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Abstract

This study presents a short-term forecast of UT1-UTC and LOD using two methods, i.e. Dynamic Mode Decomposition (DMD) and
combination of Least-Squares and Vector Autoregression (LS+VAR). The prediction experiments were performed separately for
yearly time spans, 2018-2022. The prediction procedure started on January 1 and ended on December 31, with 7-day shifts
between subsequent 30-day forecasts. Atmospheric Angular Momentum data (AAM) were used as an auxiliary time series to
potentially improve the prediction accuracy of UT1-UTC and LOD in LS+VAR procedure. An experiment was also conducted with
and without elimination of effect of zonal tides from UT1-UTC and LOD time series. Two approaches to using the best steering
parameters for the methods were applied:. First, an adaptive approach, which observes the rule that before every single forecast, a
preliminary one must be performed on the pre-selected sets of parameters, and the one with the smallest prediction error is then
used for the final prediction; and second, an averaged approach, whereby several forecasts are made with different sets of
parameters (the same parameters as in adaptive approach) and the final values are calculated as the averages of these predictions.
Depending on the method and data combination mean absolute prediction errors (MIAPE) for UT1-UTC vary from 0.63 ms to
1.43ms for the 10th day and from 3.07 ms to 8.05ms for the 30th day of the forecast. Corresponding values for LOD vary from 0.110
ms to 0.245 ms for the 10th day and from 0.148 ms to 0.325 ms for the 30th day.
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1 Introduction orbit determination, and climate forecasting and analysis.

The Length of a Day (LOD) is the first negative derivative from

The Earth Orientation Parameters (EOP) describe the irregular-
ities of the Earth’s rotation and its orientation in space. They
include three classes of parameters, i.e. Earth pole coordinates
(PMx and PMy), the difference between Universal Time (UT1) and
Universal Coordinated Time (UTC), determined by atomic clocks,
i.e. UT1-UTC and Celestial Pole Offsets (dX and dY, yielded by the
precession-nutation models). This set of parameters is essential to
perform the conversion between Celestial Reference Frame (CRF)
and Terrestrial Reference Frame (TRF) (Gambis and Luzum, 2011).
Knowledge of EOP plays a significant role in several other astronom-
ical and geodetic applications, including: space navigation, precise

the UT1-UTC after removing leap seconds and is determined as the
difference between the astronomically determined duration of the
Earth’s rotation and 86400 SI seconds. Both parameters are used
to model changes in the Earth’s rotation rate (Modiri et al., 2020).
The following factors play an important role in the variability of
UT1-UTC and LOD, e.g.: El Nifio Southern Oscillation (Holton and
Dmowska, 1989; Soffel, 2013), zonal wind variations in atmospheric
general circulation models (Hopfner, 1998), and ice mass loss and
the resulting sea level changes (Gross et al., 2004). According to Xu
etal. (2022b) LOD is also strongly related to The El Nino-Southern
Oscillation (ENSO) and Atmospheric Angular Momentum (AAM)
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changes, across the frequencies of interannual oscillations.

Determination of EOP with a high accuracy combines such ad-
vanced geodetic techniques as Very Long Baseline Interferometry
(VLBI), Global Navigation Satellite System (GNSS), Satellite Laser
Ranging (SLR), Lunar Laser Ranging (LLR), and Doppler Orbitog-
raphy and Radiopositioning Integrated by Satellite (DORIS). This
combination enables a determination of EOP with accuracy of ap-
proximately 50puas or higher in the case of pole coordinates and
30us or higher in the case of UT1-UTC (10us for LOD) (Dick and
Thaller, 2020).

The final EOP data are usually provided with delay caused by
the complexity of measuring and data processing, and published,
for example, by the International Earth Rotation and Reference
Systems Service (IERS) after 30 days (Dick and Thaller, 2020). This
latency gap can be filled using rapid products (published by, e.g.,
IERS (Daily Rapid EOP Data), CODE (Center for Orbit Determination
in Europe), GFZ (German Research Centre for Geosciences), or
IGS (International GNSS Service)). For several astronomical and
geodetic purposes, the knowledge of the near real-time EOP data is
needed. The solution to this problem is EOP prediction.

EOP prediction is commonly used, as evidenced by two com-
parison campaigns, organised by IERS, ie., the 1st Earth Ori-
entation Parameters Prediction Comparison Campaign held in
2006-2008 (Kalarus et al., 2010) and the 2nd Earth Orientation
Parameters Prediction Comparison Campaign held in 2021-2022
(http://eoppcc.cbk.waw.pl/, Kur et al. 2022; Sliwinska et al. 2022).
Also, within a GGOS (Global Geodetic Observing System) infras-
tructure, a Joint Study Group 3: Al for Earth Orientation Parameter
Prediction has been established (https://ggos.org/about/org/fa/ai-
for-geodesy/eop-prediction/).

A number of techniques and data combinations have been used
and developed to improve the accuracy of EOP prediction, e.g., neu-
ral networks (Guessoum et al., 2022; Liao et al., 2012; Schuh et al.,
2002), machine learning (Kiani Shahvandi et al., 2022; Lei et al.,
2017), kriging (Michalczak and Ligas, 2021, 2022), kalman filter
(Gross et al., 1998; Nastula et al., 2020; Xu et al., 2012), singular
spectrum analysis (Okhotnikov and Golyandina, 2019), or autore-
gressive models (Dill et al., 2018; Niedzielski and Kosek, 2011).

In this contribution, to predict UT1-UTC and LOD, the methods
of Dynamic Mode Decomposition (DMD) and combination of least-
squares and vector autoregression (LS+VAR) were used. DMD is
a data-driven, equation-free technique capable of reconstructing
and forecasting time series in a single numerical procedure whilst
VAR is a multivariate counterpart of the Autoregressive (AR) model.
DMD was applied to the separate UT1-UTC and LOD prediction
whilst LS+VAR model was fed with UT1-UTC, LOD and Atmospheric
Angular Momentum (AAM) series in various combinations (all used
data combinations are explained in Table 1). AAM information, as
an auxiliary variable, was applied to potentially strengthen the
prediction of UT1-UTC and LOD in the LS+VAR model. The study
also examined the difference in the accuracy of prediction with and
without removing the effect of zonal tides.

This study attempts to answer the question of whether the di-
rect incorporation of additional external data (Liouville equation
not involved), such as AAM motion term, can improve LS+VAR pre-
dictions of UT1-UTC and LOD. This study also examines the impact
of the removal of the effect of zonal tides from the UT1-UTC and
LOD time series.

2 Prediction methods

2.1 Dynamic Mode Decomposition

DMD, based on fluid dynamics (Schmid, 2010), is a data-driven
method of reconstructing and forecasting generally non-linear dy-

namical systems using linear techniques. It is governed by a main
relation that links future states of a system to past ones through
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an (unknown) operator A that stores the dynamics of the system’s
evolution:

Xy,q = Axy )

where x;, and x, ,, are the subsequent snapshots (images of a dy-
namical system) at discrete time instances t, and t; , ;.

This equation has the form of a linear homogeneous system of
difference equations with constant coefficients with some initial
vector x; which is known to have the solution given by:

kp—1x, (2)

Xk+1 = AkX1 = DA
where ® A @~ is the eigendecomposition of A.

DMD algorithm searches the best-fit matrix A in (1) (in fact
its dominant eigenstructure). This is accomplished by generat-
ing a snapshot matrix X = [x4, X;, X3, ..., Xm] that stores states
of a system at discrete time instances t = 1, 2, ..., m. The ma-
trix is split into two other matrices, X; =[xy, X5, ..., Xm—;] and
X, = [x5, X3, ..., Xm], that are related, according to (1), by a ma-
trix A, ie.:

Xo = AX 3)
The estimate of an operator A is given by:
A=XX{ (4)

where X} = VEZ~1UT denotes the Moore-Penrose pseudo-inverse
determined using the singular value decomposition (SVD). This
enables for a low dimensional representation of A (Tu et al., 2014)
by:

A=vuTau=uTx,v=1! (5)

Eigenvalues of A are those of A and are obtained as a solution to the
eigenvalue problem:

Aw = WA (6)
whilst the eigenvectors of A are given by:
@ =X,VZ~'W (7)

For high dimensional problems SVD of X; in (4) is truncated to some
prescribed rank r (low rank approximation of X; ) yielding:

X, = Uz, V! (8)

With this approximation, the algorithm works identically as
previously with components of decomposition U, £, V replaced
with Uy, =, Vr. Once the eigenstructure of A is determined, (2) can
be used to reconstruct or predict future states of the system. For
low dimensional problems (numerically tractable) operator A may
be obtained from (4) and applied directly to (1).

In the case of time series analysis, the snapshot matrix becomes
a trajectory matrix (known from, e.g., singular spectrum analysis),
as described by Tirunagari et al. (2017). Hence, the input time series
x of length T is split into L subseries x’ of length K that are moved
by one time step ahead, i.e.:

X1 Xo ce X1,
X2 3 o Xn 7 / 7

X=. . . . =[xy % - X)) (9)
XK XK+1 XK+L-1

where L is selected sothat2 < L < %, K is related to L and T with
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K = T — L + 1. The trajectory matrix is then split into two K x (L —1)
matrices, as described above. The remaining steps of the DMD
algorithm do not change.

2.2 Least-squares estimated linear trend and periodic-
ities extrapolation with Vector AutoRegression on
residues

This prediction procedure begins with a least-squares fit of a lin-
ear trend and periodic components (10) to the input time series
(separately for each of variables V;).

k
Vi=A;+Bit+ Y a;sin (w,-,jt + ¢,~J) +e (10)
j

where V stands for a variable of interest, i.e., UT1-UTC, LOD, or
AAM; A, B are the intercept and slope of a linear trend; a, w, ¢ are
the amplitude, frequency and phase of a sine wave, e stands for an
error term, [A, B, a, w, ¢ ] to be determined. Residuals VI.R“ = ¢; ob-
tained after eliminating the linear trend and periodicities in (10) are
subject to a joint prediction through p — lagged vector autoregres-
sive model LS+VAR. VAR model describes a dynamic dependence
between variables, i.e., links current values of variables with their
past values, and past values of other variables in the system and
may be expressed as:

Res _ 7 y7Res ’ Res ! y7Res Res
Vi® =c+A PVT—p + A p—lVT—p+1 +.. +A V2 +ep (11)

where a constant vector ¢ (nvx1) accounts for a non-zero mean
value of the vector process, each of VRes (nvx1) stores residual val-
ues of variables at appropriate time delay, each A’ is a nvxnv matrix
of coefficients and eReS (nvx1) is a vector of error terms, nv denotes
a number of variables.

After the estimation of coefficients matrices A’ in (11), the fore-
cast may be performed through the successive use of the formula:

QRes

T+h-1

Vﬁﬁq =[A, A, A'p] . (12)

where h denotes a time-step of forecast horizon and if h —i < 0
wherei=1,2,..,pthen VX% . = VR _ Finally, the extrapo-
lated trend and periodic components of (10) are combined with the

predicted residuals (12).

3 Data description and processing details

The short-term (30 days into the future) UT1-UTC and LOD forecast
was performed using IERS EOP 14 Co4 (IAU2000A) series as a refer-
ence (Bizouard et al., 2018). AAM series (Dobslaw and Dill, 2018)
was also used — as an auxiliary data source in LS+VAR-based predic-
tion procedure to potentially strengthen the prediction of UT1-UTC
and LOD. The prediction experiment was completed in two variants,
the first one with the removal of effect of zonal tides (recommended
by IERS Conventions (2010) (Petit and Luzum, 2010)) and the other
omitting this step.

The first stage in the prediction procedure involved identifying
sets of best-performing steering parameters on the yearly period
immediately preceding the period of the relevant forecasts (e.g.,
forecasts within 2018 were based on steering parameters deter-
mined for the year 2017). These sets of parameters were selected
based on the condition of the least sum of squares of differences
between the observed and predicted values for all 30 days of the
forecasts.

Michalczak and Ligas, 2024 | 47

The searching loop responsible for preselecting sets of parame-
ters involved:

in the case of DMD:

— input time series length (T),

— number of snapshots (L).

in the case of LS+VAR:

— input time series length (T) for estimation of linear trend
and periodic components,

— number of periodic components (PC),

— subseries of (T) for LS+VAR parameters estimation (subT),

— autoregression order (p).

The sets of parameters selected in this way were then applied
in two kinds of prediction approaches: adaptive and averaged. In
the adaptive approach, before every single proper 30-day predic-
tion, a preliminary one was performed of the preceding 30 days.
This preliminary forecast was made with pre-selected sets of pa-
rameters obtained in the aforementioned step, and the method
yelding the lowest number of prediction errors was applied to the
final current forecast, and the procedure was repeated until the last
30-day forecast was completed. The averaged approach differs from
the adaptive one in that the forecasts are made for all sets of pre-
selected parameters, and the actual 30-day forecast is computed as
the average of these forecasts.

Table 1 presents all variants of prediction methods and data
combinations used in this contribution. In the case of LS+VAR,
there was a joint forecast of either two (UT1-UTC, LOD; UT1-UTC,
AAM; LOD, AAM) or three variables (UT1-UTC, LOD, AAM) but
the prediction procedure was optimized so that the one variable of
the group was treated as the primary variable and the remaining
ones as auxiliary ones. A prediction option without removing the
effect of zonal tides is shown in Table 1 with the subscript “nc” (not
corrected).

4 Results

To measure the quality of predictions using the examined methods
and different data combinations the mean absolute prediction error
(MAPE) given by (13) was used:

n
MAPE; = %Z }oi,j—pi,j) (13)
=1

where: n is a number of predictions, j is a prediction day number, O
means observed and P - for predicted (here it is either UT1-UTC or
LOD).

Figures 1and 2 show MAPE:s for a 30-day prediction of UT1-UTC
for the yearly time spans 2018-2022 using several methods of fore-
cast - different variations of DMD and LS+VAR. The results show
that DMD, in time spans 2018-2021, is characterized by the small-
est MAPEs for the 30th day of prediction. In 2022 the most accu-
rate method is LS+VAR in both mass and motion terms using 3 in-
put time series (UT1-UTC, LOD and AAM mass and motion terms).
Clearly, for the first day of prediction, MAPESs for all methods are
comparable and are at the level of around 0.02 ms. Results of pre-
dictions up to 5-7 days into the future indicate that the inclusion
of AAM data in the LS+VAR prediction procedure decreases fore-
cast errors only marginally. Interestingly, there is no significant
improvement in DMD predictions of UT1-UTC when tidal effects
are removed, while the improvement in the LS+VAR forecast is
noticeable.

Tables 2 and 3 offers a more detailed presentation of the results
of 30-day UT1-UTC predictions for all methods in the yearly time
spans 2018-2022 (for selected days of forecast). For the 5th and
10th day of the forecast, the combination of LS+VAR and AAM data
(using 3 input time series) achieved the smallest average errors of
around 0.29 ms and 0.88 ms, respectively. The longer the range of
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Table 1. Summary of variants of prediction methods and data combinations

Acronym Description

DMD, DMDy,c (*)
LS+VAR, LS+VARc
aveDMD, aveDMDy,¢
aveLS+VAR, aveLS+VARy,
LS+VAR_AAM (2)
LS+VAR_AAM (3)
LS+VAR_AAMpgss (2)
LS+VAR_AAMmass (3)
LS+VAR_AAMotion (2)
LS+VAR_AAM,, stion (3)
aveLS+VAR_AAM (2)
aveLS+VAR_AAM (3)
aveLS+VAR_AAMp;ss (2)
aveLS+VAR_AAMass (3)
aveLS+VAR_AAMoion (2)
aveLS+VAR_AAM;,gtion (3)

adaptive DMD prediction of UT1-UTC or LOD

adaptive LS+VAR prediction of UT1-UTC and LOD

averaged DMD prediction of UT1-UTC or LOD

averaged LS+VAR prediction of UT1-UTC and LOD

adaptive LS+VAR prediction of UT1-UTC or LOD and AAM mass and motion terms
adaptive LS+VAR prediction of UT1-UTC, LOD and AAM mass and motion terms
adaptive LS+VAR prediction of UT1-UTC or LOD and AAM mass term

adaptive LS+VAR prediction of UT1-UTC, LOD and AAM mass term

adaptive LS+VAR prediction of UT1-UTC or LOD and AAM motion term

adaptive LS+VAR prediction of UT1-UTC, LOD and AAM motion term

averaged LS+VAR prediction of UT1-UTC or LOD and AAM mass and motion terms
averaged LS+VAR prediction of UT1-UTC, LOD and AAM mass and motion terms
averaged LS+VAR prediction of UT1-UTC or LOD and AAM mass term

averaged LS+VAR prediction of UT1-UTC, LOD and AAM mass term

averaged LS+VAR prediction of UT1-UTC or LOD and AAM motion term

averaged LS+VAR prediction of UT1-UTC, LOD and AAM motion term

(*) subscript “nc” stands for “not corrected”, (2) or (3) stands for a number of variables involved in a prediction

procedure incorporating AAM data.
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Figure 1. MAPESs of 30-day UT1-UTC prediction for the yearly time spans 2018—2022 (nc = not corrected).

the forecast, the more clearly DMD becomes the most accurate fore-
cast method. Finally, average MAPEs on the 30th day of UT1-UTC
prediction vary, depending on the method from 3.77 ms for aveDMD
to 6.35 ms for aveLS+VAR AAM (2). Interestingly, the accuracy of
the forecasts in 2020 dropped in almost all cases, only LS+VARpc
and LS+VAR maintained similar forecast error levels as in the other
years. In almost half of the cases, there were smaller prediction
errors using the averaged approach in UT1-UTC prediction, relative
to adaptive approach. Clearly, LS+VAR AAM procedure prediction
based on only 2 input time series is characterized by bigger MAPEs
than the corresponding procedure with 3 input time series.
Figures 3 and 4 summarise MAPEs for 30-day predictions of
LOD for the yearly time spans 2018-2022 using several methods

of forecast: different variations of DMD and LS+VAR. The results
indicate that for almost all time spans the most accurate method is
DMD (or its variants). The prediction errors for 2022 showed a com-
parable accuracy of LOD prediction for almost all methods (except
LS+VARpc, aveLS+VARpc and aveLS+VAR AAMpmass (2)). MAPES for
the first day of forecast for all methods are very similar and are
around 0.020 ms — 0.030 ms. Similarly to UT1-UTC prediction re-
sults, the ultra-short-term (up to 5-7 days into the future) LOD
LS+VAR forecast with additional AAM time series is characterized
by smaller errors than LS+VAR procedure without AAM time se-
ries. On average, the most accurate methods among the methods
without additional AAM data for the 30the day are aveDMDpc and
aveDMD, while among the LS+VAR variants with AAM informa-



tion, it is aveLS+VAR AAM (3). A comparison of the accuracy of LOD
prediction options with and without removal of the effect of zonal
tides shows that removing tidal effects has significant impact on
prediction accuracy using LS+VAR, while there is no significant
decrease of MAPEs in DMD.

Tables 4 and 5 present the selected daily values of MAPEs for
30-day LOD prediction for all methods. For days up to the 5th day,
the accuracy of prediction for almost all methods is comparable, ex-
cept LS+VARpc, aveLS+VARpc and aveLS+VAR AAMmass (2) , whose
accuracy is significantly lower. The results indicate that LS+VAR
methods with AAM data (based on 3 input time series) for 5th and
10th days for 2019, 2021 and 2022 are among the most accurate
methods. Similarly to UT1-UTC prediction, introducing AAM time
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series into LS+VAR forecast procedure marginally increases the ac-
curacy for 5-10 day range, relative to LS+VAR predictions without
AAM data. After the 10th day the advantage of DMD-based methods
is noticeable. On the 20th day of prediction, DMD-based methods
reach averaged MAPEs between 0.174 ms and 0.182 ms, while other
methods exceed 0.200 ms. For 2018, 2019 and 2022 aveDMD pro-
vided the most accurate LOD predictions for the 30th day, whilst
in 2020 DMDp¢ and in 2021 DMD reached the smallest values of
MAPESs. The results (on average) for the 30th day vary from 0.176
ms (aveDMDpc and aveDMD) to 0.242 ms for aveLS+VARpc. Re-
moving tidal effects in LS+VAR prediction procedure decreased the
averaged MAPEs for the 30th day of predictions from 0.240 ms to
0.227 ms (LS+VAR) and from 0.242 ms to 0.221 ms (aveLS+VAR). In

8 time span: 1 Jan. - 31. Dec. 2018

(s3]

MAPE [ms]
Sy

M

8 time span: 1 Jan. - 31. Dec. 2019

8 time span: 1 Jan. - 31. Dec. 2020

5 10 15 20 25 30 5 10
[days]

8 time span: 1 Jan. - 31. Dec. 2021

[days]

8 time span: 1 Jan. - 31. Dec. 2022
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E — LS+AR_AAM, . (2)
W ——— avelS+VAR_AAM (3)
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——— avelS+VAR_AAM,_ . (3)
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Figure 2. MAPEs of 30-day UT1-UTC prediction with AAM data for the yearly time spans 2018—2022.
Table 2. MAPEs for 30-day UT1-UTC prediction for the yearly time spans 2018-2022 [ms].
Method Day 2018 2019 2020 2021 2022 Average
DMDy, / DMD 0.28/0.30 0.32/0.29 0.43/0.40 0.38/0.34 0.38/0.34 0.36/033
LS+VARy / LS+VAR 0.45/0.30 0.41/0.21 0.43/0.25 0.41/0.30 0.41/0.30 0.42/0.27
aveDMDy, /[ aveDMD > 0.30/0.29 0.30/0.29 0.40/0.39 0.29/0.29 0.36/0.35 0.33/0.32
aveLS+VARy, [ aveLS+VAR 038/0.21 038/0.21 0.43/0.35 035/ 0.24 0.40 /030 039/0.26
DMDy,c / DMD 0.81/0.87 0.93/0.85 1.23/1.13 0.75/0.72 1.07/0.99 0.96 /0.91
LS+VAR; / LS+VAR 10 1.30/0.98 1.27/0.68 1.32/0.78 1.21/0.72 1.24/0.91 1.27/0.81
aveDMDy,. / aveDMD 0.87/0.85 0.86 [ 0.84 1.16 /1.08 0.75/ 0.69 1.04 [ 0.98 0.94 [ 0.89
aveLS+VAR, [ aveLS+VAR 134/ 0.96 1.10/0.63 1.31/1.09 118 /0.71 1.17/0.92 1.22/0.86
DMDy, / DMD 2.04 [2.28 2.17/2.17 3.22/2.78 2.01/2,00 2.83/2.59 2.45 236
LS+VARy [ LS+VAR 20 2.86/2.68 3.18/2.23 3.37/2.47 3.04 [ 2.17 2.65/2.31 3.02/2.37
aveDMDy,c / aveDMD 2.24 [2.23 2.14 [ 2.15 2.92/2.69 2.01/1.93 2.70 [ 2.54 2.40 /231
aveLS+VAR; [ aveLS+VAR 2.92[2.64 2.50/1.93 335/3.27 2.98/2.10 2.62 [2.46 2.87/2.48
DMDy,c / DMD 3.08/3.69 3.31/3.66 481/ 4.29 3.15/3.17 477 | 4.49 3.82/3.86
LS+VARp / LS+VAR 30 4.03 [ 4.50 5.64 [ 4.69 5.67 [ 4.48 4.90 [3.93 3.92/3.83 4.83 [ 4.29
aveDMDy,. / aveDMD 3.44 | 3.56 3.49 [3.68 439 /418 3.11/3.07 4.59 [ 4.38 3.80/3.77
aveLS+VARy [ aveLS+VAR 416 [ 4.51 4.20 [3.97 5.61/5.60 4.91/3.87 3.98 [ 4.26 457 | L4t
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Table 3. MAPEs for 30-day UT1-UTC prediction with AAM data for the yearly time spans 2018-2022 [ms].

Method Day 2018 2019 2020 2021 2022 Average

tg:xﬁﬁ:ﬁ 81/ 0.29 /0.32 0.21/0.25 0.35/0.46 0.30/0.32 0.30/0.38 0.29 / 034
Iﬁ::gﬁﬁ:m::: 8))/ 0.30/0.31 0.22/0.24 034/ 0.45 0.31/0.32 0.31/0.38 0.30/034
tg:zﬁﬁ:ﬁﬂﬁ: 8/ 5 0.30/0.31 0.21/0.25 0.33/0.45 0.31/0.31 0.31/0.38 0.29 /034
zzizxiﬁ:m 8;/ 0.29 /0.32 0.21/0.25 0.35/0.46 0.25/0.32 0.31/038 0.28/0.35
:ZEEZ:Xg:m::zz 8;/ 0.29 /031 0.21/0.25 034 ] 0.45 0.25/0.32 0.30/038 0.28 /034
:ZZE::XQ;{:%:ZZZ: 8))/ 0.29/0.31 0.21/0.25 034/ 0.45 0.25/0.32 0.31/0.38 0.28/0.34
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5 time span: 1 Jan. - 31. Dec. 2020
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Figure 3. MAPESs of 30-day LOD prediction for the yearly time spans 2018—2022 (nc = not corrected).
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Figure 4. MAPEs of 30-day LOD prediction with AAM data for the yearly time spans 2018—2022.

the case of DMD there were no significant improvements in pre-
diction accuracy after removing tidal effects as compared with the
DMD procedure without such a removal. Results indicated a slight
decrease of MAPEs in around half of the forecasts using the aver-
aged approach in LOD prediction as compared with to the adaptive
approach.

5 Conclusions

This contribution applied Dynamic Mode Decomposition and a
combination of least-squares and vector autoregressive models
for UT1-UTC and LOD forecast. Prediction accuracy is presented
for five yearly time spans from 2018 to 2022. Prediction procedures
involved adaptive and averaged modes differing by the use of sets
of steering parameters identified at the preliminary stage of fore-
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Table 4. MAPESs for 30-day LOD prediction for the yearly time spans 2018-2022 [ms].

Method Day 2018 2019 2020 2021 2022 Average

DMDy, / DMD 0.096 [ 0.088 0.090 / 0.086 0.125/ 0.130 0.097 [ 0.096 0.122 / 0.127 0.106 / 0.105
LS+VARy [ LS+VAR 5 0.153/ 0.101 0.167 / 0.077 0.146 [ 0.096 0.148 [ 0.095 0.172/ 0.116 0.157 [ 0.097
aveDMDy,. [ aveDMD 0.093/0.088 0.089 [ 0.084 0.131/0.127 0.106 / 0.097 0.118 / 0.115 0.107 / 0.102
aveLS+VAR, [ aveLS+VAR 0.145 / 0.101 0.145 [ 0.072 0.161/0.121 0.139 / 0.091 0.167/ 0.119 0.151/0.101
DMDy /| DMD 0.161/ 0.151 0.130 / 0.125 0.183/0.181 0.130 / 0.120 0.155/ 0.159 0.152 [ 0.147
LS+VARy [ LS+VAR 10 0.229 /0.178 0.197/0.123 0.235/0.134 0.219 / 0.127 0.210 / 0.143 0.218 / 0.141
aveDMDy, / aveDMD 0.156 [ 0.151 0.129 / 0.127 0.177/ 0.172 0.132/0.127 0.155/ 0.142 0.150 [ 0.144
aveLS+VAR; [ aveLS+VAR 0.221/0.178 0.177/ 0.115 0.245 [ 0.194 0.217/ 0.125 0.207/0.139 0.213 / 0.150
DMDy. /| DMD 0.170 [ 0.174 0.155 / 0.150 0.212/0.203 0.156 / 0.160 0.206 [ 0.221 0.180/ 0.182
LS+VAR; [ LS+VAR 20 0.248/0.219 0.204 [ 0.179 0.239 / 0.217 0.276 [ 0.212 0.228 [ 0.205 0.239 [ 0.206
aveDMDy, [ aveDMD 0.158 / 0.160 0.149 / 0.149 0.208 /0.203 0.168 / 0.160 0.202 / 0.199 0.177 [ 0174
aveLS+VARy [ aveLS+VAR 0.258 / 0.223 0.203/0.168 0.264 [ 0.237 0.271/0.190 0.219 / 0.199 0.243/0.203
DMDy,. / DMD 0.174. [ 0.164 0.174/ 0.177 0.219 / 0.178 0.148 / 0.150 0.217/ 0.228 0.186 /0.179
LS+VARy / LS+VAR 30 0.217/ 0.231 0.219 / 0.204 0.257 [ 0.236 0.284 [ 0.243 0.221/0.219 0.240 [ 0.227
aveDMDy, [ aveDMD 0.158 / 0.153 0.174. [ 0.174 0.196 / 0.199 0.150 / 0.151 0.204 [ 0.202 0.176 [ 0.176
aveLS+VARy [ aveLS+VAR 0.250 / 0.243 0.198 / 0.211 0.293/0.253 0.259 [ 0.189 0.210 / 0.208 0.242 / 0.221

cast. In addition, external data, Atmospheric Angular Momentum
were included in the LS+VAR-based prediction procedure. Predic-
tions were also performed with and without corrections due to tidal
effects.

Results indicate that there is no single most accurate variant
for all 30 days UT1-UTC predictions. For years 2018, 2019 and 2021
DMDy¢ offered the lowest values of MAPES, whilst for 2020 aveDMD
and in 2022 LS+VAR AAM (3) obtained the highest accuracy. The
results show that aveDMD is the most accurate method in almost
all time periods for the 30th day of LOD prediction with the MAPE
in the range of 0.158 — 0.204 ms.

Interestingly, the inclusion of AAM time series in the LS+VAR
prediction procedure did not visibly increase the accuracy of the
UT1-UTC or LOD forecasts. The results showed that incorporating
AAM data into the LS+VAR prediction (comparing all variants of
LS+VAR AAM and aveLS+VAR AAM with corresponding LS+VAR and
aveLS+VAR) improved the UT1-UTC prediction accuracy in only 20
outof 120 cases and — in the case of LOD — in 26 out of 120 cases. The
increase in prediction accuracy, if it occurs, in the case of UT1-UTC
is the most evident for the 30th day of prediction and in the case of
LOD - for ultra short-term forecast (up to 5 — 10 days).

In more than half of the cases, there was a slight improvement
in UT1-UTC and LOD forecasts using the averaged approach com-
paring to the adaptive one. The results indicate that averaged ap-
proach , and not the adaptive one (for DMD and LS+VAR predictions
together), improves UT1-UTC predictions (in 54 out of 80 cases)
marginally more often than LOD predictions (in 47 out of 80 cases).
It can be also noticed that the averaged approach, compared to the
adaptive approach, improves DMD prediction 53 times (of UT1-UTC
and LOD predictions together), while LS+VAR prediction — 48 times.
Inthe case of UT1-UTC LS+VAR AAM prediction, in both approaches
(using 2 and 3 input time series), there was no improvement using
the averaged approach comparing to the adaptive approach. On
the other hand, in LOD predictions when 2 input time series were
involved in a LS+VAR prediction procedure there were reductions in
forecast errors (in favour of the averaged approach over the adaptive
approach) only in 18 out of 75 cases, while when using 3 input time
series these reductions occurred in 11 out of 75 cases.

The results also indicate that the use of 3 variables (UT1-UTC,
LOD and AAM component) in LS+VAR AAM prediction procedure is
characterized by lower numbers of prediction errors than using only
2 variables (UT1-UTC/LOD and AAM component). The prediction
accuracy of all variants of LS+VAR AAM (3) procedure rather than

the corresponding variants of LS+VAR AAM (2), in case of UT1-UTC,
increased in all cases with an average improvement of around 20.9%
and in the case of LOD — in 106 out of 120 cases with improvement
of around 13.8%. It can therefore be concluded that, in these cases,
including an additional correlated variable in the LS+VAR prediction
procedure significantly improves the accuracy of the forecast.

There was a marginal decrease of MAPEs in DMD-based predic-
tions of UT1-UTC and LOD when tidal effects were removed com-
paring to the procedures without removing these effects, whilst it is
much clearer in the LS+VAR-based forecast. These improvements
in the 30th day of DMD and LS+VAR predictions of UT1-UTC vary
from 0.04 ms to 0.52 ms and from 0.01 ms to 1.19 ms, respectively.
The corresponding values for the LOD forecast are in range from
0.002 ms to 0.041 ms (in the case of DMD) and from 0.002 ms to
0.070 ms (in the case of LS+VAR).

A potential explanation for the greater impact of removing (or
not removing) tidal oscillations on the LS+VAR-based forecast than
on the DMD is that LS+VAR is based on the traditional approach of
first removing the trend and periodic components and then apply-
inga VAR model to the residuals. In the procedure without removing
the tidal oscillations, they remain as the residuals and therefore
directly affect the forecast results. DMD, on the other hand, is a
data-driven method which does not rely on any prior assumptions
beyond the inherent dynamics observed over time. DMD was de-
signed to search for patterns in trends and frequencies, and their
evolution in time, hence, it is very likely that it identified some of
the tidal frequencies, and the remaining ones were replaced with
some artificial frequencies found in the series on which the DMD
model was built.

It is also worth noting that the accuracy of both UT1-UTC
and LOD predictions for 2020 and 2022 decreased in al-
most all cases. The large values of MAPE may be caused
by, among other things, such phenomena as El Nifio
and La Nifia occurring at the same time (Xu et al. 2022a;
https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/
ensostuff/ONI_vs.php).


https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php
https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php
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Table 5. MAPEs for 30-day LOD prediction with AAM data for the yearly time spans 2018-2022 [ms].

Method Day 2018 2019 2020 2021 2022 Average

LS+VAR_AAM (3)/

LS+VAR_AAM (2)
LS+VAR_AAMass (3)/
LS+VAR,AAMmass (2)
LS+VAR_AAM,,,sti0n (3)/
LS+VAR_AAMotion (2) 5
aveLS+VAR_AAM (3)/
aveLS+VAR_AAM (2)
aveLS+VAR_AAMpass (3)/
aveLS+VAR_AAMpass (2)

aveLS+VAR_AAM,,tion (3)/
aveLS+VAR_AAMotion (2)

0.100 / 0.104 0.075 / 0.086 0.125 / 0.120 0.088 /0.091 0.122/ 0.123 0.102 / 0.105

0.100 / 0.101 0.075 / 0.083 0.120 / 0.125 0.088 / 0.090 0.123/0.123 0.101/ 0.104

0.100/ 0.101 0.075/ 0.085 0.120 / 0.125 0.088 / 0.091 0.124/ 0.123 0.101/ 0.105

0.099/0.097  0.074 / 0.090 0.121/0.122 0.091/ 0.090 0.119 / 0.122 0.101/ 0.104

0.101/0.175 0.074 [ 0.210 0.121/0.209 0.092/ 0.190 0.119 / 0.308 0.101/0.219

0.101/0.090 0.074 [ 0.088 0.121/0.123 0.091/0.087 0.119 / 0.105 0.101/0.099

LS+VAR_AAM (3)/
LS+VAR_AAM (2)
LS+VAR_AAMass (3)/
LS+VAR_AAMnass (2)
LS+VAR_AAM0tion (3)/
LS+VAR_AAMotion (2) 10
aveLS+VAR_AAM (3)/
aveLS+VAR_AAM (2)
aveLS+VAR_AAMpass (3)/
aveLS+VAR_AAMpass (2)
aveLS+VAR_AAM sion (3)/
aveLS+VAR_AAM,,otion (2)

0.176 [ 0.181 0.126 / 0.151 0.205 / 0.196 0.110 / 0.135 0.144 [ 0.154 0.152/ 0.163

0.175 [ 0.179 0.125/0.135 0.187/0.201 0.111/0.135 0.145/ 0.154 0.149 / 0.161

0.176 [ 0.180 0.126 / 0.140 0.191/ 0.201 0.112 /0135 0.147 [ 0.154 0.150 / 0.162

0.171/ 0.185 0.119 / 0.141 0.194 [ 0.208 0.124/ 0.113 0.140/ 0.158 0.149 [ 0.161

0.174. [ 0.229 0.119 [ 0.244 0.195/0.238 0.126 / 0.212 0.139 / 0.247 0.151/0.234

0.174 [ 0.180 0.121/0.139 0.195/ 0.216 0.123/ 0.110 0.141/ 0.150 0.151/ 0.159

LS+VAR_AAM (3)/
LS+VAR_AAM (2)
LS+VAR_AAMpass (3)/
LS+VAR_AAMpass (2)
LS+VAR_AAMpotion (3)/
LS+VAR_AAM,oion (2) 20
aveLS+VAR_AAM (3)/
aveLS+VAR_AAM (2)
aveLS+VAR_AAMmass (3)/
aveLS+VAR_AAMmass (2)
aveLS+VAR_AAM, oion (3)/
aveLS+VAR_AAM,ion (2)

0.221/0.220 0.181/0.263 0.269 [ 0.264 0.190 / 0.203 0.224 [ 0.234 0.217/0.237

0.219 / 0.226 0.180/ 0.217 0.231/0.274 0.189 / 0.204 0.221/0.231 0.208 /0.230

0.220/ 0.235 0.182/0.228 0.237/0.274 0.190 / 0.203 0.222/0.231 0.210 / 0.234

0.197/ 0.231 0.178 / 0.215 0.237/0.296 0.188 / 0.178 0.198 /0.232 0.200 / 0.230

0.206 [/ 0.209 0.179 [ 0.268 0.238/0.295 0.192 / 0.184 0.199 / 0.323 0.203/0.256

0.206 [ 0.224 0.180/0.200 0.236 / 0.321 0.191/0.173 0.201/0.214 0.203/0.226

LS+VAR_AAM (3)/
LS+VAR_AAM (2)
LS+VAR_AAMass (3)/
LS+VAR_AAMpass (2)
LS+VAR_AAM, o sion (3)/
LS+VAR_AAM,tion (2) 30
aveLS+VAR_AAM (3)/
aveLS+VAR_AAM (2)
aveLS+VAR_AAMass (3)/
aVeLS+VAR_AAMmass (2)
aveLS+VAR_AAM,,1ion (3)/
aveLS+VAR_AAMotion (2)

0.235/0.238 0.220/ 0.325 0.310 / 0.255 0.199 / 0.229 0.246 [ 0.261 0.242 [ 0.261

0.233/0.253 0.221/0.281 0.234/0.280 0.197/0.229 0.249 / 0.259 0.227/ 0.260

0.234 /0273 0.220/0292  0.247/0282  0.199/0229  0246/0.259  0.229/0.267

0.193 / 0.242 0.225 [ 0.272 0.253/0.269 0.180 / 0.177 0.205 [ 0.247 0.211/ 0.241

0.200 / 0.230 0.232/0.276 0.260 [ 0.287 0.188 / 0.210 0.208 /0.276 0.218 / 0.256

0.200/0230  0.225/0.250 0.257 / 0.302 0.187/ 0.167 0.210 [ 0.244, 0.216 / 0.239
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