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Abstract 
 
The paper presents a least squares collocation - based alternative to 
Helmert’s transformation with Hausbrandt’s post – transformation 
correction. The least squares collocation is used as an exact predictor i.e. it 
honors the data, thus the problem of zero residuals on transformation 
control points is overcome and zero residuals are assured by the method 
applied. Despite the fact that the procedure is presented for Helmert’s 
transformation it may easily be copied to any other form of coordinate 
transformation. A numerical example is provided within the content of the 
paper.  
 
Keywords: least squares collocation, Helmert’s transformation, covariance 
function, post – transformation correction 

 
1. Introduction 

 
Coordinate transformation is a way of converting coordinates between two coordinate 
systems of which the first one is called a primary system and the second a secondary 
system. In practice, the basic process of coordinate transformation usually consists 
of two stages. In the first step a set of parameters of the transformation model 
(transformation function) is searched on the basis of homological points of the two 
systems. The solution to this problem is possible if the number of homological points 
is equal or greater than the number of transformation model parameters. The second 
step is performed for arbitrary points of the primary system. It relies on using the 
adopted transformation model to transform points from the primary system to the 
secondary one. The accuracy of the coordinate transformation is influenced by two 
factors. The first one is the type of the adopted transformation model (determined by 
the number of parameters). And the second one results from the limited accuracy of 
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the coordinates of homological points. The latter factor, in case of geodetic networks, 
is difficult to eliminate because it often results from measurements’ uncertainty. Study 
on transformation model accuracy is possible only on homological points where the 
residuals are available (used as a measure of accuracy). The next stage in the 
process of coordinate transformation, called a post – transformation correction, may 
be the removal of residuals from control points. Computation of correction terms and 
their introduction to coordinates may increase the accuracy of the transformation 
process. The base for application of such post – transformation corrections are three 
assumptions: 
- type of adopted transformation model is good enough and does not influence 
significantly the values of residuals  
- coordinates of the secondary system are more accurate than those from the 
primary system  
- residuals on a given control point represent also the uncertainty of coordinates 
within its neighborhood 
The third from the above assumptions is the base for methods of computing post – 
transformation corrections as a function of the distance between a newly transformed 
point and control points – Inverse Distance Method (IDW). In this method the value of 
coordinate correction of an arbitrary point is inversely proportional to the distance dk 
from control points, where exponent k = 1..n. The value of the exponent k is usually 
set empirically. In the well known method of Hausbrandt k is set to 2 (Hausbrandt, 
1970).   
 Although the procedure presented herein may be applied to any form of coordinate 
transformation (affine, projective, polynomial etc.) we limit ourselves only to the 
Helmert’s transformation. The procedure may easily be copied for other coordinate 
transformations without any additional effort. Least squares collocation (here it is 
used in its simplest form without a functional analysis sound) may be viewed either 
as a filter (filters out the measurement error on observation points) or exact 
interpolator (ignores the fact whether a measurement error exists or not and honors 
the data by passing through observation points) depending on the model involved. 
The latter case seems to be a good choice when one wants to retain catalogue 
coordinates in the secondary coordinate system. This may be confronted with 
Hausbrandt’s post – transformation correction which uses inverse distance 
interpolation method (IDW) to redistribute residuals from the transformation model 
onto newly transformed points. The Hausbrandt’s method is based on a heuristic 
idea of removing residuals (obtained in the process of model adjustment) from 
catalogue coordinates of control points by making them all zeros. This as seems may 
be eliminated by a more objective numerical procedure with optimal properties – 
least squares collocation. By applying LSC as an exact interpolator one obtains the 
same values of coordinates in the secondary system as taken to create the 
transformation model and the residuals are redistributed in a signal-noise related part 
of the transformation model.  
 
2. Helmert’s transformation 
 
Helmert’s transformation also known as four – parameter similarity transformation or 
2D linear conformal transformation is probably the most used form of coordinate 
transformation or at least the most broadly described in the geodetic literature. In 
order to transfer points from one coordinate system to another it employs a scale 
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factor S, rotation angle α and translations TX, TY. The basic equations (one for each 
coordinate) may be written as: 
 
 αα sincos ySxSTX X ++=  (1a) 
 αα cossin ySxSTY Y +−=  (1b) 
where: 

X, Y – coordinates in the secondary system 
x, y – coordinates in the primary system 
TX, TY – translations along X and Y axes, respectively 
S – scale factor 
α – rotation angle 

 
Putting  
 αcosSα =   αsinSb =   (2) 
 
(1a) and (1b) may be rewritten as: 
 
 byaxTX X ++=  (3a) 
 aybxTY Y +−=  (3b) 
 
Adding error terms δX and δY to (3a) and (3b); respectively (or assuming errors in 
both coordinate systems (δx and δy), (δX and δY); respectively) and having more than 
the minimum number of observations (pseudoobservations) one obtains an 
adjustment problem to be solved with respect to the transformation parameters a, b, 
TX, TY  (Ghilani, 2010; Mikhail and Ackermann, 1976). After the adjustment process a 
scale factor and rotation angle may simply be restored by the formulas: 
 

 





=

a
ba tana  (4) 

 22

sincos
babaS +===

aa
 (5) 

 
3. Hausbrandt’s post – transformation correction 
 
In the process of adjustment of (3a, 3b), pseudo – observations (X and Y coordinates 
of control points in the secondary system) will be distorted by the values of residuals 
i.e. the catalogue (nominal) coordinates in the secondary system will be changed. In 
order to retain the nominal coordinates an artificial operation making residuals on 
control points zeros is undertaken and at the same time these residuals are 
redistributed on newly transformed points. This procedure was introduced by 
Hausbrandt, thus it carries his name – Hausbrandt’s post – transformation correction. 
Redistributing procedure based on inverse distance interpolation due to Hausbrandt 
may be summarized as follows (Hausbrandt, 1970):  

 H
i

N
ii XXg −=   H

i
N

ii YYh −=  (6) 
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( ) ( ) 222

iPiPiP
i d

c
YYXX

cw =
−+−

=  (8) 

where: 
XN, YN – catalogue (nominal) coordinates in the secondary system 
XH, YH – coordinates in the secondary system resulting from Helmerts’s 
transformation 
w – weights assigned to g and h based on inverse distance criterion  
c – arbitrary constant 

 
Distances diP are computed with the use of coordinates of points of the primary 
system. Corrections dXP and dYP are added to coordinates of newly transformed 
points according to (3a, 3b) with adjusted parameters a, b, TX, TY. 
 
4. Least squares collocation in brief 

 
Least squares collocation (LSC) is an advanced technique of adjustment 
(adjustment, filtering and prediction) developed particularly for the research of the 
Earth’s gravity field (Physical Geodesy) (Moritz, 1980, 1972; Krarup, 1969). As 
“advanced” often means “flexible” it quickly found its other applications. Mikhail 
reports its use in the field of photogrammetry (Mikhail and Ackermann, 1976; Kraus 
and Mikhail, 1972). Moritz (1972) gives a “user – friendly” review of applications to 
interpolation and transformation problems (he mentions also satellite observations 
and graduation errors of theodolite circles, and of course gravity measurements and 
combining heterogeneous measurements to describe the Earth’s gravity field). Hardy 
(1977) shows (in fact the least squares prediction method which is a less general 
ancestor of LSC) its application to image processing. Thus, the scope of problems 
solved through the use of LSC is really broad. The basic equation of LSC (in a 
descriptive way) is expressed as: 
 
 Observation = Trend + Disturbance = Trend + Signal + Noise (9) 
 
In fact the most right hand side part of the above “equation”, called trend, signal and 
noise model is the Henderson’s mixed effects model (Henderson, 1950; Robinson, 
1991). But here, it will be used in slightly modified form i.e. as an exact predictor thus 
the representation (middle part of the above) is closely related to that of Goldberger’s 
BLUP or to the most often presented universal kriging variant (exact predictor) in 
geostatistics. In thus formulated problem we will not remove (filter out) a noise-
related part of the model from observation points i.e. both signal and noise are 
combined in a disturbance term. Hence, the model (rewritten from (9) in a more 
formal way) is given as:  
 
 εAxnsAxL +=++=  (10) 
 
where: 

L – vector of observations 
A – design matrix 
x – vector of model parameters to be estimated 
s, n, ε – vector of signal, noise, and disturbance; respectively 
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Derivation of model parameters is very elaborate thus only a summary will be 
presented here and the interested reader is referred to e.g. Moritz (1972), Goldberger 
(1962), Christensen (2011). The vector of estimates of x i.e. x̂ is given as:    
 
 ( ) LCAACAx εεεε

111ˆ −−−= TT  (11) 
where: 

εεC  – is the covariance matrix for the disturbance part of the assumed model 
(observables – observables, data – to – data)  

 
One easily notices that (11) is the Aitken’s estimator of generalized least squares 
method (BLUE – Best Linear Unbiased Estimator). The predicted disturbance term 
(BLUP – Best Linear Unbiased Prediction) is expressed as: 
 
 ( )xALCCε εεεε ˆˆ 1

0 0
−= −   (12) 

where: 
0εεC – is the covariance matrix for the disturbance part of the assumed model 

(observables – nonobservables, data – to – target) 
0ε̂ – predicted disturbance 

 
Total predicted value (estimated trend plus predicted disturbance term) may be 
written as: 
 ( )xALCCxTεxTL εεεε ˆˆˆˆˆ 1

00 0
−+=+= −  (13) 

where: 
T – is a design matrix for the newly predicted (here newly transformed) points 
according to (3a and 3b)  

 
The error analysis may be summarized by three error matrices: 
 
Error matrix for estimated parameters x̂ : 
 ( ) 11

ˆˆ
−−= ACAE εεxx

T  (14) 
Error matrix for predicted disturbance term: 
 TT HAHAECCCCE xxεεεεεεεεεε ˆˆ

1
ˆˆ 0000

+−= −  (15) 
where: 

1
0

−= εεεε CCH  
Error matrix for the sum estimated trend + predicted disturbance (total prediction): 
 
 ( ) ( )TTT THAETHACCCCE xxεεεεεεεεLL 00

−−+−= −
ˆˆ

1
ˆˆ 00

 (16) 

 
Issue of exactness 
First, we shall sketch this graphically. In general case, when a new point to be 
predicted does not coincide with an observed one we have the structure stored in 
matrices εεC  and εεC

0
 of the following form:   
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Fig. 1. Structure stored in the matrix εεC  (left drawing: covariance between each pair  

of observables) and the matrix εεC
0

 (right drawing: covariance between each pair  
of observable – target, here it would be rather a vector than a matrix  

since only one target is to be predicted) 
 
In the above case the structure stored in both covariance matrices is different, but 
this changes when a new point to be predicted coincide with an observed one. For 
the ease of presentation we will assume that this coincidence occurs for all 
observables i.e. all points to be predicted are located at observables. In this particular 
case both matrices εεC  and εεC

0
 are the same.    

 
Fig. 2. Structure stored in the matrix εεC  (left drawing: covariance between each pair  

of observables) and the matrix εεC
0

 (right drawing: covariance between each pair  
of observable – target, here target = observable) 

 
Having in mind the above described (13) may be rewritten with (T = A): 
 
 ( )xALCCxAεxAL εεεε ˆˆˆˆˆ 1

00 0
−+=+= −  (17) 

 
But as shown graphically both covariance matrices are equal in this case i.e. 

εεεε CC =
0

, thus one finally obtains a simple relation: 
 
 ( ) ( ) LxALIxAxALCCxAL εεεε =−+=−+= − ˆˆˆˆˆ 1

0  (18) 
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This proves that this approach honors the data i.e. in case of (any) coordinate 
transformation catalogue coordinates of the secondary system will be retained. 
 
5. LSC based Helmert’s transformation procedure 
 
In the LSC formalism (presented earlier), the input quantities for the transformation 
model to satisfy equations (11), (12) or (13) are as follows: 
 

 







=

Y
X

L   







=

Y

X

A
A

A   







=

Y

X

T
T

T  (19a, b, c) 

 







=

YYYX

XYXX

CC
CC

Cεε   







=

00

00

0
YYYX

XYXX

CC
CC

Cεε  (20a, b) 

where: 
L – vector of observations (pseudoobservations, coordinates of control points 
in the secondary system, partitioned into blocks with respect of X and Y 
coordinates; respectively 
A – design matrix (pseudoobservations, function of coordinates of control 
points in the primary system,  partitioned into blocks with respect of x and y 
coordinates; respectively) 
T – design matrix for newly transformed points (pseudoobservations, function 
of coordinates of control points in the primary system,  partitioned into blocks 
with respect of x and y coordinates; respectively) 

εεC  – matrix of covariances and crosscovariances between residuals (on 
control points) based on a suitably selected covariance function, partitioned 
into blocks in relation to the partitioning of vector L 

0εεC – matrix of covariances and crosscovariances between residuals (on 
control points and on points to be transformed) based on a suitably selected 
covariance function, partitioned into blocks in relation to the partitioning of 
vector L 

Subscripts XX, XY, YX, YY, XX0, XY0, YX0, YY0 denote the “direction” of covariance 
structure  
 
The entire process may be summarized as: 
 
1. Obtain a starting estimate of x by least squares, i.e. find x̂  
2. Compute residuals from least squares adjustment, i.e. xALε ˆˆ −=  
3. Produce an empirical covariance (cross – covariance) function of the residuals 

and fit a suitably selected theoretical model, on the basis of theoretical 
covariance (cross –covariance) function construct a corresponding covariance 
matrix, i.e. εεC   

4. On the basis of the covariance matrix from step 3 obtain a new estimate of x, i.e. 
x̂  

5. Compute residuals from the generalized least squares adjustment, i.e. xALε ˆˆ −=  
6. Repeat steps 3 – 5 until the relative or absolute change in estimates of x̂  is small 
7. Construct the covariance matrix 

0εεC  
8. Make a final prediction according to (11), (12) and (13) and asses the accuracy 

of estimation and prediction process according to (14), (15), (16) 
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6. Numerical example 
 

The following simple example is to show a step by step procedure how to solve the 
stated transformation problem with LSC (the authors are aware that every single 
surveyor is familiar with a part of computations presented below but they will be 
shown in a full extent to maintain the entire computation flowline). Along with the LSC 
solution, “classical” solution of Hausbrandt will also be computed and both sets of 
results confronted. The example is “tiny” on purpose, in order to be able to show all 
necessary intermediate steps of computations. The transformation problem consists 
of three control points (known coordinates in both primary (arbitrary) and secondary 
systems (arbitrary)) and three points to be transformed. All necessary data and a 
sketch of spatial distribution of points are presented below.    
 

Fig. 3. Spatial distribution 
of points 

Table 1. Control points and points to be transformed 

Control points 
 Primary system Secondary system 

 

No X [m] Y [m] X [m] Y [m] 
1 14482.564 13288.071 5768950.542 6441593.071 
2 8445.162 20281.612 5763055.723 6448708.668 
3 6187.062 12491.598 5760639.634 6440965.177 

Points to be transformed   

10 10550.348 13150.453   
20 8000.671 16023.344   
30 10591.893 16627.614   

 
Quantities common for both approaches (results presented without units since these 
are obvious.) 
 


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

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
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









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



=

177.6440965
668.6448708
071.6441593
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723.5763055
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L



























−
−
−

=

1
1
1
0
0
0

0
0
0
1
1
1

062.6187
162.8445
564.14482
598.12491
612.20281
071.13288

598.12491
612.20281
071.13288
062.6187
162.8445
564.14482

A



























−
−

−
=

1
1
1
0
0
0

0
0
0
1
1
1

893.10591
671.8000
348.10550
614.16627
344.16023
453.13150

614.16627
344.16023
453.13150
893.10591
671.8000
348.10550

T  

 
L – vector of coordinates of the secondary system in the form of (18a) 
A – design matrix of the transformation model of the form (18b)  
T – design matrix for the newly transformed points of the form (18c)  
 
Solution I: Helmert’s transformation with Hausbrandt’s post – transformation 
correction 
The results will be presented in brief without error analysis.  
Estimated transformation parameters (ordinary least squares) and vector of 
residuals: 
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( )
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ˆ
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Coordinates of newly transformed (subscript N) points in the secondary system: 
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
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
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
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ˆ
N

N

Y
X

xT  

 
Hausbrandt’s corrections according to (7) and final coordinates of the newly 
transformed points in the secondary system after Hausbrandt’s post transformation 
correction (subscript NH) are given as: 
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Solution II: Least squares collocation based Helmert’s transformation 
 
We assume that a Gaussian covariance function model for the disturbances holds for 
both εX and εY,  further we will only use X and Y subscripts.   
 

( )






 =+
===








−
otherwise  

0 if     
,,, 2

0

0
a
dYYXX

ce

dcc
daccCCC   and  0== YXXY CC  

where: 
c0 = 0.00005 , c = 0.0004, a = 6000 m and d is a distance between points 
 
We shall start from constructing distance matrix for the observables (control points) D 
and on its basis and the adopted covariance function a covariance matrix YYXX CC =

is obtained:   
 
















=

000.0
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593.8334
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








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




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0004500.0
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0000643.0
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0000373.0

0000581.0
0000373.0
0004500.0

YYXX CC  
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Cross – covariances are assumed to be zero in our simplified example, thus the total 
covariance matrix in division into blocks is of the following form: 
 









=

YY

XX

C0
0C

Cεε  

 
Transformation parameters according to (11) are as follows: 
 

( )


















=


















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ˆ 111

Y

X
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T
T
b
a

LCAACAx εεεε  

 
Now, one may check numerically the exactness property of the presented method 
 

( ) LxALCCxAL εεεε =



























=−+= −

177.6440965
668.6448708
071.6441593
634.5760639
723.5763055
542.5768950

ˆˆˆ 1
0  

The above agrees with the input L vector. 
 
In order to obtain the covariance matrix for observables – targets, we construct the 
distance matrix D0 first and entries of this matrix become the arguments of the 
covariance function what in the end results in a suitable covariance matrix. Both 
matrices are of the form:  
 
















=

979.6042470.4238974.5127
650.3970932.4281213.7036
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0D















==

0001451.00002429.00001927.0
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Since cross – covariances are assumed to be zero the total covariance matrix 
between observables and targets in division into blocks is of the following form: 
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Thus the final prediction gives the following results; the second term may be viewed 
as a correction term similar to that of Hausbrandt. 
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As a summary it is worth comparing two vectors of differences. The first one (on the 
left below) includes differences between predicted coordinates of newly transformed 
points by least squares collocation and coordinates of newly transformed points 
obtained by “classical” Helmert’s transformation (based on least squares adjusted 
transformation model). The second vector (on the right below) includes differences 
between LSC newly transformed points and points transformed by means of 
Helmerts’s transformation with Hausbrandt’s post – transformation correction. All 
entries in both vectors are presented in millimeters.     
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One may easily observe a decrease in differences what proves that LSC approach 
automatically “corrects” the transformation results. Now, one may argue which 
approach is better. Certainly, the Hausbrandt’s approach or generally IDW based 
post – transformation corrections are easier both in theoretical and implementation 
terms. However, LSC approach has this advantage in the process of redistributing 
residuals that it includes the structure of residuals modeled by a covariance function 
not only the distance as it is in IDW approach.  
 
7. Conclusions 

 
In the paper a least squares collocation as an exact predictor has been applied to 
post – transformation correction as an alternative to the Hausbrandt’s one. The LSC 
procedure is coherent in the sense that all the estimates (transformation parameters, 
predicted disturbances, error matrices) result from strict reasoning without a heuristic 
element. The application of LSC as an exact predictor automatically makes residuals 
on control points zeros since the adopted model honors the data. In the paper only a 
sketch of its application to the stated problem endowed with a simple numerical 
example is presented. It is definitely more laborious than Hausbrandt’s approach as 
requires additional step involving covariance (also cross - covariance) structure 
modeling. It requires more data points in order to reasonably estimate an empirical 
covariance function.  It provides a full and strict error analysis without any 
simplifications.  In order to check its full practical potential it requires wider research 
conducted on field data and this is currently under the authors’ scope.  
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