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Abstract

The development of modern surveying methods, particularly, Terrestrial Laser Scanning (TLS), has found wide application
in protecting and monitoring engineering and objects and sites of cultural heritage. For this reason, it is crucial that
several factors affecting the correctness of point cloud registration are considered, including the correctness of the
distribution of control points (both signalised and natural), the quality of the process, and robustness analysis. The aim of
this article is to evaluate the quality and correctness of TLS registration based on point clouds converted to raster form (in
spherical mapping) and hand-crafted detectors. The expanded Structure-from-Motion (SfM) was used to detect the tie
points for TLS registration and reliability assessment. The results demonstrated that affine detectors are useful in
detecting a high number of key points (increased for point detectors by 8-12 times and for blob detectors by about 10-24
times), improving the quality and TLS registration completeness. For the registration accuracy of point cloud on signalised
check points, the lower values can be noted for maximum RMSE errors for blob affine detectors than detectors and larger
values for corner detectors and affine detectors (not more than 4 mm in the extreme cases, typically 2 mm). The
commonly-applied target-based registration method yields similar results (differences do not exceed - in extreme cases -
3.5 mm, typically less than 2 mm), proving that using affine detectors in the TLS registration process is and reasonable
and can be recommended.

Key words: affine 2D hand-crafted detectors; cultural heritage; interiors; feature based matching; reliability assessment;
TLS registration

1 Introduction tion of all elements within a single dataset is practically un-

achievable, which is due to inherent blind spots, intricacies

Terrestrial laser scanning, due to its versatility, the speed
of data acquisition and the accuracy of shape mapping, is
commonly used to register, maintain, safeguard, and moni-
tor various engineering objects (Mukupa et al., 2016), struc-
tural health monitoring (Dong et al., 2018; Rashidi et al., 2020;
Vaccaetal., 2016; Wang et al., 2014), construction management
(Bosché, 2010), three-dimensional (3D) model reconstruction
(Lu-Xingchang and Liu-Xianlin, 2006), and, especially, the
preservation of cultural heritage monuments (Abbate et al.,
2019; Arif and Essa, 2017; Gizyniska et al., 2022; Muradov et al.,
2022; Wojtkowska et al., 2021). When analysing and process-
ing complex and large-scale objects, a comprehensive acquisi-

in the object structure, and various measurement errors, in-
cluding the beam refraction at the edges effect, intensity varia-
tions, and the impact of incidence angles (Bae and Lichti, 2008;
Boehler et al., 2003; Staiger, 2005; Tobiasz et al., 2019). Ter-
restrial Laser Scanning (TLS) data are obtained within the in-
strument’s local coordinate system. Consequently, in scenar-
ios involving a substantial number of scans, as specified for
large-size and complex objects, it becomes imperative to reg-
ister these scans within a defined reference system, which in-
volves preparing the plan for the TLS positions to facilitate the
registration. The effectiveness of the TLS position distribution
significantly affects the methodology and workflow employed
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to register point clouds. In literature, numerous investigations
address the challenge of TLS point cloud registration, focus-
ing on its efficiency and robustness (Cheng et al., 2018; Pomer-
leau et al., 2015; Salvi et al., 2007; Tam et al., 2013; Weinmann,
2016). These studies categorise the methods by two princi-
pal criteria: (1) the effectiveness and robustness of the process
based on the volume of input data, and (2) pairwise or multi-
view registration (Dong et al., 2018). The predominant method
employed in these algorithms is the coarse-fine strategy (Guo
et al., 2013; Pavlov et al., 2017), which involves two key steps:
(1) an initial approximation of translation and rotation param-
eters (Xu et al., 2019), and (2) a subsequent fine registration
carried out by such algorithms as the normal distribution trans-
form (NDT) and its variants (Biber and Strafer, 2003; Das and
Waslander, 2012; Takeuchi and Tsubouchi, 2006), or the Iter-
ative Closest Points (ICP) algorithm and its variants (Das and
Waslander, 2012; Tazir et al., 2019).

The selection and configuration of tie points in the TLS reg-
istration process make a pivotal assumption: in evaluating the
potential utilisation of tie points in TLS registration, it is im-
perative to assess their significance in terms of accuracy and
the identification, localisation, and mitigation of outliers that
may manifest during adjustment. Identifying outliers in obser-
vations and datasets used in the adjustment process conforms
with the framework of reliability theory, which relates to the
number and distribution of redundant observations. The net-
work must use redundant information to diagnose observations
containing outlier(s) effectively. The greater amount of infor-
mation concerning the geometry of the network, the higher the
likelihood of detecting outlier observations. Similarly, regard-
ing the distribution of the redundant observations within the
network - the more uniform this distribution, the more robust
our construction in terms of reliability (Hekimoglu et al., 2002;
Lapinski, 2011; Nowak and Odziemczyk, 2018; Proszynski and
Lapinski, 2018; Rofatto et al., 2018).

In this investigation, TLS point cloud registration method-
ology used point clouds transformed into the intensity raster
(with a depth map) and affine detectors (the modified version
of the commonly-used detectors that applied the raster affine
transformation). The article aims to show the potential appli-
cations, together with their constraints, of the use of detectors
and their affine variants in the automatic TLS point cloud reg-
istration. Affine detector Investigations presented in this ar-
ticle are a continuation of the work presented in Markiewicz
et al. (2023), which proposed the TLS-SfM approach of TLS
data registration for three affine detectors (AFAST, ASIFT and
ASURF). The present research aims to highlight that the choice
of detector or affine detector affects data registration complete-
ness, computation time, and registration quality. This arti-
cle presents the effectiveness of different blob (CenSurE, SIFT,
SURF) and point (BRISK, FAST) detectors and the effect of the
affinity (ABRISK, ACenSurE, AFAST, ASIFT, ASURF) into the
stage of point detection with quality and robustness analysis,
grounded in a reliability assessment.

The TLS-SfM results were compared with those obtained
from the commonly used target-based method and ICP. The
study shows that the proposed TLS point cloud registration
method offers an advantage over the target-based method.
This results in a higher number of more evenly distributed
points and affects better outlier removal as per the reliability
theory. In the case of the ICP method, usually based on point-
to-point and point-to-plane methods, the point clouds’ initial
(approximate) orientation is required. Meeting this condition
guarantees the correctness of the final point cloud registration.
Crucially, in the TLS-SfM method, point cloud pre-registration
is not required, as the extraction of tie points is used in a two-
step manner through descriptor matching and geometrical ver-
ification, based on the Random Sample Consensus (RANSAC)
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Figure 1. Incremental SfM methodology (Bianco et al., 2018)

algorithm (Fischler and Bolles, 1981).

This article presents the principles of 2D feature detection
and description in Section 2. In Section 3, the used test sites
and proposed TLS-SfM approach are presented. Section 4 ex-
amines the outcomes of the detector evaluations, and Section 5
concludes by presenting the advantages and drawbacks of em-
ploying various affine 2D detectors along with approaches for
future work.

2 TLS point featured-based cloud registra-
tion

Presently, the Structure-from-Motion (SfM) method, which is
a computer vision and photogrammetric technique, plays a piv-
otal role in image orientation and three-dimensional (3D) re-
construction of scenes or objects from two-dimensional (2D)
image sequences. It aims to recover a scene’s spatial arrange-
ment and simultaneously estimate the camera exterior orien-
tation parameters, intrinsic parameters, and the 3D structure
of observed features.

The foundation of SfM lies in exploiting visual informa-
tion from multiple images, especially by feature matching or,
generally, image matching. It is used to determine the corre-
spondence between two images or features of the same scene.
The workflow of SfM can be divided into the correspondence
search phase and the iterative reconstruction phase (Bianco
et al., 2018; Markiewicz, 2016; Moussa, 2014; Urban and Wein-
mann, 2015). The correspondence search part involves extract-
ing tie points using a detector and descriptor for feature extrac-
tion and feature matching, and, finally, using geometric veri-
fication for outlier removal. Detecting key points (using detec-
tors) and determining tie points as a result of descriptor match-
ing uses the so-called hand-crafted or learned-based methods.
Hand-crafted features have for many years been used for fea-
ture detection or feature description. The key algorithms, for
example: the Harris algorithm, FAST, or SIFT are based only
on changes in gradients, grey degrees, corners, etc., detected
only in the processed image. In contrast to hand-crafted meth-
ods, learned-based algorithms are based on trained deep Con-
volutional Neural Networks (CNNs) on learning sets based on
a number of different reference rasters. The hand-crafted de-
tectors and descriptors (referred to in the article as detectors
and descriptors) used to determine the tie points are described
in detail in subsection 2.2.

The Incremental reconstruction phase is based on the re-
construction initialisation, images registration, triangulation,
and the bundle adjustment (Figure 1).

The commonly used SfM method is designed for image pro-
cessing. Therefore, it is impossible to use this algorithm di-
rectly, and it is necessary to modify the input data and the
Geometric Verification step. A detailed description of the mod-
ified TLS-SfM method is provided in Markiewicz et al. (2023),
and how the above steps can be modified is explained in sec-
tions 2.1 and 2.2.
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Figure 2. Relations between spherical coordinates and coordinates
on spherical images. (a) Graphical representation of the
relations between polar coordinates measured and the
raster image in spherical projection, (b) formula for re-
calculation of polar coordinates to spherical projection of
arbitrary radius r, and (c) formula for recalculation of x,
y spherical projection onto polar coordinates (Markiewicz
and Zawieska, 2019; Markiewicz et al., 2023)

2.1 The spherical image generation

To use SfM algorithms for TLS point cloud orientation, it is
necessary to conduct the point cloud conversion into the spher-
ical raster based on the cartographical equation (Figure 2b)
(Markiewicz and Zawieska, 2019). Most TLSs are based on a
panoramic architecture, and they directly measure three val-
ues: p - the distance from the object to the scanning position,
0 - horizontal angle and ¢ - vertical (elevation) direction (Fig-
ure 2). An acquisition of this data is possible in two ways: by
reading the data from native files using the Software Devel-
opment Kit (SDK) or by converting it based on the convertible
equations 1-3:

X = pcos0sin ¢ (1)
Y = psin@sin ¢ (2)
Z=pcos @ (3)

The pixel coordinates of the generated raster correspond
to the horizontal and vertical angle values (Figure 2a). The
method of point cloud representation in spherical projection is
widely used in the field. It is implemented in many commer-
cial software tools. The main usefulness of this data represen-
tation method is the ability to use the raw data and generate
a raster with the highest resolution without interpolating new
values for pixel coordinates. Furthermore, generating an inten-
sity raster at arbitrary resolutions is facilitated by transforming
pixel values according to the formulas provided in Figure 2.

Intensity rasters prepared in this way enable detectors to
extract the key points. Using the x and y coordinates of the
detected points, it is possible to determine the coordinates of
points based on depth maps and equations 1-3 or to interpolate
them based on X, Y, and Z maps. In this way, it is possible to
compute the XYZ points coordinates used in the final step of
determining the 3D transformation parameters.

2.2 The theory of the 2D feature hand-crafted match-
ing - the feature extraction, matching and im-
ages registration

In the SfM workflow, the first and most crucial step is feature
detection (also called: extraction), which is used for feature
extraction - to recognise in each image (image from a group
of images) characteristic features (also called key points) such
as lines (Canny, 1986), points (Harris and Stephens, 1988) or
blobs (Lowe, 1999) based only on local characteristics of the
intensity value.

The feature extraction part is performed on each image sep-
arately and based on the algorithms and methods which detect
features invariant to image translation, scaling, and rotation,
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partially invariant to illumination changes, and robust to lo-
cal geometric distortions such as SIFT (Bay et al., 2006; Har-
ris and Stephens, 1988; Moussa, 2014; Tuytelaars and Miko-
lajczyk, 2007). Each detected feature is analysed for gradi-
ent change based on its nearest neighbour to assign unique
features. Nowadays, corner detectors like FAST (Rosten and
Drummond, 2006) and BRISK (Bay et al., 2006), as well as blob
detectors such as SIFT (Lowe, 2004), SURF (Leutenegger et al.,
2011), and CenSurE (Agrawal et al., 2008), are utilised for key-
point extraction. These detectors were used in this study for
automatic point cloud registration.

The next step in SfM data processing involves describing
the characteristic features based on gradient changes concern-
ing their nearest neighbours. Various descriptors, such as SIFT,
SUREF, or DAISY, as documented in literature (Bay et al., 2006;
Lowe, 2004; Tola et al., 2010), are available. The SIFT descrip-
tor employed in this investigation is based on computing lo-
cal image gradients within a specified scale surrounding the
key point of interest. The descriptor’s methodology involves
an analysis of histograms constructed from 4 x4 pixel neigh-
bourhoods, each comprising 8 bins representing orientations.
These histograms are generated from magnitudes and orienta-
tions sampled within a 16 x16 region centred on the key point.
For each histogram, a 4 x4 subregion is sampled from the orig-
inal neighbourhood. The magnitude and orientation of image
gradients are computed around the key point location, with the
key point’s scale determining the image selection. To achieve
orientation invariance, the descriptor coordinates and gradient
orientations are rotationally adjusted relative to the key point
orientation (Karwel and Markiewicz, 2022). The detailed de-
scription of the above-mentioned detectors and affine detec-
tors can be found in the following publications: Yu and Morel
(2011) and Markiewicz and Zawieska (2019).

Upon assigning descriptor features to the key points, iden-
tifying correspondences and overlapping images becomes fea-
sible, thereby enabling the determination of tie points. This
process unfolds in a two-stage fashion, encompassing (1) the
initial identification of potential point pairs through descrip-
tor matching, and (2) geometric verification, employing an it-
erative approach based on the RANSAC method, incorporating
homography functions (Moisan and Stival, 2004).

Various strategies can be employed to compute matches
between images effectively, for example, brute-force match-
ing or approximate nearest-neighbour-based point matching.
Although descriptor matching provides candidate tie points,
there is no assurance that these correspond to 3D points in the
scene, potentially incorporating outliers. Consequently, a geo-
metrical verification becomes imperative to eliminate outliers,
enhance the quality of tie points, and adjust the image’s orien-
tation.

With TLS point cloud registration, this process is improved.
In the case of image processing, the coordinates of 2D points
are used, and a homography model is determined. Using this
for TLS point clouds, it is mandatory to determine the points’
3D coordinates and apply a 6-parameter transformation.

Bundle adjustment plays a critical role in geodesy and 3D
reconstruction, constituting a central component of contem-
porary multiview geometry systems. Typically, at a final re-
finement stage, bundle adjustment approximates initial scene
estimates and serves as a mechanism for mitigating drift in in-
cremental reconstructions (Chen et al., 2019). This adjustment
allows for the determination of the orientation of all images
within a block while minimising reprojection and computing
optimal camera calibration parameters in the self-calibration
process. With TLS point cloud registration, the distance be-
tween point clouds is minimised, and, unlike with image pro-
cessing, no self-calibration is performed.
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Table 1. List of point clouds with parameters
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. Scanner Angular resolution Point scan No. Avg. number of
Test Site name . . . s
type Horizontal Vertical resolution scans points per scan
I - Basement in the Royal Castle Z+F 5006 360° 320° 6.3 mm/10 m 4 43,120,284
II - Basement in the Royal Castle Z+F 5006 360° 320° 6.3 mm/10 m 6 42,145,054
III - "The Queen’s Bedroom," in Z+F 5003 1 scan-360° 1 scan-320° 3.2 mm/10 m 6 1 scan-42,308,262
the Museum of King Jan III’s 5 scan-90° 1 scan-180° 5 scan-126,913,021
Palace at Wilanéw
IV - "The Chamber with a Parrot," Z+F 5006 360° 320° 6.3 mm/10 m 4 40,320,455
in the Museum of King Jan III’s
Palace at Wilanow
V - “The office room” in the main Z+F 5006 360° 320° 6.3 mm/10 m 8 28,722,210
hall of Warsaw University of
Technology
VI - "Empty Shopping Mall" Z+F 5006 360° 320° 12.1 mm/10 m 7 13,677,292

3 Methodology
3.1 Test Sites description

This investigation aimed to analyse the application of "stan-
dard" and affine detectors for automatic non-signalised tie
point detection in automatic TLS data registration. The se-
lection of the detector was performed in six different loca-
tions: historical 17th-century basements of the Royal Castle
in Warsaw, Poland, without the decorative structure (Test Site
I and II), Museum of King Jan III’s Palace at Wilanéw, Warsaw,
Poland, with decorative elements, ornaments, and materials
on walls (Test Site III) and flat frescos (Test Site IV), a narrow
office (Test Site V) located in the main hall of Warsaw Univer-
sity of Technology, and a shopping mall "Serenada" located in
Krakow, Poland (Test Site VI) (Figure 3). TLS data were ac-
quired with the use of two phase-shift scanning instruments:
the Z+F 5003 and Z+F 5006h. Table 1 describes TLS point clouds
used in this investigation.

The selection of these Test Sites was motivated by their var-
ied characteristics, the number of ornaments and architectural
details, as well as their characteristic texture, which signifi-
cantly affects the effectiveness of key points detection using
hand-crafted detectors:

+ Test Sites I and II (Figure 3a) include brick-and-mortar
structures with irregular shapes, featuring arch-shaped
ceilings ranging from approximately 2.1 m to 3.2 m in
height. Owing to historical attributes and prevailing humid-
ity, sections of the rooms exhibit damp walls and crumbling
brick fragments, making the placement of designated con-
trol points impractical. In addition, the placement of the
tripod is not possible due to room size constraints. Imple-
menting a target-based methodology would require multi-
ple locations of the scanner, resulting in inaccurate point
cloud registration. The basement was divided into Test
Sites I and II, a regularly shaped facility (approx. 5.6 m x
5.1m) however, a centrally located ventilation pipe limited
the flexibility of the scanner station placement. Test Site
II (7.4 m x 5.1 m) with curves at 1/3 and 2/3 distances, re-
cesses, and long window panes, required additional signal
points and scanner positions.

Test Site III, "The Queen’s Bedroom," (Figure 3b), is charac-
terised by geometric complexity, including rich ornaments,
bas-reliefs, facets, mirrors in golden frames, decorative
fireplaces, and wall-hanging fabrics. The site is approxi-
mately 6.4 m x 7.3 m x 5.3 m.

Test Site IV, "The Chamber with a Parrot," (Figure 3c), fea-
tures minimal ornaments and lacks bas-reliefs, facets, or
fabrics. Instead, the walls feature painted patterns imitat-
ing spatial effects. The dimensions of "The Chamber with

.

a Parrot" are approximately 4.2 m x 4.2 m x 2.6 m.

Test Site V (Figure 3d) is used as an office with smooth-

textured walls, ceiling-mounted lamps and power wires,

and a dark-carpeted floor. The dimensions of the office

room are approximately 7.4 m x 5.9 m x 4.5 m.

- Test Site VI, the "Empty Shopping Mall" (Figure 3e), fea-
tures smooth-textured walls, a concrete floor, ceiling-
mounted lamps, electric wires, and an air-conditioning sys-
tem. The dimensions of the empty shopping mall are ap-
proximately 21.5 m x 7.1 m x 6.3 m.

3.2 Overview of the Approach

This study aims to assess the improvement in quality and com-
pleteness of the TLS registration process affine detector the
results obtained using selected detectors and affine detectors
(blob and corner) in the multi-stage TLS registration process
were compared, which involved the following steps: (1) The
software was developed to automatically convert 3D point cloud
data into the form of a 2D spherical representation with a depth
map; (2) commonly-used corner detectors (FAST, BRISK) and
blob detectors (CenSurE, SURF and SIFT) were tested; (3) Au-
thors implemented the affine detectors: AFAST, ABRISK, ACen-
SurE, ASURF based on the ASIFT approach; (4) Structure-from-
Motion (SfM) was used to determine the tie points to perform
the pairwise TLS registration; (5) the geometrical quality of
tie points was verified using covariance analysis. Figure 4
presents the proposed methodology. The influence of detector
selection on the accuracy, completeness and orientation time of
point clouds will be analysed in this article as a crucial element
affecting the final accuracy of TLS point cloud registration.

To evaluate the suitability of the detectors mentioned above,
rasters at full resolution (based on raw data point clouds) were
generated, making the interpolation of coordinate values for
pixels unnecessary. Because the data were acquired using a
fixed scanning interval, it was possible (using the scanner’s
SDK - Software Development Kit) to use the vertical and hor-
izontal angle values and the measured distance to generate
spherical images. The incorporated raster grey level values
were acquired from the intensity of the laser beam reflection
recorded by the Z+F 5006h and Z+F 5003 scanners. Addition-
ally, the total station measurements were performed for Test
Sites I and II, and data were adjusted with the RMSEy = 2.2
mm, RMSEy = 1.3 mm, and RMSE; = 0.4 mm. Those points
were used for an independent quality analysis pertaining to
Test Sites I and II (Markiewicz et al., 2021).

The proposed approach to point cloud orientation using SfM
consists of the following steps:
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Figure 3. The floor plan with marked dimensions and TLS positions (red dots). Spherical representation with marked reference points (red
circles). For each TLS position, the height (h) is presented. (a) Test Sites I and II: Basement in the Royal Castle (Markiewicz et al.,
2023); (b) Test Site III: "The Queen’s Bedroom" (Markiewicz et al., 2023); (c) Test Site IV: "The Chamber with a Parrot" without
marked points (Markiewicz et al., 2023); (d) Test Site V: "The office room" (Markiewicz et al., 2023) and (e) Test Site VI: "The
empty shopping mall" (Markiewicz et al., 2023)
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Figure 4. Diagram of the proposed methodology of TLS data registration

i. determination of the pair of rasters using the methods of
permutations without repetitions:

n\ _ n!
< k)‘k!(n-k)l @

where k = 2 (a pair of scans), n is the number of all scans;

ii. detection of key points with affine detectors;

iii. description of all detected key points by SIFT descriptor;
iv. descriptor matching with the use of Brute Force match-
ing;

v. geometrical verification of the detected tie point, per-
formed in the iterative process (RANSAC method) with the
following assumptions: full registration (the accuracy on
control and check points not exceeding 5mm and covari-
ances factors higher than 0.5), initial registration used for
final registration bases on the ICP (threshold 10 mm) and
non-registration (values on control and check higher than
10 mm);

vi. final bundle adjustment of scans.

The following factors were analysed to assess the quality
and completeness of the TLS registration process:

+ the completeness of data registration that determined the
robustness of the proposed method and the effectiveness of
the proposed solution,

- the time of key point detection,

+ the number of key points detected,

- the registration accuracy on natural and marked check

points with reliability assessment,

- the distance between pairs of point clouds for the proposed
method and state-of-the-art approaches: Iterative Closest
Point and Target-based,

- the overall time of point cloud registration with the feature-
based method and state-of-the-art approaches.

4 Results and Discussion

4.1 The evaluation of the quality of automatic pair-
wise point cloud registration

To assess the detectors’ or affine detectors’ applicability in the
TLS registration process, all possible pairs of overlapping point
clouds acquired from different heights and distances from the
scanned surfaces were considered. The results of this investiga-
tion are presented in Figure 5. To interpret the results, the reg-
istration results were colour-coded according to the method-
ology presented in Markiewicz et al. (2023): (1) green - the
complete registration with the RMSEy, RMSEy and RMSE; <
0.005 m and covariance factor > 0.5; (2) orange - preliminary
registration obtained parameters should be treated as the ini-
tial parameters for Iterative Closest Point (ICP) registration and
(3) red - no registration because the points were not well dis-
tributed an d/or the RMSE < 0.01 m and/or covariance < 0.5.
Additionally, due to the processing of point clouds of wall frag-
ments (rather than the entire room) on Test Site III, it was
decided to mark "x" pairs of scans that do not overlap.
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Figure 5. The accuracy of the TLS registration for detectors and affine detectors: (a) and (b) Test Sites I and II: Basement in the Royal Castle;
(c) Test Site III: "The Queen’s Bedroom"; (d) Test Site IV: "The Chamber with a Parrot"; (e) Test Site V: "The office room" and
(f) Test Site VI: "The empty shopping mall"
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The assessment of the correctness and completeness of the
matching pair of scans for all test sites (Figure 5) was only
possible using the AFAST (point detector) and ASIFT (blob de-
tector), so the remaining algorithms should be evaluated sepa-
rately for each test field.

The lowest number of correct matched pairs of scans was
obtained for the BRISK detector. For Test Site I - only 4 of
6, Test Site IT — 8 of 15, Test Site III - 3 of 9, Test Site IV —
5 of 6, Test Site V — 12 of 28, and Test Site VI - 1 of 21 pairs
of scans was correctly registered (full orientation).

For CenSurE detector, there is a slight improvement as com-
pared to the results for BRISK. Using this detector, it was
possible to register correctly for Test Site I - 4 of 6, Test
Site II - 11 of 15, Test Site III - 2 of 9, Test Site IV - 5 of 6,
Test Site V - 12 of 28, and Test Site VI, 3 of 21 pairs of scans.
FAST (corner detector) enabled all pairs of scans register
for Test Site IV only. For the other pairs of point clouds,
the higher number of corrected matched pairs of scans were
obtained than for BRISK and CenSurE, and it was possible
to register only for 5 of 6 pairs of scans for Test Site I, 9 of
15 for Test II, 5 of 9 for Test Site III, 15 of 28 for Test Site V,
and 4 of 21 for Test Site III.

The full registration was successful for Test Sites I and II
for the blob SIFT detector. For other test sites, 4 of 9 for
Test Site III, 5 of 6 for Test Site IV, 11 of 28 for Test Site V,
and 2 of 21 for Test Site VI were registered correctly.

For the blob SURF detector, registering all pairs of scans was
possible for Test Sites I, I and IV. For other cases, 8 of 9 for
Test Site III, 17 of 28 for Test Site V, and 2 of 21 for Test Site
VI pairs of scans were correctly registered.

.

.

The correctly determination of the TLS pair of point clouds
registration is crucial for multi-position TLS registration. This
clearly affects the possibility of global registration of all possi-
ble point clouds and results in the robustness and accuracy of
the entire process. In summary, the results shown in Figure 5
clearly indicate that it was possible to carry out multi-position
TLS registration for Test Site I with all detectors except the
BRISK, CenSurE and FAST detectors, Test Site II, III and V for
all detectors, and Test Site IV excepted BRISK. The use of "stan-
dard" detectors did not allow for a full registration of all scans,
only selected pairs for Test Site VI.

A potential solution to a full registration could be the use of
affine detectors for tie point extraction. In this study, for Test
Site I, only ACenSurE was capable of a pairwise registration
with only one pair of scans (with the CenSurE detector, two
pairs of scans were not correctly registered). For Test Site II-
V, using affine detectors enabled global TLS registration using
all algorithms. As in the case of the results obtained by the
"standard" detectors, the lowest number of correctly matched
pair of point clouds were obtained for Test Site VI, but a full
registration using the ASIFT and AFAST detectors was possible.

Summarising the results of the correctness and complete-
ness of point cloud registration using "standard" and affine
detectors, it can be stated that:

+ The least successful point clouds registration results were
obtained for the BRISK detector. The biggest problems oc-
curred for pairs of point clouds for which the correspond-
ing parts were measured at significantly different angles to
the normal surface of the vector (i.e., acute angles to the
normal surface of the vector) and for significantly differ-
ent distances from the scanner position. This contributed
to various ’distortions’ in the rasters resulting from con-
verting point clouds from the 3D to the 2D form. In the
BRISK detector, neighbouring pixels within a circle of 16
pixels (a Bresenham circle of radius 3) on different scale-
spaces are used to assess whether a potential pixel should
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be treated as a corner or not. For this reason, the '"change of
scale" mapping in the compared spherical images of corre-
sponding fragments affects the inability to detect potential
tie points. In addition, the correctness and completeness
of the TLS point cloud pairs registration are affected by the
accuracy of key point determination, which is dependent on
the accuracy of the TLS measurement.

+ The operation of the BRISK detector is based on the same
assumptions regarding the comparison of neighbouring pix-
els within a circle of 16 pixels as implemented in the FAST
detector, but in contrast to the FAST detector, it consid-
ers an additional evaluation based on scale-space search-
ing. Therefore, the influence of surface scanning angles
and the distance between the scanner position and the ob-
ject to be imaged is the same as that of the BRISK detec-
tor. Still, a full-resolution search of the spherical image
(without scale-space verification) allows for the detection
of more key points compared to BRISK, which in further
stages are used to pair TLS point cloud registration. For this
reason, a larger number of correctly registered scan pairs is
possible to obtain with the FAST algorithm.

+ The SIFT, SURF and CenSurE algorithms are blob detectors
and, in contrast to point detectors (BRISK and FAST), are
based on the greyscale gradients and are, therefore, scale-
invariant and more robust. The results differ due to the
filters and methods used in feature point detection. In ad-
dition, the CenSurE algorithm searches for extremes at full
image resolution while the SIFT and SURF detectors detect
points at different pyramid levels. This made it possible to
detect more tie points than the number of points detected
using point detectors, translating into an increase in the
number of correctly registered pairs of scans. Despite this,
as with the FAST and BRISK detectors, they do not allow for
the correct registration of point clouds, for which overlap-
ping fragments are characterised by a significant "distor-
tion" on spherical images (Test Site V and VI). The lowest
number of correct matched pairs of scans for the three blob
detectors was obtained for CenSurE, which is caused by de-
tecting key points on the full-resolution image and on the
spherical image for which the grey levels were generated
from the raw intensity.

- In summary, the solution to the problems of correct match-
ing of point cloud pairs (regardless of significantly different
angles to the standard surface of the vector different dis-
tances from the scanner position) lies in the use of affine
detectors. It has significantly improved TLS point cloud
pairwise and multi-stage registration, and the use of ASIFT
and AFAST has enabled the minimum point cloud pairwise
registration necessary for final multi-position registration
for all test sites.

4.2 The analysis of key point time detection

To evaluate the detection time of the feature points, individ-
ual detectors and affine detectors were employed as a single-
thread solution. The key point search process was repeated
50 times, making it possible to compute the average detection
time for a single key point. Figure 6 shows the average detec-
tion time for a single key point.

Each detector can detect different numbers of points on the
same point clouds converted to the raster format. Therefore,
the detection time of a single feature was calculated. The val-
ues shown in Figure 6 indicate that the shortest key points de-
tection time was obtained by the FAST point detector (average
for all Test Sites was 0.001 ms) and the longest for the CenSurE
blob detector (average for all Test Sites — 0.524 ms). For the
other "standard" detectors, key points search times were the



Markiewicz, 2024 | 77

Table 2. The average number of detected key points and ratio between detected key points by affine and "standard" detector

Number of Keypoints Ratio between detectors Number of Keypoints Ratio between detectors
Detector  Test Site  Test Site  Test Site  Test Test Test Test Test Test Test Test Test
I I 111 Site Site II Site III Site Site V Site Site Site V Site
I v VI v VI
BRISK 14686 12415 2562 1308 2664 4842
ABRISK 120866 97533 22210 8.2 7.9 8.8 18110 33725 50108 10.5 15.4 101
CenSurE 6504 4928 1395 857 1712 3057
ACenSurE 78132 51666 13244 12 10.5 9:5 20372 33195 45341 23.6 20.7 148
FAST 259589 227549 37746 85474 29192 44950
AFAST 2425131 2179661 369125 93 96 9-8 503587 350084 438960 59 121 9-8
SIFT 75426 68967 10776 18672 10089 12662
ASIFT 932974 856564 152601 12.4 12.4 14.3 223525 162695 190659 12 16.2 15
SURF 106442 103118 21554 71235 34517 38336
ASURF 1463700 1401474 260185 138 13.6 12.4 895272 557614 542328 12.4 16.2 141
ASURE -li worst (CenSurE) results for Test Site I is about 40, for Test Site
\:“\”T _— II is 46, for Test Site III is 27, for Test Site IV is 100, for Test
o Site V is 17, and for Test Site VI is 15. However, when the num-
ABRISK el ber of key points detected by SIFT and SURF are compared with

 Test Site I1T
 Test Site IV
 Test Site V
 Test Site VI

SURF

SIFT

FAST

CenSurE
BRISK huw
0 2 3 4 5 6
Keypoint detection time [ms]

Figure 6. The consumption of each detector

longest for SIFT, BRISK and SUREF, respectively.

A comparison of the point detection time results based on
"standard" detectors and affine detectors shows that the time
is, on average, longer for detecting key points using point de-
tectors rather than blob detectors. The most significant differ-
ence was obtained for the AFAST algorithm - almost 312 times
longer. However, considering the time in milliseconds, it is
still shorter than for the BRISK, CenSurE, or SIFT detectors.
In the case of the BRISK detector, the difference is about 46
times higher, and the values are between 12 and 56. Compar-
ing the differences in point detection time by blob and point
a-detectors, the processing time is significantly shorter, aver-
aging 9 times for the CenSurE detector, 3 times for the SIFT and
4 times for the SURF "standard" detector. The smallest devi-
ations in the ratio (affine detector to detector) were observed
for the ASIFT and ASURF detectors, and the single key points
search time for the ASURF detector was shorter than for the
CenSurE and SIFT detectors.

4.3 The analysis of the number and distribution of
detected and matched key points

To evaluate the influence of the affine detector in the TLS reg-
istration process and selection of point detectors (FAST, BRISK,
AFAST and ABRISK) and blob (SIFT, SURF, CenSure, ASIFT,
ASURF and ACensure), the detected key points were analysed.
Table 2 presents the average number of key points and the ra-
tio between points detected by the affine and the "standard"
detector.

The average number of detected key points presented in Ta-
ble 2 indicated that the most significant number of key points
was obtained by FAST, SURF, SIFT, BRISK and CenSurE detec-
tors for all test sites. The ratio between the best (FAST) and

the FAST detector, the ratio is about 3.5 for the SIFT detector
and 1.6 for the SURF detector measured for all test sites.

The results presented in Table 2 also show that using affine
detectors allowed the detection of a significantly larger num-
ber of key points than with "standard" detectors. For the point
detectors (ABRISK and AFAST), the number of detected key
points increased by 8-12 times and for blob detectors (ACen-
SurE, ASURF and ASIFT) by about 10-24 times.

The spatial distribution of tie points should also be consid-
ered to verify which detector is more appropriate for correct
TLS point cloud registration,affecting the registration quality
and final process accuracy. In Figures 7-12, the tie points dis-
tribution was shown for cases for which full bundle adjustment
was possible and for which only part of the scans could be reg-
istered (marked with a cross in the description).

The results presented in Figures 7-12 indicate that, gen-
erally, with the affine detectors, as compared to the '"stan-
dard" detectors, it is possible to find more correct distributed
tie points in terms of reliability theory that guarantee a cor-
rect point cloud registration. The obtained results should be
assessed independently for each Test Site:

- Test Site I and II: The distribution of tie points for all meth-
ods (detectors and affine detectors) is similar for Test Site I.
For standard and affine algorithms, the most points (high-
est density) were detected and used on the two walls visible
on all scans. Significantly fewer points are on the ceiling,
and the highest density was obtained in the central part of
the basement for SIFT/ASIFT, SURF/ASURF and AFAST. For
the BRISK/ABRISK and CenSurE/ACenSurE methods, fewer
points were detected (compared to the algorithms discussed
above), and most of them were distributed on the walls
mapped on all scans and a small number on the ceiling.
However, it should be emphasised that the number and dis-
tribution of points allowed for the correct registration of all
point clouds.

+ Test Site III: For Test Site III, containing rich ornaments,
bas-reliefs, and facets, the distribution of tie points was
better for affine detectors than the "standard" case because
the density of points was higher, and the points were evenly
distributed over the whole area. Considering only the case of
"standard" detectors, the results (distribution and number
of points) were obtained for the respective SURF, FAST and
SIFT approaches.
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(b) CenSurE (X)

(a) BRISK (X)

(f) ABRISK (g) ACenSurE
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(d) SIFT (e) SURF
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Figure 7. The distribution of tie points used for TLS point cloud registration for each method - Test Site I. Marked with X cases for which

full bundle adjustment was impossible.

- Test Site IV as in the previous Test Sites, more points
were detected, and a evenly distribution was obtained us-
ing affine detectors than in the "standard" case. There
is a noticeable uneven point density throughout the study
area, which follows from the way the algorithms work.
Higher point densities are noticeable for areas with signifi-
cant changes in grey degree gradients. However, crucially,
this should not be seen as a problem, as detecting a con-
siderable number of points allows for additional (but not
obligatory) data filtering to obtain an even distribution of
points. As in the case of previous Test Sites, the BRISK, Cen-
SurE (and their affine equivalents) detectors allowed a suf-
ficient number of correctly positioned binding points to be
detected based on which full point cloud registration could
be performed.

Test Site V: The highest density, most similar numbers, and
tie point density results were obtained for the office (pub-
lic facility) for AFAST, ASIFT, ASURF, FAST, and SURF al-
gorithms. Like Test Site IV, the lowest number of points
were obtained for the BRISK and CenSurE approaches de-
spite point clouds being registered. This is due to the char-
acteristics of the test site, including the absence of signifi-
cant changes in gradients (plain wall) and being equipped
with furniture and office devices (affecting the quality of the
point cloud, e.g., through erroneous edge delineation due to
mixed-edge effects).

Test Site VI: Similar to the analysis of the correctness of
the pairwise point cloud matching, only the distribution of
binding points detected with the ASIFT and AFAST detec-
tors allowed for a full point cloud registration, due to the
generation of 2D intensity rasters converted from 3D point
clouds and the existence of distortion and wide-based point
clouds. Therefore, when planning a survey of facilities, i.e.,
shops in shopping centres, deciding whether to use ASIFT or
AFAST detector or set up additional scanner positions to re-
duce the baseline between point clouds and utilise any affine
detector algorithms is crucial.

4.4 A comparison of feature-based TLS registraon
with commonly used methods

In order to verify the accuracy of point cloud orientation using
affine detectors and intensity rasters, it is necessary to com-
pare the results with those obtained using other point cloud
registration methods. Two commonly-used point-based meth-

ods: target-based implemented in Z+F LaserControl software
(Z+F, 2024) and ICP implemented in the open-source Cloud-
Compare (Cloudcompare, 2024) were used in this study. In ad-
dition, the overall time for TLS point cloud registration was
compared based on different data processing methods.

The target-based method

The target-based method is one of the most commonly used
methods of TLS point clouds registration. It is usually based on
signalised points detected semi-automatically or automatically
and, less often, manually. For this reason, it is widely used
and implemented in many commercial applications. Therefore,
a comparison was made between the results obtained using
"standard" and affine detectors with those from the Z+F Laser-
Control software dedicated to Z+F scanners (used in this study).
Additionally, the covariance ratio values were compared to as-
sess the point distribution automatically (in accordance with
reliability theory). Table 3 presents the results of the investi-
gation.

An evaluation of the results shown in Table 3 shows that
the differences in RMSE at the signalled check points (obtained
from multi-position TLS registration) are different for Test
Sites and are between -3.9 mm and 3.4 mm. A slight im-
provement for a-detectors in the data orientation process for
ASIFT (0.5 mm) and ASURF (1.8 mm) occurs for Test Site I.
For ABRISK, ACenSurE and AFAST, the maximum differences
in RMSE values are higher than -1.0 mm for the X-coordinate,
3.9 mm for the Z-coordinate and 0.5mm for the X-coordinate,
respectively. In the case of Test Site II, a slight decrease in ac-
curacy for all affine detectors is expected for ASIFT (0.9 mm for
X-coordinate). It does not exceed 0.8 mm for ABRISK, ACen-
SurE, and AFAST algorithms and 2.2 mm for ASURF. For Test
Site II1, a significant drop is seen for ACenSurE (on average, 3.0
mm for all coordinates), ABRISK (on average, 2.1 mm for all co-
ordinates), ASURF (on average, 0.6 mm for all coordinates) and
AFAST (on average, o.1mm for all coordinates). Yet, there is
an improvement for ASIFT with 0.5 mm on average. For Test
Site 1V, using affine detectors in the data orientation process
slightly decreased the RMSE values for all coordinates for all
detectors and did not exceed 0.8 mm.

According to the internal reliability theory, the values of in-
dicators are in between <0,1>, and (1) if the value is equal to 0,
the point is completely uncontrolled; (2) if the value is equal to
1, the point is fully controllable by other points and (3) if the
value is > 0.5, this contributed to fulfilling the network’s con-
trollability condition (Markiewicz et al., 2021). The significant
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(a) BRISK

(c) FAST

(e) SURF

(f) ABRISK (g) ACenSurE (h) AFAST (i) ASIFT (j) ASURF

Figure 8. The distribution of tie points used for TLS point cloud registration for each method - Test Site II.
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Figure 9. The distribution of tie points used for TLS point cloud registration for each method - Test Site III.
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(a) BRISK (X) (e) SURF

(f) ABRISK (g) ACenSurE (h) AFAST (i) ASIFT (j) ASURF

Figure 10. The distribution of tie points used for TLS point cloud registration for each method - Test Site IV. Marked with X cases for which
full bundle adjustment was impossible.
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(a) BRISK

(f) ABRISK (g) ACenSurE (h) AFAST (i) ASIFT (j) ASURF

Figure 11. The distribution of tie points used for TLS point cloud registration for each method - Test Site V.

(a) BRISK (X) (b) CenSurE (X) (c) FAST (X) (d) SIFT (X) (e) SURF (X)

(f) ABRISK (X) (g) ACenSurE (X) (h) AFAST (i) ASIFT (j) ASURF (X)

Figure 12. The distribution of tie points used for TLS point cloud registration for each method - Test Site VI. Marked with X cases for which
full bundle adjustment was impossible.
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RMSE on Marked The Reliability RMSE on Marked The Reliability RMSE on Marked The Reliability
Check Points indices Check Points indices Check Points indices
Detector [mm] [mm)] [mm]
Test Site I Test Site I Test Site IT Test Site IT Test Site III Test Site III
X Y z Min Avg Max X Y z Min Avg Max X Y z Min Avg Max
BRISK 580 5.70 5.70 0.11 0.91 0.98 510 5.40 5.10 0.15 0.90 0.98 2.20 2.50 2.20 0.04 0.80 0.96
ABRISK 4.80 4.80 5.20 0.33 0.98 0.99 570 570 5.70 0.88 0.98 0.99 4.30 4.90 4.10 0.14 0.89 0.98
CenSure 3.60 5.70 6.40 0.02 0.92 0.97 2.60 2.50 2.40 0.13 0.96 0.99 3.40 3.20 3.10 0.08 0.88 0.98
ACenSure 3.00 2.70 2.50 0.00 0.98 0.99 3.30 3.30 3.20 0.89 0.99 1.00 5.90 7.20 5.60 0.04 0.89 0.97
FAST 3.90 3.70 3.70 0.92 0.99 1.00 3.40 3.30 3.40 0.65 0.99 1.00 2.20 2.20 2.20 0.10 0.99 1.00
AFAST  3.40 3.40 3.40 0.94 0.99 1.00 4.00 3.60 4.00 0.97 0.99 1.00 2.30 2.20 2.30 0.15 0.98 0.99
SIFT 1.40 130 130 0.92 0.99 1.00 2.30 2.30 2.30 0.65 0.99 1.00 2.40 230 240 0.01 0.86 0.98
ASIFT 1.80 1.80 1.80 0.98 0.99 1.00 140 150 1.50 0.95 0.99 1.00 1.90 1.90 1.80 0.40 0.96 0.99
SURF 2.00 2.00 2.00 0.82 0.98 0.99 2.70 2.70 2.80 0.92 0.99 100 3.21 3.22 4.2 0.35 0.99 1.00
ASURF 3.70 3.70 3.80 0.96 0.99 1.00 4.90 4.90 5.00 0.98 0.99 1.00 4.20 4.00 £4.10 0.20 0.98 0.99
Target-
Based 2.50 2.00 140 0.35 0.67 0.85 2.50 2.40 2.80 0.01 0.20 0.62 3.30 3.50 2.60 0.22 0.41 0.68
Method
RMSE on Marked The Reliability RMSE on Marked The Reliability RMSE on Marked The Reliability
Check Points indices Check Points indices Check Points indices
Detector [mm] [mm] [mm]
Test Site IV Test Site IV Test Site V Test Site V Test Site VI Test Site VI
X Y z Min Avg Max X Y Z Min Avg Max X Y Z Min Avg Max
BRISK 21 2.2 2.2 0.08 0.98 0.99 4.8 5.2 4.5 0.05 0.83 0.98 X X X X X X
ABRISK 2.1 2.3 2.2 0.57 0.97 0.99 2.4 2.8 2.5 0.63 0.95 0.99 X X X X X X
CenSure 1.4 1.4 1.3 0.7 0.99 1 5.8 5.4 5.2 0.51 0.94 0.99 X X X X X X
ACenSure 2.1 2.1 21 0.8 0.99 1 2.2 2.2 2.1 0.87 0.98 0.99 X b X X X X
FAST 1.7 1.8 1.8 0.89 099 1 57 5.6 5.6 0.67 0.98 0.99 X b: b b:¢ X b
AFAST 1.8 1.9 1.9 0.99 0.99 1 2 2 2 0.92 0.99 1 9.0 9.2 9.0 0.01 0.91 0.98
SIFT 1.2 1.3 1.3 0.86 0.99 1 3.8 3.9 3.5 0.1 0.92 0.98 X b: b b: b b
ASIFT 1.6 1.6 1.6 0.99 1 1 1.8 1.8 1.8 0.92 0.99 1 L7 4.6 5 0.03 0.94 0.98
SURF 1.7 1.8 1.8 0.95 099 1 52 5.3 54 0.77 0.97 0.99 X b: b b: X b
ASURF 1.8 1.8 1.8 0.99 1 1 2.1 2 2 0.93 0.99 1 X X X X X X
Target-
Based 1.8 1.4 1.6 0.23 0.46 0.71 2.2 2.4 1.7 0.29 0.72 0.95 4.2 3.7 3.6 0.28 0.7 0.99
Method

x - insufficient number of tie points

impact of using affine detectors is evident from the minimum,
maximum and mean covariance factors. This improves the ge-
ometric distribution of tie points for the minimum values (an
increase from 0.05 to 0.63 - to a value above 0.5, which is the
threshold value). In the case of Test Site I, using the affine
BRISK and CenSurE detector did not affect the increase of the
minimum value of the covariance factor, nor for Test Site II de-
tectors. It should also be noted that the use of affine detectors
has a significant effect on the pattern of mean and maximum
covariance factors.

The results in Table 3 show that the registration process ac-
curacy at the signalled check points is close to the commonly
used target-based approach. For Test Site I, the average dif-
ferences between RMSE values for all coordinates ranged from
-0.2 mm to 1.8 mm for all a-detectors expected ABRISK (the
average value is 3.0 mm). For other detectors, the average dif-
ferences were in the range of -0.6 mm to 1.8 mm for FAST,
SIFT and SURF algorithms, 3.3 mm for CenSurE and 3.8 mm for
BRISK. Considering the covariance factors, using the detector-
based method significantly increases the controllability of the
network. For the detector-based method, the average is be-
tween 0.91-0.99, while for the target-based method, the aver-
age is 0.67.

In the case of Test Site II, both the detector and affine de-
tector results are comparable. Hence, deciding if using affine
detector is necessary is not straightforward. It should be noted

that the average RMSE values obtained for the detectors and
the target-based method are comparable. In the case of the de-
tectors, the differences were 2.6 mm, -0.1 mm, 0.8 mm, -0.3
mm, and 0.2 mm for BRISK, CenSurE, FAST, SIFT and SUREF,
respectively. The difference between mean RMSE values from
affine detectors and the target-based method are: ABRISK 3.1
mm, ACenSurE 0.7 mm, AFAST 1.3 mm, ASIFT -1.1 mm, and
ASURF 2.4 mm. The average covariance factor values (0.95)
are about 4.5 times lower than the target-based method (0.2).

For Test Site III, the RMSE’s values on points detected by
BRISK and FAST were similar on detectors (approximately 1.2
mm) to BRISK, FAST, and SIFT and about 2.2 mm for CenSurE
and SUREF. The average covariance factor for the targets-based
method is 0.41 (below the acceptable threshold) and about two
times worse for the detector-based method.

Regarding the result obtained for Test Site IV, the difference
in the mean RMSE values are from -0.3 mm to 0.6 mm for all
detectors, between detector-based and target-based methods.
The average covariance for the target-based method is 0.46,
which is two times lower than for the detector-based method.
In the case of Test Site V, lower differences were obtained for
affine detectors (values from 0.3 mm to 1.0 mm) than for de-
tectors (2.2 mm to 4.1 mm). The covariance factor for the
detector-based method is in the range of 0.83-0.99, and for
the target-based is 0.72.

The inability to record all scans for Test Site VI was due
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to the failure to identify suitable points for all detectors and
affine detectors, except for ASIFT and AFAST. When assessing
the RMSE values used, similar results were obtained from the
pixels detected using the ASIFT detector and the target-based
method. The accuracy was about 2-2.5 lower than that of the
previously mentioned algorithms. The covariance coefficients
obtained for the AFAST, ASIFT, and target-based methods were
0.91, 0.94 and 0.7, respectively.

The covariance factors for all test sites showed that the
feature-based method yields a higher controllability of the
points and their geometric distribution.

The study clearly shows that the registration accuracy de-
pends on the quality of the point cloud effected by the TLS
technique. The main relevant findings are presented below:

The blob detectors, particularly SIFT, SURF and ASIFT,
demonstrate improved orientation accuracies over the
target-based method for the Test Sites (I and II) charac-
terised by repeatable texture or similar texture and mate-
rials, for example, bricks. Furthermore, the acceptable re-
sults were presented by AFAST, ASURF, and ACenSurE (dif-
ferences did not exceed 1.5 mm, and values did not exceed
3.4 mm).

The results from Test Site III (featuring multiple architec-
tural details) show that only with FAST, SIFT, BRISK, Cen-
SurE, AFAST, and ASIFT detectors is the quality of regis-
tration higher than the target-based method. Meanwhile,
ABRISK, SURF, and ASURF had RMSE values higher than 2
mm. Points detected by the ACenSurE detector did not allow
for a correct registration.

The results obtained at Test Site IV (room with wall paint-
ings imitating a spatial effect without architectural details)
indicate that all points and blob detectors allow for point
cloud registration with the same accuracy as the target-
based method.

In the case of Test Site V (office room), with the scanner po-
sitions placed near walls, only affine detectors could obtain
results similar to those of the target-based method. The
RMSE for all coordinates is approximately 3 mm higher for
all detectors than target-based method for other detectors.
The highest RMSE values were obtained for Test Site VI
(empty shopping mall) owing to the flat, textureless sur-
faces of the measured site and scanner position to perform a
multi-station registration. Only the ASIFT and AFAST algo-
rithms can perform a multi-station registration. However,
a result similar to the target-based approach was obtained
by the ASIFT method.

For a complete and correct automatic point cloud registra-
tion with an accuracy similar to that of the target-based
method, it is recommended that ASIFT or AFAST algorithms
are used, because these detectors could perform a multi-
station registration at any of the Test Sites.

.

Iterative Closest Points (ICP)
The second assessment of the accuracy of TLS registration
based on "standard" and affine detectors was to compare with
the results obtained using the point-to-point ICP method (im-
plemented in open-source CloudCompare software). The point
clouds were resampled to a fixed distance of 1 mm between
points. The linear distance between pairs of point clouds was
used to evaluate the accuracy of point cloud matching. Figures
13-18 show the results of the worst-case scenario for all test
areas. Each figure contains 12 histograms showing the proba-
bility density function of linear deviations between point clouds
using the target-based method, the ICP point-to-point, BRISK,
CenSurE, FAST, SIFT, SURF, ABRISK, ACenSurE, AFAST, ASIFT,
and ASURF.

An analysis of the shape of the probability density his-
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togram of linear deviations (Figure 13) shows that for the re-
sults obtained using ASIFT, SIFT, ASURF, SURF, Target-based
and ICP methods, the shape of the distribution approximately
corresponds to a chi-square distribution. The shape of the
probability density histogram of linear deviations for the Cen-
SurE detector is flat, which means that the scan registration
was performed incorrectly. The distributions do not take a chi-
square shape when analysing the other histograms (for ABRISK,
BRISK, ACenSurE, AFAST, and FAST). Yet, for 95% of the points,
the distance does not exceed 6 mm (below the determined scan-
ning resolution of 6 mm/10 m).

In the case of Test Site II (Figure 14), only for the target-
based method and CenSurE was the distribution of deviations
not comparable to the chi-square distribution. For the Target-
based method and based on the points detected by the CenSurE
algorithm for 95% of the points, the distance did not exceed 6
mm. The peak of the histogram of the probability density of
linear deviations between the worst-registered pair of scans by
the CenSurE detector was approximately 3 mm. For the Cen-
SurE detector (the pair of scans registered that was worst reg-
istered), the histogram peak of probability density histogram
of linear deviations equalled approximately 3 mm.

The analysis of the results shown in Figure 15 shows that
for Test Site III, the smallest deviations between pairs of point
clouds were obtained using the ICP method (Figure 15b). It
should also be noted that the results obtained for detectors and
affine detectors (Figure 15c- 1) are similar for the target-based
method (Figure 15a), and the peak of the histogram is approx-
imately 2 mm.

Based on the analysis of the results for Test Site IV (Fig-
ure 16), the use of both state-of-the-art methods, i.e. target-
based and ICP, as well as the SIFT, and SURF algorithms with
their affine counterparts, allows for correct matching of point
clouds, as evidenced by the distribution of chi-square liner de-
viations. When considering the results obtained for the other
detectors, it should be noted that the scans were correctly reg-
istered despite not obtaining a chi-square distribution. This
indicates that for 95% of the points, the distance does not ex-
ceed 6 mm, which does not exceed a scanning point resolution
of 6 mm/10 m.

Evaluating the results obtained for Test Site V (Figure 17),
an analogy can be drawn with the results obtained for Test Site
IV. There were lowest linear deviations for affine detectors, es-
pecially for AFAST, ASIFT, and ASURF, than for "standard" de-
tectors. This is particularly evident for the ASIFT detector, for
which the distribution of linear deviations values assumes a
chi-square distribution, and its shape is similar to the shapes
of the linear deviation histograms used for state-of-the-art
methods.

The analysis of the linear deviations histograms confirmed
that the lowest accuracy of point cloud registration results
were obtained for the target-based method (Figure 18a) and
the highest accuracy for ICP (Figure 18b). The reason for the
low accuracy of the point cloud registration is the resolution of
the scan (12 mm/10 m), which translates into point cloud den-
sity and problems in identifying the centre of the mark with
high accuracy. For this reason, the ICP method, which allows
for the correct data orientation, is recommended. When con-
sidering the results obtained for affine detectors, it should be
noted that, although the distribution of linear deviations is not
similar to a chi-square distribution, the results of the registra-
tion of the pair of scans are acceptable, as they do not exceed
the accepted scan resolution of 12 mm/10 m. In summary, the
data registration results show that using the affine detector al-
lows for a robust registration, and choosing the ASIFT detector
allows for a full data registration.
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Figure 18. The probability density histogram of linear deviations between the worst oriented pair of scans for Test Site VI: (a) Target-based
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The analysis of the overall time for TLS registration

The final comparative analysis compared the overall time
for TLS registration using the proposed and state-of-the-art
methods. The time taken to (1) convert point clouds from the
scanner’s native format to pts files, (2) convert point clouds to
raster format, (3) import point clouds in pts format into Cloud-
Compare software, (4) process time using feature-based TLS
registration, and (5) using ICP and target-based methods was
assessed. All calculations were performed on the CPU. The re-
sults are presented in Table 4.

Analysing the results presented in Table 4, it can be seen
that converting raw point clouds to pts format depends on the
number of point clouds being processed. It is a significant com-
ponent in the overall TLS point cloud registration time. How-
ever, it should be emphasised that if data are processed in ex-
ternal software, this step is essential. When comparing the
time required to convert point clouds to raster form with the
time necessary to import point clouds into CloudCompare soft-
ware (used to measure tie points using the target-based or ICP
method), it might be seen that the times are similar, and the
maximum difference for Test Site IV is 4 minutes and 40 sec-
onds.

When comparing processing times using affine detectors
and affine detectors, a significant difference in total process-
ing time is noticeable. This is caused, as described in sections
4.2 and 4.3, by the search time for a single key point and the
higher number of detected points. The analyses show that the
shortest orientation time (disregarding the point cloud conver-
sion time and raster generation) was obtained with the BRISK
detector and the longest - with all test sites. Differences in
TLS registration times depending on the detector used are also
due to the specific test site. For Test Sites I and II (basements
consisting of irregularly shaped brick and mortar structures
with arch-shaped ceilings), the data processing time was the
longest, as the algorithms mentioned above allowed the detec-
tion of a significantly higher number of points than for the
other Test Sites (Figure 5), where these times are similar.

Comparing the feature-based registration method results
with the target-based and ICP methods, it should be noted that
(1) the shortest data fusion time was obtained using all detec-
tors on Test Sites except the SURF and FAST detector on Test

Site .

Comparing the results for the feature-based registration
method with the target-based and ICP methods, it might be
seen that the results are close to each other except for the ex-
treme cases: ASUREF for all Test Sites, ASIFT and AFAST (Test
Sites I and II).

To reduce the data processing time, it is possible to use a
"standard" detector, remembering that it will require a super-
vised data analysis and selected cases of non-registration will
require with the use of another registration method. To avoid
the problem with TLS point cloud registration, it is worth us-
ing affine detectors and a fully automatic approach, although
this can result (in selected cases) in significantly longer data
processing time than using state-of-the-art methods.

5 Conclusion

The aim of this paper was to demonstrate the use of affine de-
tectors in the TLS registration process to confirm that the use
of a particular detector type is reflected in the accuracy and
completeness of the registration process. To demonstrate this
through a multi-stage TLS registration, blob and corner de-
tectors were employed and affine detectors and point clouds
converted to intensity spherical images. In order to assess the
impact of the application of the affine parameter in the detec-
tors, it was decided to use the VI Test Sites of the interiors
of cultural heritage and public buildings located at the Royal
Castle in Warsaw (Test Site I and II; characterised by a lack
of decorative structures), Museum of King Jan III’s Palace at
Wilanéw (Test Site III; having decorative elements, ornaments
and materials on the walls), flat frescoes (Test Site IV), a nar-
row office (Test Site V) and a shopping mall (Test Site VI). The
experiments demonstrated that:

- Point clouds are converted into the intensity raster, and de-
tectors allow for a fully automatic TLS point cloud registra-
tion, regardless of the object’s interior type.

- The selection of the detector should be determined by the
object’s interior type, characterised by a good texture, com-
plex geometry, and the number of ornaments (such as cul-
tural heritage sites); it is possible to use FAST, SURF, and
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Data preprocessing
Time [Minutes & Seconds]

Conversion from RAW

Conversion point clouds

Import point clouds

Test site to PTS file to raster data to CloudCompare
I 38&12 17&48 14&05
II 57&18 26&42 26&24
111 74&11 17&22 17&00
v 39&10 17&48 13&08
\Y 80&56 35&36 33&12
VI 70&21 31&09 30&58
Feature-based TLS point cloud registration
Time [Minutes & Seconds]
Test site/
Detector BRISK ABRISK CenSurE ACenSurE FAST AFAST SIFT ASIFT SURF ASURF
I 1&58  38&54 1&33 15&22 9&26  317&18 3&25 93&19 13&44  55&%07
11 1&17  30&41 1&45 21&44, 10&45 532&20 4&44  214&25 19&28  319&01
111 1&10 8&54 1&08 7&49 1&35 12&07 1&35 21&41 2&14 47&41
v 1&36 9&33 1&37 9&57 1&41  13&12  1&38  20&07 4&26  82&50
\Y 1&14  16&45 1&19 18&06 1&30 19&51 1&10  32&59 4&04  84&40
VI 1&22  18&17 1&21 18&40 1&37  21&09 1&01  34&08 5&04 87&04
The current state-of-the-art registration methods
Time [Minutes & Seconds]
Test site Target-based ICP
I 8&28 12&36
I 13&16 11&08
111 9&43 19&07
v 11&22 1&14
\Y 21&15 39&11
VI 18&34 19&46

SIFT detectors and their equivalents in the form of affine
detectors. For TLS point clouds registration of textureless
and uncomplicated geometry interiors (public buildings),
such detectors as AFAST or ASIFT are recommended. Mean-
while, using the ASIFT detector makes it possible to record
the point cloud regardless of the geometric relationship be-
tween the individual scans and the field under study.
Adding affinity to detectors (affine detectors) allows for
a significant increase in the accuracy of pair scans co-
registration and completeness of pairs co-registration (Ta-
ble. 3). There is a noticeable improvement in point cloud co-
registration for the ACenSurE and ABRISK detectors for Test
Site I-V. Using AFAST and ASIFT allows for multi-station
registrations of all scans.

The calculations of points detection time for '"standard" de-
tectors and affine detectors demonstrate that, on average, it
takes longer to detect key points using point detectors than
blob detectors. The smallest deviations in the ratio (affine
detector to detector) were observed for the ASIFT and ASURF
detectors. The single key points search time for the ASURF
detector was shorter than the CenSurE and SIFT detectors.
Using the affine detectors allows for extracting a high num-
ber of key points and increases the accuracy and complete-
ness of the TLS registration process. The number of key
points detected increased for point detectors (ABRISK and
AFAST) by 8-12 times and for blob detectors (ACenSurE,
ASURF and ASIFT) by about 10-24 times.

When assessing the point clouds registration accuracy on
signalised check points, the lower values can be observed
for maximum RMSE errors for blob affine detectors than de-
tectors and higher values - for corner detectors and affine
detectors (not more than 4 mm in the extreme cases, typi-
cally 2 mm). The mean values for blob affine detectors and

detectors are similar and lower for the FAST detector. When
comparing the results obtained with the target-based reg-
istration method, it can be noted that they are similar (dif-
ferences do not exceed in extreme situations 3.5 mm, typi-
cally less than 2 mm), which proves that the use of affine
detectors for point cloud registration is appropriate and rec-
ommended.

The key issue with point cloud registration is that it is ro-
bust to the occurrence of outliers in observations and can
detect them easily through the so-called observational con-
trollability. For this purpose, the so-called internal reliabil-
ity indices are used, which allow for a rapid verification of
the number and spatial distribution of points. It is assumed
that in the case of low internal reliability indices, observa-
tions have relatively low controllability and, thus, low de-
tection of outliers in the reference points. The target-based
method challenges the distribution of numerous points, of-
ten proving it difficult or even unfeasible. Conversely, the
feature-based approach facilitates the automatic detection
of many points. A dense distribution of points across the
surveyed object enables relative point control and correct
outlier removal.

Internal reliability indices are not commonly used for TLS
point cloud registration. For this reason, using such an ap-
proach when filtering tie points detected using affine de-
tectors allows for increased controllability of points and the
detection of outliers in the dataset. In the experiment, this
contributed to fulfilling the network’s controllability condi-
tion and improving the geometric distribution of tie points
for the minimum values (an increase from 0.05 to 0.63,
where 0.5 is the acceptable threshold value). When compar-
ing results from the detector-based method with the val-
ues derived from points identified using the target-based
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method, it becomes evident that for Test Site I, the averages
fell within the range of 0.91 to 0.99, contrasting with the
target-based method’s average of 0.67. Similarly, for Test
Site II, the averages ranged from 0.90 to 0.99, while the
target-based method yielded an average of 0.20. Test Site
IIT exhibited average covariance factor values of 0.95, ap-
proximately 4.5 times higher than the target-based method
(0.2).

+ Conversely, for Test Site IV, the average covariance factor
obtained through the target-based method stood at 0.41,
below the acceptable threshold and roughly twice as inaccu-
rate as the detector-based methods. In the context of Test
Site V, covariance factors for the detector-based method
spanned between 0.83 and 0.99, while for the target-based
method, it rested at 0.72. Finally, for Test Site VI, covari-
ance factors were reported as 0.91, 0.94, and 0.7 for AFAST,
ASIFT, and the target-based method, respectively.

+ Upon a comparison of these results with values obtained for
the points detected with the target-based method, for Test
Site I, the average was between 0.91 and 0.99, while for the
target-based method, the average was 0.67. For Test Site II,
the average was between 0.90 and 0.99, while for the target-
based method, was average is 0.20. For Test Site III, the
average covariance factor values (0.95) were about 4.5 times
higher compared to the target-based method (0.2); for Test
Site IV, the average covariance factors for the targets-based
method was 0.41 (below the acceptable threshold) and about
2 times lower than from the detector-based method. In the
case of Test Site V, the covariance factor for the detector-
based method was in the range of 0.83-0.99, while for the
target-based method, it was 0.72 and for Test Site VI, the
covariance factors were 0.91, 0.94 and 0.7 for AFAST, ASIFT
and target-based, respectively.

- This paper presents a robust point cloud registration
method based on point clouds transformed into intensity
rasters in spherical mapping and affine detectors. The anal-
yses show that its application enables point cloud registra-
tion with an accuracy similar to state-of-the-art methods:
target-based and ICP. However, according to the reliability
theory, its advantage over the target-based method is the
possibility of detecting more tie points automatically with a
better spatial distribution and robustness. It should be em-
phasised that the presented affine detector-based method
does not require any pre-assumptions regarding point cloud
pre-registration, which are crucial in the case of the ICP
method, as they clearly define the correctness of the final
registration.

Further research plans are to test the method’s performance
with respect to outdoor point clouds and point clouds acquired
from ToF scanners for different scanning distances and resolu-
tions.
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