB])_1 = [—1(.)3.’22 _106[;2] {mrlnz} : (25)

Cov [24, zg] = [ ] [mm?] &

To adjust the survey results, it was predetermined that for the ele-
vation difference observed from one-level stand, the standard devi-
ation is equal to 0.2 mm. Using the principle of adding the variances,
the variance o7 and weight p; were calculated for each observed
elevation difference:

o? =016 mm?  p, = 6.25,
02 =020mm?  p, = 5.00,
03 =032mm’> p; =312,
o7 =008mm>  p, =125,
0z =016mm*>  ps = 6.25.

The observation equations for measured elevation differences h;
always have a linear form, and therefore their differential form is
as follows:

5i + dZiK - dzip = hi - (211( - 2ip)' (26)

The right side of Equation (26), containing the observed elevation
differences and approximate elevations of the points of the geodetic
control, as well as the exact elevations of the reference points, is
an absolute term. The elevations of the reference points and the
approximate elevations of the points of the geodetic control are as
follows:

Zp =1108m;  Z; =1.200m,
Zg =1.406m; %, =1.280m,
Z3 = 1.250m.

Based on the results of the levelling surveys demonstrated in Fi-
gure 2, five observation equations can be developed, which will
contain five unknowns representing adjustments dz; to two refe-
rence points and three points of the geodetic control network.

81 +dzy —dzy = hy — (21 — 2p),
8y +dzy —dzy = hy — (2, — %),
83 +dzg — dzy = h3 — (25 — Z3),
&, +dzz —dzg = h;, — (23 — zp),
55 +dzy —dzz = hg — (Z; — Z3). 27)

Having taken into account the system of equations (27) and the
schedule of observations, the matrix A of coefficients with the

Banasetal. | 5

unknowns, the matrix L of absolute terms, and the weighing matrix
P take the following form:

-1 0o 1 0 8.0
0O 0o -1 1 o0 3.2
A=|o 1 o -1 o/, L= |-76| [mm)],
0 o -1 1 -0.8
Lo 0o 1 o0 -1 -15
[625 0 O 0 0
0 5 0 0 0
P=| o 0 312 O 0
0 0O 0 125 0
) 0o o 0 6.5

The values of the elements of the above-mentioned matrices
were used to implement formulas (18)—(21), which led to the follo-
wing calculation results:

(134 —-042 0 0 O
—042 169 0 0 O
cl=1| o 0 o o of,
0 0 0 0 0
0 0 0 0 o
6.25 0 -625 0 0
0 3.12 0 -3.12 0
ATPA=|-625 o 175 -5  —6.25],
0 -312 -5 2062 -125
0 0 —625 -125 1875
[759 —042 —625 O 0
—0.42 481 0 —3.12 0
Cxl+ATPA= | -6.25 0 175 -5 —6.25],
0 —3.12 -5 20.62 —12.5
| o 0 -625 -125 1875
[cx* +a"pA| - ATP =
[—0.0594 —0.0405 —0.1190  0.0135
00430 00293 00862 —0.0098
= | 00850 —0.0511 -0.1503 0.0170
0.0743 0.0507 —0.1716 —0.0169
| 00779 00167 —0.1645 0.0478
—1,18
» 0,86
R= [C;l + ATPA] ATP.L=|6,50
9,08
8,19

The calculated values of the vector X form the basis for determining
the most probable elevations of the points of the geodetic control
network, that is,

2, =1.200 + 0.0065 = 1.2065 m,
2, =1.280 + 0.0091 = 1.2891m,
23 =1.250 + 0.0082 = 1.2582 m.

Adjustments to the elevations of the reference points with the va-
lues of -1.18 mm and 0.86 mm prove that, with reference to the
performed and adjusted observations in the geodetic control net-
work, the elevations of these points are inconsistent with each other
at the level of their difference, that is, 2.04 mm. The most probable
random deviations 5to the observed point elevation differences take

0.0270
—0.0196
0.0341
—0.0338
—0.0645

)
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the following values:
03
0.6
5§=L—-AX = [0.6| [mm],
0.1
0.2
0-2 = M =2.04 1‘111‘1‘12
°T5-3 77 '

The adjusted elevation differences, which make up the geodetic
control observation programme, are the differences between their
observed values and random deviations, that is,

h; =100.0 - 03 =997,
h, = 83.2 - 0.6 = 82.6,

h; = 118.4 — 0.6 = 117.8,
hy,

hs = =515 — 0.2 = —51.7.

—30.8 — 0.1 = —30.9,

The covariance matrix for the estimated parameters X takes the
values

058 036 052 048 050
036 052 041 044 0.43
CovX =2.04- |052 041 061 056 058
048 0.44 056 061 059
050 0.43 058 059 0.64

[mm?].

The elements on the diagonal of the above matrix are the squares of
standard deviations for the elevations of the reference points and
points of the geodetic control network, therefore

o(21) 1.11
o(2,)| = [111| [mm].
o(23) 114

Based on the values presented in Table 1, for k = 5 — 3 = 2 and
(1— «) = 0.90, the coefficient \/k/x2(; k) = 3.1 was determined,
which defines the limit value of the standard deviation for the esti-
mated parameters. Thus, the limit values of the standard deviation
for the determined elevations of the points of the geodetic control
network are at the level of

—
o(z4) 111
o(Z,)| =31+ [111] [mm]
o(73) 114

The above relationship proves that point number 3 gets the largest
limit value of the standard deviation, which is at the level of 3.5 mm.
Therefore, the determined geodetic control network can be used to
set out elevations of points defining structural elements of the buil-
ding’s design, for which the limit construction tolerance is greater
than 3.5 mm.

5 Final remarks

The proposed algorithm for the estimation of the G-M model with
random parameters for adjusting results of surveys of geodetic con-
trol networks connected to the national spatial reference system
allows determining the most probable random deviations to the

observed values, which constitute the basis for calculating adjusted
values of the elements observed in the determined control network,
as well as adjusted coordinates of the points of this control. Adjus-

tments to the coordinates of the reference points unambiguously
define the national spatial reference system in which the coordi-

nates of the points of the established geodetic control network are
determined. The values of these adjustments define a degree of
mutual inconsistency of the coordinates of the reference points in
relation to the observed elements in the geodetic control network.
The accuracy of determining the coordinates of the points of the
geodetic control network depends on the sum of squares of random
deviations to the observed values, and on the values of the covari-
ance matrix coefficients obtained during the estimation of the G-M
model with random parameters. The limit value of the standard
deviation, for the determined coordinates of the points of the ge-
odetic control network should be used to determine the accuracy
of setting out an engineering structure, in conjunction with the
construction tolerance.
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