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Abstract
The research presented in this paper concerns the determination of the attraction basins of Newton’s iterative method, which wasused to solve the non-linear systems of observational equations associated with the geodetic measurements. The simpleobservation systems corresponding to the intersections or linear and angular resections used in practice were considered. Themain goal was to investigate the properties of the sets of convergent initial points of the applied iterative method. Therefore, theanswers to the questions regarding the geometric structure of the basins, their limitations, connectedness, or self-similarity weresought. The research also concerned the iterative structures of the basin: maps of the number of iterations which are necessary toachieve the convergence of the Newton’s method. The determined basins were compared with the areas of convergence that resultfrom theorems on the convergence of the Newton’s method: the conditions imposed on the eigenvalues and norms of the matricesof the studied iterative systems. One of the significant results is the indication that the obtained basins of attraction contain areasresulting from the theoretical premises. Their diameters can be comparable with the sizes of the analyzed geodetic structures.Consequently, in the analyzed cases, it is possible to construct methods that enable quick selection of the initial starting points orautomation of such selection. The paper also characterizes the global convergence mechanism of the Newton’s method fordisconnected basins and, as a consequence, the non-local initial points located far from the solution points.
Key words: basin of attraction, convergence of the Newton’s iterative method, planar intersection/resection

1 Introduction

Determination of the coordinates of the geodetic network nodesbased on the measurements results is related to solving an optimiza-tion task. A solution to this task in terms of the least squares methodis obtained by means of the iterative Newton-Gauss’s method (Ghi-lani, 2017; Kroszczynski and Winnicki, 2002; Nielsen, 2013). Appro-priate selecting solution’s initial values is an essential element of theiterative methods (Lothar, 1993; Kroszczynski and Winnicki, 2002).Due to the process of linearization of observation equations systems,the initial point of the procedure is usually selected sufficiently closeto the determined point. In the case of geodetic networks, approxi-mate values of the network nodes’ coordinates are computed usingspecialized software based on measurements that define the net-work (Čepek, 2002; Siki, 2018). In this study, the authors dealt witha more general problem of determining the initial approximations.

The issue in question was: how far can the initial point be fromthe solution point (attractor) for the process to be convergent? Thequestion is justified because the applied iterative method resultsfrom linearization. On the other hand, the common practice indi-cates that the solution may quite often be determined for the initialpoints that do not meet the locality conditions. Usually, in suchcases, the solution is found at the cost of the increased number ofiterations. The existence of sets of the "non-local" initial pointsmay facilitate, for example, the automatic selection of the initialapproximations of the iterative method (Lothar, 1993; Qureshi et al.,2024). This kind of study may also contribute to constructing prac-tical selection rules. Due to the complexity of the problem resultingfrom the multidimensionality of the studied issues (in the case ofcomplex networks), we focused our attention on basic geodetic con-structions, such as linear and angular intersections (Ghilani, 2017).In this case, the solutions of the quadratic non-linear equations sys-
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tems are sought after (the number of unknowns equals the numberof measurements; see (Kelley, 1995; Kincaid and Cheney, 2002)).We noticed during the study that the appropriate selection of theinitial points is closely related to the determination of the basinsof attraction, i.e., the sets of points for which the applied iterativeNewton’s procedure is convergent for the discussed cases.This paper is organized as follows. The theoretical backgroundcontains definitions and theorems used here (Section 2). Our mainresults that concern the study of the properties of the determinedbasins of attraction are presented in Sections 3 to 5. We consideredthe issues of limitedness of the sets of the initial points, and wecharacterized their geometric structures. We determined the mapsof the iteration numbers that are necessary to achieve the conver-gence of the solution. The areas of the basins are compared withthe potential areas of convergence resulting from the theoremsconcerning the convergence of Newton’s iterative method. Con-nectedness and hypothetic self-similarity of geometric structuresand iterative basins are indicated. It has been proved that an appro-priately quick convergence of the initial points far from the solutionpoint is possible. Various schemes of the convergence realized ondisconnected sets are also suggested. The discussion and summaryof the obtained results are presented in Section 6.

2 Theoretical background

The study of the properties of the nonlinear systems of equations isclosely related to the study of convergence of the iterative methodsused to solve these systems. The following nonlinear systems ofequations are considered:
F(x) = 0, F : Rn → Rn (1)

where F is a projection (vector function) consisting of observationequations of the considered geodetic constructions – classic pla-nar intersections or resections (Uren and Price, 1985). Except forspecial cases, there are no strict direct methods for solving the sys-tems (1). It is a nontrivial issue analyzed earlier by Traub (1982);Ostrowski (1966); Ortega (1972); Ortega and Rheinboldt (1970) orDennis and Schnabel (1996). The iterative Newton’s method basedon the linearization of the observation equations is used to solve:
xk+1 = xk – F′(xk)–1

F(xk), k = 0, 1, ..., x0 ∈ B(x∗) (2)
where the affine approximation of (2) is obtained by truncatingthe Taylor expansion of F at xk after the linear term; F′(xk) is theJacobian (Fréchet derivative) of the projection F; x0 is the initialpoint, and B(x∗) is the so-called "basin of attraction" for solution
x∗. According to the definition, the function G : D ⊂ Rn → Rn is
F-differentiable at x ∈ D for n × n matrix A:

lim
∥h∥→0

1∥∥h∥∥V

∥∥G(x + h) – G(x) – Ah∥∥W = 0. (3)
where: V and W – normed vector spaces and A – bounded linearoperator equal to the Jacobian matrix G′(x).For each solution x∗ of (2), the basin of attraction B(x∗) for theiterative Newton’s dynamical process P (with "discrete time") canbe defined as the set of all initial points x0:

B(x∗) = {x0 ∈ Rn → {xk} = P(x0), lim
k→∞xk = x∗} (4)

for which a (finite or infinite) {xk} produced by P : x0 ∈ Rn →{xk} ⊂ Rn converges to x∗. The linearization of (2) induces nu-merous questions related to the solution’s existence and its conver-gence:

i. How many iterations must be performed to acknowledge thatthe solution is achieved?ii. For what conditions and the initial points the iterations areconvergent?iii. Are the sets of such points limited or unlimited?
In many cases, these questions may only be answered partially.In particular, it concerns the determination of the sets of all initialpoints, i.e., the basins of attraction for which the iterative processof Newton’s method is convergent.The system (2) may be replaced by an equivalent fixed-pointmethod system:

xk+1 = G(xk) (5)
where the iterative function G(xk) = xk – F(xk)–1

F(xk), G : Rn →
Rn. Here, the point of attraction x∗ refers to the fixed point x∗ =
G(x∗) of the iteration scheme (2).The fixed-point method is used in numerous proofs of theorems(so-called "contraction-mapping theorems" and many of its vari-ants) concerning the convergence of the iterative Newton’s method(Ortega and Rheinboldt, 1970).
2.1 Selected convergence results

Analyzing the theorems concerning the convergence of the itera-tive methods, two types can be distinguished. One type refers tothe theorems of local convergence, which assume the existence ofsolution x∗ and the presence of such neighborhood D ofx∗ that eachinitial point from D is convergent to x∗. Localness means that theinitial point is appropriately close to x∗: e.g., see the Newton’s At-traction Theorem (Ortega and Rheinboldt, 1970). For the theoremsof another type, the existence of solution x∗ is not assumed. Still,it is shown that for some conditions enforced on the projection Fand the initial points set of Newton’s method, there is a solutionto which the iterative process is convergent, like the Contraction-Mapping Theorem or the Newton-Kantorovich Theorem (Ortegaand Rheinboldt, 1970). It would be ideal if the Newton’s methodswere convergent for every initial point belonging to the area of theprojection domain F. Within this research, this case of the linearintersection is studied. Global convergence of iterative methodsis rare. Typical assumptions in the theorems, usually very rigor-ous, guarantee not much more than local convergence. In order toillustrate the problem, the theorems of the mentioned types maybe quoted. The first one is Ostrowski’s theorem (Ostrowski, 1966;Ortega and Rheinboldt, 1970)) which gives the sufficient conditionsfor a solution of F(x) = 0 to be a point of the attraction.
Theorem 2.1 (Uren and Price, 1985). Suppose that G(x) = x –
F′(x)–1F(x) : D ⊂ Rn → Rn has a fixed point x∗ ∈ D where Gis F-differentiable at x∗. If the spectral radius λ = ρ(G′(x∗)) < 1then x∗ is a point of attraction of the fixed-point iteration (5) and,simultaneously, of the Newton’s iteration scheme (2).

In this theorem, the existence of x∗ had to be assumed. More-over, only local instead of global convergence is guaranteed, andmerely sufficiency, but not the necessity, of the condition is asserted(Ortega and Rheinboldt, 1970). Differentiability ofG at x∗ results inthe existence of the neighborhood of x∗ (S = S(x∗,δ) ⊂ D, δ > 0)that is a set of the initial points for which the iterative Newton’smethod is convergent. Presented research indicates that the neigh-borhood is usually defined by a small value of the parameter δ and,because of this, it is usually only a part of the basin of attraction.Dennis and Schnabel (1996) indicated that the radius of Newton’smethod convergence is inversely proportional to the relative non-linearity of F at x∗. They suggested that the relative nonlinearity ofa function is the critical factor determining the behavior of the iter-ative algorithms, and all convergence theorems could be restartedand proven in terms of this concept. It was illustrated in detail in
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Dennis and Schnabel (1996) that, in the worst case, it is estimatedbased on the extension of the quadratic convergence region in thedirection from x∗ in which F is the most nonlinear. On the otherhand, the region of convergence of the Newton’s method may bemuch larger in a direction of less nonlinearity of F. For this rea-son, among others, the basins of attraction must not be consideredequivalent with areas of convergence resulting from the assump-tions of the theorems concerning the convergence of the Newton’smethod.The other type of theorem is associated with the Banach fixed-point theorem (Banach, 1922), also known as the Contraction-Mapping Theorem. This classical theorem considers any iterativemethod of the form xk = G(xk) and states conditions for G underwhich the sequence {xk} converges to a point x∗ from any point
x0 in a region D. Furthermore, x∗ is shown to be the unique pointin D such that G(x∗) = x∗. The Contraction-Mapping Theorem isbroader (but weaker due to the speed of the convergence) than theOstrowski’s Theorem or the mentioned above Newton-KantorovichTheorem (Dennis and Schnabel, 1996). In the theorem presentedbelow which is a version of the Contraction-Mapping Theorem(Ortega and Rheinboldt, 1970), it is characteristic that neither theexistence of a solution x∗ nor local convergence (x0 is sufficientlyclose to x∗ ) are assumed.

Theorem 2.2 (Ortega and Rheinboldt, 1970). Suppose that G : D ⊂
Rn → Rn maps a closed set S ⊂ D into itself and that there exists
p ≥ 1, and a constant λ ∈ (0, 1) such that:∥∥∥Gp(y) – Gp(x)∥∥∥ < λ ∥y – x∥ , ∀x, y ∈ S (6)
Then G has a unique fixed point x∗ = G(x∗) in S and for any x0 ∈ Sthe iterations converge to and satisfy:

∥∥∥xk – x∗∥∥∥ < λ1 – λ
∥∥∥x1 – x0∥∥∥ , k ≥ 0. (7)

This theorem can be used to test whether there is any region Dsuch that the points generated by xk = G(xk) from an x0 ∈ S willconverge to the root of F. Furthermore, the theorem indicates thatif an area D is found in which the theorem contraction condition issatisfied, it is a basin of attraction. Since we do not assume localconvergence, a convergence study for the initial points far fromthe solution x∗ may also be considered. However, there is a certaindisparity here because the Newton’s method, as a consequence ofthe expansion into the truncated Taylor series, is a local procedure.It may be noticed that theorems of this type theoretically permit abroader range of search for basins of attraction. We observe it in thecase of the considered here basins of attraction of linear and angularintersections and combined linear intersection and angular resec-tion. It is possible to analytically confirm some of the geometricproperties of these sets, e.g., in the case of the existing symmetryof the intersections. Then, global contraction is possible on all Rn –the attraction set is a space or subspace of Rn. More complex casesthat cannot be dealt with by means of analytic methods must beanalyzed using numerical computations, mainly because there arethe sets of the initial points x0 distant from x∗ and convergent tothe solution x∗, which do not satisfy the contraction condition andthe conditions of local theorems.
2.2 The Newton’s method algorithm

In order to determine the vector of the solution xk+1 for the sub-sequent iteration step k + 1 using the relations (2), the following

system of the linear equations is solved:
F′
(
xk)∆x = –F(xk) ,∆x = xk+1–xk → xk+1 = xk+∆x,k = 0, 1, . . .

(8)This approach enables to avoid the inverse Jacobian F′(xk) compu-tation. The criteria for completing the computations are based onthe conditions concerning achieving by function F(xk) componentsvalues sufficiently close to zero:
F(xk) ≤ εF (9)

and sufficiently small differences of distance (norm) between thesubsequent vectors of iteration:∥∥∥xk+1 – xk
∥∥∥ ≤ εx. (10)

In practice, the parameters εF and εx are related to the measure-ments’ uncertainty. The machine precision is often assumed forthe values of εF and εx, e.g., the relative spacing between any twoadjacent numbers in the machine’s floating point system. Anothercondition type is related to the permissible number of iterations. Itenables the stopping of the computations in the case of the solutiondivergence. In general, the number of iterations depends on theiterative algorithm’s convergence type. For standard assumptionsconcerning function F, when the initial pointx0 is sufficiently closeto x∗, Newton iteration scheme converges at a quadratic rate to thesolution: xk → x∗ (see Kelley, 1995). Quadratic convergence meansthat the distance between the subsequent approximations and theprecise solution x∗ decrease according to the following relation:∥∥∥xk+1 – x∗∥∥∥ < C
∥∥∥xk – x∗∥∥∥ , C > 0 (11)

This property is important because a small number of itera-tions is required to achieve a prescribed accuracy in the computa-tions. Generally, there are various types of convergences (Ortegaand Rheinboldt, 1970). In numerous cases considered in research,at least linear convergence is found when the initial points are faraway from the solution point:∥∥∥xk+1 – x∗∥∥∥ < α ∥∥∥xk – x∗∥∥∥ , 0 ≤ α ≤ 1 (12)
In the case whenα ≈ 1, it is unacceptably slow.
2.3 Methods of constructing the basins of attraction

Both the analytical and practical approaches to analyzing the prop-erties of the attraction basins B are discussed in Nusse and Yorke(1998). In the practical approach to determining the basins, theareas D belonging to the domain of the function F are covered byregular grids of various sizes and spatial resolutions. The nodesof the grids are the initial points x0 of the Newton’s method. Theconvergence of the method for x0 ∈ D means that x0 belongs tothe basin of attraction B. This method of grid generation was used,e.g., for presenting the map of the number of iterations requiredto achieve the solution x∗. In the cases of studies of basins bound-aries and basins finiteness related with very extent areas, randomlygenerated sets of the initial points x0 are used:
(x0

i , y0
j ) = xmin + (xmax – xmin) ·ψi, ymin + (ymax – ymin) · ζj,

i = 1, n, j = 1, m, (13)
where xmin, xmax, ymin, ymax denote values defining the size of thebasin, andψi, ζj are pseudorandom numbers of uniform distribu-tion.The balls of the random numbers are used to study Newton’s
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Figure 1. Linear intersection.

Figure 2. Subfamily of linear intersections.

method convergence. They are generated by the following relations:
xi = x0 + ri · sin(ti), yi = y0 + ri · cos(ti), t = 2π · ξi, ri = √ψi,

i = 1, n, (14)
where: (x0, y0) – the coordinates of the ball center.

3 Linear intersection

The linear intersection (Fig. 1) is designed to estimate the positionof an unknown point C(x, y) using two distances a and b measuredfrom two known points A and B. In order to simplify the calculationsit was assumed that the intersection base of the length of c coincideswith the y-axis of the geodetic coordinate frame.Two non-equivalent – concerning the iterative methods – sys-tems of observation equations for linear intersection are considered:polynomial (15) and radical (16) which in the assumed coordinatesystem are written as follows:

F (x) =
 f1 (x, y) = x2 + y2 – a2 = 0

f2 (x, y) = x2 + (c – y)2 – b2 = 0
 (15)

F (x) =
 f1 (x, y) = √x2 + y2 – a = 0

f2 (x, y) = √x2 + (c – y)2 – b = 0
 (16)

where a and b are the measured distances, c is the known length ofthe intersection base and y is the coordinate of point A.The equations systems (15) and (16) are invariant with respectto translation vector [tx, ty] and isotropic scaling s (s – scale coef-ficient), i.e., the replacement of coordinates: x′ = tx + s · x, y′ =
ty + s · y, c′ = ty + s · c and measurements: a′ = s · a, b′ = s · b. Forthis reason, the geometric properties of the basins of attraction ofthe systems subjected to such transformations are the same. Anexample of a studied subfamily of intersections: (0 < a < 2, 0 <
b < 1, c = 1) belonging to the family defined by the inequality:0 < a < 2, 0 < b < 2, 0 < c < 2 is presented in Fig. 2. The exactsolution (x∗, y∗) of the systems (15) and (16) in the assumed co-ordinate system is given by the following relations (see Appendix

6):
x∗ = ±

√(a + b – c)(a + b + c)(c + b – a)(c + a – b)2c ,
y∗ = a2 – b2 + c2

2c

(17)

The expression in the root in (17) is positive, which results fromthe triangle inequalities: a + b – c > 0, a + b + c > 0, c + b – a > 0 and
c + a – b > 0. This study is limited to the case of positive solutions:
x > 0.
3.1 Polynomial variant of the linear intersection

For studying the basin of attraction of the linear intersection (15),the following iterative function of Newton’s method is used (thesuperscripts k are omitted here):
G(x) =x – F′(x)–1F(x)

=
[

x
y

]
︸︷︷︸
x

– 12c ·

[(c – y)/x y/x1 –1
]

︸ ︷︷ ︸
F′(x)–1

·

[
x2 + y2 – a2

x2 + (c – y)2 – b2
]

︸ ︷︷ ︸
[f1 f2]T

(18)

where F′(x)–1 is the reciprocal of the Jacobian matrix F′(x) of theprojection F(x) (15). The matrices F′(x) and F′(x)–1 are singular inpoints coinciding with the y-axis of the coordinate system (Fig. 1).Expanding (18) and applying y∗ from (17), we obtain:
G(x) =

[
g(x, y∗)(a2 – b2 + c2)/(2c)

]
=
[

g(x)
y∗

]
(19)

Relation (19) indicates thatG(x) is a function of the coordinate xonly. It means that independently of the value of x after the first iter-ation, the value of y is constant and equal to y∗. Hence, the solutionis sought along a straight line perpendicular to y at y∗. Substituting
y∗ to g(x, y∗), after elementary conversion (see Appendix 6), weobtain:

g(x) = x2 +
(

a + b – c
) (

a + b + c
) (

c + b – a
) (

c + a – b
)

8c2x > 0,
for x > 0 (20)

Including the exact solution x∗ (17) in (20), we may rewrite it as aniterative function of the root of the quadratic equation x2 = c, c =(x∗)2:
x = g(x) = x/2 + (x∗)2/(2x) > 0, for x > 0 (21)

Relation (21) indicates that after the first iteration, for any initialpoint of the coordinate x0 > 0, we obtain a point of the coordinate
x = g(x0) > x∗. This remark is due to the inequality:

x = g(x) = x/2 + (x∗)2/(2x) > x∗, x > 0
which for x > 0 is equivalent to the following true inequality:

x2 – 2xx∗ + (x∗)2 = (x – x∗)2 > 0,
for every x ̸= x∗.This is illustrated in Fig. 3a where the balls K(x0) of the ran-domly generated initial points x0 are converted into line segmentscoinciding with the straight line y = y∗ which coordinates x satisfythe condition: x > x∗. This result is of importance in the study ofthe boundaries of the basin of attraction of the polynomial linearintersection.Considering (21) we may notice that in the case when the initial
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(a)

(b)

Figure 3. (a) – projection of the balls of the initial points after the firstiteration of the Newton’s method, (b) – number of iterationsfor x0 → 0+.

value of the coordinate approaches the y-axis, i.e., x0 → 0+, then
x1 = g(x0) → +∞. Consequently, the number of iterations as a func-tion of log2(x0), x0 = 2–i, i = 1, n also increases (see Fig. (3b). Thisindicates that the number increases approximately exponentiallywith decreasing x0 = 2–i, i = 1, n. This effect can be seen in Fig. 4where the contour lines presenting the numbers of iterations arepacked together in the lower parts of the plots.Determining the derivative g′(x):

g′(x) = 1/2 – (x∗)2/(2x2), for x > x∗ (22)
and including the inequality (21) (satisfied already after the firstiteration), we may notice that:

–1/2 < g′(x) < 1/2, (0 < (x∗)2/x2 < 1, limx→∞ g′(x) = 1/2). (23)
Relation (23) indicates that projection g(x) is contractive for every
x > 0.Determining the derivative G′(x) of projection (19), we obtain:

G′(x) =
[

g′(x) 00 0
]

(24)
Relation (24) indicates that λx = g′(x) is the non-zero eigen-value of matrix G′. According to (23) λx = ∣∣g′(x)∣∣ < 1/2, whichmeans that G is a contractive projection in the half-plane: x > 0,which includes the intersected point.The fragments of the attraction basins for various linear inter-sections presented in (18) are obtained by covering the area of in-tersections with a regular grid in which nodes are the initial points

x0 = (x0, y0) of the Newton’s method. The numbers of iterations(gray-scale bar legend in Fig. 4) necessary to achieve the solution(x∗, y∗) for the assumed accuracyε (εx,εF) are determined for eachof the points.The obtained results indicate that the basin of attraction of theNewton’s method for the polynomial variant of the linear inter-section given with (15) is theoretically unlimited. Regardless ofthe shape of the intersection construction which is defined by themeasurements a and b it is the half-plane x > 0 that includes theintersected point (x∗, y∗). In the case of (x∗ < 0, y∗), the basin ofattraction is a symmetric reflection of the basin for x > 0.

3.2 Radical variant of the symmetric linear intersection

For studying the basins of attraction (16) the following iterativeNewton’s function is used:
G(x) =

[
x
y

]
︸︷︷︸
x

–
(c – y)√x2 + y2/x y

√
x2 + (c – y)2/x√

x2 + y2 –√x2 + (c – y)2


︸ ︷︷ ︸
F′(x)–1

·

[ √
x2 + y2 – a√

x2 + (c – y)2 – b

]
︸ ︷︷ ︸

[f1 f2]T

(25)

Similarly, as for the intersection (15), the matrices F′(x) and
F′(x)–1 are singular for the initial points (x0, y0) coinciding withthe y axis, i.e. on the straight line given by x = 0, especially whenthe initial points x0 coincide with the points that determine theintersection base. Fig. 5a presents fragments of the symmetricbasin of attraction for the symmetric intersection: a = b = c = 1.It can be seen that there are non-local neighborhoods (of radiusescomparable to the intersection base length) for which the initialpoints are convergent after a few (3 or 4) iterations. Fig. 5b and 5cillustrate that decreasing value of ε (εx,εF) changes the iterativestructure of the basin (smaller values ofε correspond to larger num-bers of iterations). However, ε does not impact the global geometricstructure of the basin of attraction. Differentiability of the function(25) and the quadratic convergence of the Newton’s method in anappropriately small neighborhood of x∗ indicate that if the initialpoint is convergent for ε1, it is also convergent for ε2 < ε1.The case of the symmetric intersection, subjectable to an an-alytic approach, is considered during the study of the basic prop-erties of the basin of attraction of the linear intersection (25). Theexact solution of the intersection is the point of the coordinates:
x∗ = √32 , y∗ = 12 . Considering the symmetry of the basin of attrac-tion in Fig. 5, a fragment of the straight line y∗ = 12 was assumedas the set of the initial points. Including the equations of the obser-vation system (16) in (25), the component g(x) (see Fig. 6a) of theiterative function G of the Newton’s method was determined as:

x = G(x) =
[

g(x)
y∗ = 12

]

g(x) = (√x2 + 14 – 14 )/x,
g(x)′ = 1/√x2 + 14 + ( 14 –√x2 + 14 )/x2.

(26)

Function g(x) has its minimum (g′(x = √33 ) = 0, g′′(x = √33 ) >
0) at point x∗ = √32 with the value of g( √32 ) = √32 (Fig. 6b). Forthis reason, for every initial value x0 ̸= x∗, we have x = g(x0) >
x∗. The condition: 0 < λ = g′(x) < 1 is satisfied in the range
x ∈ ( √32 ,∞) because the maximum value of the derivative of theprojection satisfies the condition: g′(x) < 1 and the limit value:limx→∞ g′(x) = 0. It means that the projection (26) is contractive on
the straight line y∗ = 12 . In general, without limitation to the casepresented in Fig. 7a it may be noticed (Fig. 7b and 7c) that theballs of the initial points of (y ̸= y∗) are projected into similar areas(resembling the profiles of the Zukowski’s wings). The areas arelocated above the straight line defined by the equation: x = x∗ =
√3/2. In subsequent iterations, they are converged to an area thatincludes point x∗ accepted as the intersection solution.The obtained results signify that the basin of attraction of thesymmetric intersection is (theoretically) unlimited on the straightline y = y∗. The symmetry of the set does not, however, answer thequestion of what it is like in other directions. Analytical calculationsrelated to e.g. the direction perpendicular to the straight line y = y∗are much more complicated. It is because, unlike for the polynomial
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Figure 4. Fragments of the basins of attraction of the polynomial variant of the linear intersections including the iterative structure (for c = 1 and
ε = 10–6).

(a) (b) (c)

Figure 5. Fragment of the basin of attraction of the symmetric intersection and its magnifications for εx = εF = 10–6, 10–9.

(a) (b)

Figure 6. Component g(x) of the iterative function of the Newton’s method.

(a) (b) (c)

Figure 7. Projection of the balls of the random initial points for the Newton’s iterations.
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(a)

(b)

Figure 8. (a) – process of expanding areas of the initial points, (b) – setof curves of the relations between the number of iterationsand the width of the basin of attraction.

intersection (15), the convergence mechanism (Fig. 7b and 7c)is entirely different. The method of the least squares is appliedto assess the number of the iterations necessary for determiningthe basin of attraction of a given width y = ±2j, j = –1, 0, ..., l,measured along the straight lines defined by equations: x = 2k, k =–m, ..., 0, ..., n.It appears that expanding the area by a unit in Fig. 8 in a largerange of the coordinates (x, y) requires 1.6 iterations on average. Fig.8a reveals the areas of the width of 2048 and 4096 units coveredwith randomly generated initial points. Fig. 8b also illustrates thelimitedness of the basin of attraction. It results from achieving onevery straight line x = const such a value of the coordinate y = 2j

for which the number of iterations is zero (vertical lines in Fig. 8b).The lack of convergence of Newton’s method is basically caused bythe singularity of the Jacobian matrix F′(x) and, in consequence,inappropriate system conditioning (8). The presented constructiondoes not prove the infinity of the attraction set in the direction ofthe y axis. It proves that it is not a half-plane as it is in the caseof the polynomial intersection (15). It may be proved (using MAT-LAB Symbolic Toolbox) that if x → ∞ then the eigenvalues of thederivative of projection G′(x) (26):
λx → –√(c + (–4a2 + 8ab – 4b2 + c2)2c ,
λy → –

√(c – (–4a2 + 8ab – 4b2 + c2)2c .
(27)

For the case of the symmetric intersection a = b = c = 1: λx =–1, λy = 0.The performed calculations indicate that the limit λx = –1is achieved through values almost equal to λx ∼= –1 but greaterthan λx > –1. Then, the initial points are relatively quickly closeto the straight line y = y∗. However, they slowly converge to
x = x∗. It causes a dramatic increase in the number of iterationsand the computing time. If x → 0 and y → ∞ the Jacobian matrix
lim
x→0

y→∞
F′ (x, y) =

[ 0 10 1
]

and its reciprocal F′(x)–1 of the consid-
ered linear intersection become singular – the Newton’s method is

not convergent.In Fig. 9 are presented the eigenvalues |λmax| and the norms ofthe G′(x) derivative for the linear intersections. Fig. 9 also presentsthe sets of the initial points (lighter grey areas) for which the maxi-mum eigenvalues |λmax| and the norms of the derivative ∥∥G′(x)∥∥2are smaller than one (generally |λmax| < 1 implicates the existenceof ∥∥G′(x)∥∥2 < 1 (see Kincaid and Cheney, 2002).The conducted calculations indicate that the conditions of theabove-quoted Ostrowski’s Theorem 2.1 and Contractive-MappingTheorem 2.2 are satisfied locally in the neighborhood of the solutionpoint. The convergence of the Newton’s method for the initial points
x0 located far away ( ∥∥∥x0∥∥∥ ≫ c) from the solution point x∗ may
also be noticed (Fig. 9). From this figure it can also be noticedthat the areas of the initial points ∥∥G′∥∥2 < 1 are included in thebasins of the linear intersections (25). It means that the condition
|λmax| < 1, and respectively ∥∥G′∥∥2 < 1, is not compulsory forthe iterative convergence of Newton’s method in the case of theconsidered intersections.
3.3 Schemes of convergence

Considering the particular case (28) of the contraction condition(Theorem 2.2), the relations of the distances between the respectiveinitial points in the consecutive iterations of the balls K(x0) arestudied:
uj = ∥∥∥∥x(q)

j – x∗∥∥∥∥ ·
∥∥∥x(s)

j – x∗∥∥∥–1 < 1, j = 1, ..., n, q > s = 0, 1, .
(28)The satisfying condition (28) means that the initial points x0 suc-cessively move closer to the point of the solution x∗ of the inter-section (Fig. 10). The performed simulations indicate that for theintersections presented in Fig. 7b and 7c, inequality (28) is satisfiedfor the balls Kj(x0) with odd or even iteration indexes j. These ballsare separated by the straight line y = y∗ (Fig. 7). Inequality (28)is not satisfied for the subsequent indexes j, e.g., j = 0, 1 (Fig. 7b)because, in spite of the contraction condition, the area 1 is greaterthan the area 0 of the initial points. Results equivalent to thosepresented in Fig. 10 were obtained for various random realizationsof the sets of the initial points x0.According to the Contraction-Mapping Theorem 2.2, relation(28) for the analyzed cases of the linear intersections may be writtenas:

∥∥∥Gp(x) – Gp(x∗)∥∥∥ = ∥∥∥Gk+2(x) – x∗∥∥∥ < ∥∥∥xk – x∗∥∥∥ ,
∀x ∈ K(x0), k = 0, 1, ... (29)

The plots in Fig. 10 also show that here we have at least linearconvergence (12). The contraction coefficients uj decrease fromone iteration step to the next which means increasing the speed ofthe convergence of Newton method when point x∗ is approached.Generally, the contraction condition of Theorem 2.2 should be satis-fied for every pair (j, m) of points belonging to the ball of the initialpoints (x0
j ,x0

m) ∈ K(x0), i.e.:

uj,m = ∥∥∥∥x(q)
j – x(q)

m

∥∥∥∥ ·
∥∥∥x(s)

j – x(s)
m
∥∥∥–1 < 1,

j ̸= m, j, m = 1, ..., n, q > s = 0, 1, ... (30)
The conducted calculations indicate that this is not the casebecause there are subsets of pairs of points belonging to K(x0) forwhich (30) is not satisfied. It is necessary to make an importantnote that for the balls of the initial points, especially those locatedappropriately far away from x0, the basic conditions of Theorem 2.2are not satisfied because x∗ /∈ K(x0) andG(x) does not map a closed
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Figure 9. Areas of the initial points |λmax| < 1, ∥∥G′∥∥2 < 1 of the linear intersections.

Figure 10. Contraction process of the linear intersection.

set K(x0) into itself (Fig. 7). In the case of asymmetric intersections(a ̸= b), the situation is more complex and requires additional studywhich is beyond the scope of this paper.
3.4 Basins of attraction of asymmetric linear intersec-

tions

The selected fragments of the asymmetric linear intersectionsbasins of attraction are presented in Fig. 11.They are defined by the nonlinear system (16) for various val-ues of the lengths of the distances a and b and the constant (unit)length of the base: c = 1. They are obtained by covering the selectedareas of the function F(x) (16) domain with grids of various spatialresolutions, whose nodes were the initial points of the iterativeNewton’s method. Unlike the basins of linear symmetric intersec-tions, the asymmetric basins have more complex geometric anditerative structures. The differences grow with the increase of thedeparture from symmetry (see Fig. 11). It may be noticed in Fig.11 that the structures of these basins depend on the intersectionshape determined by the values of measurements a and b. They aregenerally disconnected and usually composed of numerous sepa-rate subsets which we call "branches". The branch that containsthe intersection is regarded as the main one. The performed calcu-lations indicate that the branches are observable in a wide rangeof coordinates values: x = ±1017, y = ±1016 expressed in the unitsdefined by the length of the intersection base c (see Fig. 12).The plots in Fig. 12 are obtained by increasing the areas (seeFig. (11g, 11h, 11i) to which the randomly generated initial pointsbelonged.In the case of the last plot in Fig. 12, the area of: {x = ±1018, y =
±1018} was declared. Analyses of the results of numerous real-izations of the generated points show that the convergent onesbelong to a smaller area: {x = ±1017, y = ±1016}. Therefore, it

may be believed that the basin of attraction is finite in this case.To the study of the behavior of the Jacobian matrix F′ of the sys-tem (16) at the limit (x → ∞, y → ∞), in the straight lines bunch:
x – x∗ = α(y – y∗) passing through point x∗ of the intersectionsolution we apply the analytical approach. It occurred that the limit
Jacobian matrices: lim

x=α(y–y∗)+x∗→∞
y→∞

F′ (x, y) = 1√
α2+1

[
α 1
α 1

]
are

singular for every straight line of the bunch. It indicates that New-ton’s method is not convergent for very large values of the coordi-nates (x, y) of the initial points, the Newton’s method is not con-vergent. The practice shows that the convergence is lost for finitevalues of the order of ±1017.Studying the impact of the limited number of iterations on thebasins of attraction of the linear intersection, we found that in-creasing the number may impact their geometric structure. Fig.13a and 13b show the change in the width of the intersection basinbranch (Fig. 11f) with the increase of the limit value from 20 to 1000iterations.Fig. 13c and 13d illustrate the differences between the basinsobtained for 1000 and 20 iterations, and for 1000 and 100 iterations.In the latter case, there is a trace difference. It means a certain stateof saturation, i.e., for large values of the number of iterations, theprocess of widening is scarce. Then, the shape and the area of thebasins of attraction are practically unchanged.Analyzing the cross-sections (Fig. 14) it is found that thereare boundary initial points x0 which very slowly converge to thesolution x∗. It is determined by the initial phase of the iterationcharacterized by linear convergence with the value of parameter
α ≈ 1 (12). When point x∗ is being approached, the speed of conver-gence increases becoming quadratic (11) in an appropriately smallneighborhood of x∗. The cross-sections show that the slowly con-vergent boundary initial points x0 are concentrated on the edges ofthe branches of the basin of attraction. It can also be seen in Fig. 11
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 11. Structures of the basins of attraction of selected asymmetric linear intersections.

Figure 12. Fragments of the basin of attraction of the linear intersection in a wide range of coordinates values.

(a) (b) (c) (d)

Figure 13. The impact of the number of iterations on the geometric structure of the basin of attraction.
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(a) (b) (c)

Figure 14. The number of iterations in the cross-sections of the basin of attraction.

(a) (b) (c) (d)

Figure 15. Bifurcation of the family of the linear intersection – the number of iterations: 500, ε = 10–6.

to 16.Fig. 15 presents the basins of asymmetric linear intersectionsof the family b = c = 1, 1 ≤ a < 2 with the increasing value of thedistance a. It may be noticed that with the continuous change of thelength of the distance a, which is also the case for other families, thegeometric structure of the basins of attraction changes qualitatively.Therefore, such qualitative changes in the basin structure have thefeatures of bifurcation phenomena observed in dynamic systems(Guckenheimer and Holmes, 1983).The plots in Fig. 16 present the fragments of the basins of at-traction of asymmetric intersection. They result from successive(ten-time) increases in the size of the grid of the initial points. Itmay be noticed that in the subsequent figures, similar geometricstructures appear. These were observed earlier in better resolution(for smaller grid distance); here, in the lower resolution, they appearas sets of lines (see, e.g., the last plot in Fig. 16). In general, it maybe stated that the basins of attraction of linear intersections whichis strongly asymmetric look similar in larger scale and smaller scale.This remark also concerns their iterative structures. Such invari-ance is characteristic of self-similar structures (Barnsley, 2000).

4 Angular intersection

The angular intersection is a task of determining coordinates ofthe intersected point C using measured angles α at point A and
β at point B (Fig. 17). In order to simplify the equations used inthe paper it is assumed (without any loss of generality) that theintersection base of the length of c coincides with the y axis of thegeodetic coordinate frame, i.e., xA = xB = 0, yA = c, yB = 0.In this frame, the analytic solution may be obtained e.g., fromthe following relation (Ghilani, 2017; Uren and Price, 1985):

x = ccot(α) + cot(β) , y = c · cot(β)cot(α) + cot(β) (31)

4.1 Basins of attraction of angular intersection

For the study of the properties of basins of attraction of the angularintersection, a non-linear system of observation equations binding

angular measurementsα andβwith the coordinates of the inter-sected point (x, y) and the coordinates of the base c is constructed:

F1 (x, y) =
 f1 (x, y) = π2 + arctan y–c

x – α = 0
f2 (x, y) = π2 – arctan y

x –β = 0 , x > 0

F2 (x, y) =
 f1 (x, y) = 3π2 – arctan y–c

x – α = 0
f2 (x, y) = π2 + arctan y

x –β = 0 , x < 0
(32)This form of the system is related to the possibility of assumingany point belonging to the plane, i.e. x0 ∈ D ⊂ R2 for an initialpointx0 of the Newton’s iterative procedure. Equations (32) expressthe differences of the angles calculated using the iterations of thecoordinates x of the initial point x0 and the measured anglesα and

β. The angles determined using the coordinates are the differencesof azimuths of the left and right angle arms respectively for x > 0and x < 0. Relations in (32) are true for the assumed location ofthe intersection base (Fig. 17). It may be noticed that systems (32)are invariant concerning translation and isotropic scaling (Helmerttransformation), i.e., replacement of coordinates: x′ = tx + s ·x, y′ =
ty + s · y. It means that the properties of the basins of attractionof the transformed systems are the same. Considering (32), thefollowing iterative system may be written (in the form of a fixed-point system):

x = G (x) , G (x) =
 x – F′1 (x)–1 F1 (x) , x > 0
x – F′2 (x)–1 F2 (x) , x < 0 (33)

Relation (32) indicates that for the Jacobian matrix F′(x) and itsreciprocal F′(x)–1 the following relations are satisfied:
F′2 (x) = –F′1 (x) ,

F′2 (x)–1 = –F′1 (x)–1 ,
F′1 (x) =


c–y

x2+(c–y)2 x
x2+(c–y)2

y
x2+y2 –x

x2+y2


(34)
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 16. Self-similarity of the geometric and iterative structures of the basin of attraction.
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Figure 17. Angular intersection.

It may be noticed that F′(x) and F′(x)–1 are singular on thestraight line x = 0, in particular in the points determining the base(x = 0, y = 0) and (x = 0, y = c).
4.2 Area of convergence of the Newton’s method of an-

gular intersection

The basins of attraction of the angular intersection for various mea-sured values of anglesα,β, assumed values of accuracy εx = εF =10–6 and the maximum number of iterations imax = 103 are pre-sented in Fig. 18. Analyzing the obtained results, one may noticethat the basins of symmetric intersections (Fig. 18a, 18b and 18c)are symmetric. The straight line perpendicular to the line segmentof the intersection base passing through the solution point is theaxis of symmetry. The basins of mirror intersections (Fig. 18a,18b) have no shared parts. It proves (indirectly) an appropriatedefinition of the observation equation set in (32) and the iterativefunction (33). The existence of such parts would mean ambiguity,i.e., the existence of the initial points simultaneously convergent tothe solutions of different intersections.The areas of the convergent initial points presented in Fig. 18are limited. Their linear sizes correspond to a few units of theintersection base. In order to verify this observation a series oftests concerning covering the intersections by grids of large sizes
x0, y0 ∈ (–106, 106) or randomly generated sets of the initial points(13) are conducted. The maximum number of iterations necessaryto achieve the solution x0 is also studied. For the assumed accuracy
εx = εF = 10–6 it did not exceed 23 (gray-scale bar legend in Fig.18). The iterative structures presented in Fig. 18 correspondingto various intersections are similar. The basins of asymmetric in-tersections (Fig. 18d, 18e, and 18f) are deformed versions of thesymmetric intersections (Fig. 18a), i.e. they are homeomorphic.This observation does not apply to the basin shown in Fig. 18c be-cause it lacks e.g. subsets of the type: Fig. 19d, 19e, visible in Fig.18a. Such subsets are also missing in the basins of intersections forangles α = β < 40◦ (the limit values of the angles for which thestructures of the type presented in Fig. 19d and 19e disappear arenot studied in details). Therefore, it may not be stated that in everycase continuous change of angles α, β is followed by continuouschange of the geometric structures. A main area including the in-tersection and subordinate areas, may be distinguished in the caseof each of the basins. They may be seen especially in the magnifica-tions of the rectangular areas: Fig. 19a to 19d, marked in Fig. 18a as(1), (1a), (2), (3), and (3a). Magnification (1) in Fig. 19 reveals thegeometric similarity and similarity of the iterations distributionwith the main area. This similarity may be noticed (Fig. 19) forthe area (1a), then (1b) etc. It seems that fragments (3) and (3a) inFig. 19 have a different geometric and iterative structure than themain area of the basin of attraction. However, from the topologi-cal point of view, they are probably homeomorphic. Increasing, inthis case the resolutions of the grid of the initial points, one mayalso find fragments similar to it ((3a) in Fig. 19). Such behavior ischaracteristic of self-similar sets (Barnsley, 2000).The conducted analysis indicates that basins of attraction at theangular intersections are spatially limited and disconnected sets.

They are hypothetically composed of an infinite number: B = ∞⋃
j=1 Bj

of the subsets Bj of the initial points which demonstrate features of
self-similarity. Generally, the initial points x0 of the deeper embed-ded sets (of greater values of the index j) converge more slowly, but,as indicated by the results presented in Fig. 19 and 20, the numberof iterations may be comparable with the number of the iterationsof the main structure. For this reason, the following question wasasked: how do the initial points x0 belonging to various fragmentsof the basin of attraction (see Fig. 20) converge?If the initial point (denoted by 0) is within a fragment of themain basin, the points of the following iterations converging tothe solution remain within the fragment. The number of iterationsdepends on the location of the start – the light areas correspond tothe smaller number of iterations. When it is started from a fragmentof Fig. 20b, there is a snap through to the main fragment of a similarnumber of iterations. Analogically, the initial points (Fig. 20c)first snap through to the bottom fragment, and then to the mainfragment after which they converge, depending on the location inthe fragment, to the intersection solution in a few iterations. Thedescribed mechanism causes the initial pointsx0 ∈ Bj located in theareas of small numbers of iterations to converge very quickly (in thiscase, it may be considered as a specific "tunneling" phenomenon).Abstractly thinking, an infinite series of iterations corresponding toan infinite series of subsets Bj (j = 1, ...∞) belonging to the familiesof the initial points of the basin of attraction may theoretically beconsidered. Then the number of iterations necessary to achieve thesolution x∗ is infinite. In practice, it means that it is possible toassume for x0 a convergent point after realizing a large number ofiterations. However, the probability of selecting such a pointx0 ∈ Bjis relatively small. It decreases with increasing index j because theareas occupied by the sets Bj decrease very quickly.The eigenvalues |λmax| and norms of the derivativeG′(x) of theprojection G(x) of angular intersection are also studied. Due to thehigh complexity of the relations defining them, they are not in theirfull form in the paper. Fig. 21 presents the sets of the initial points
x0 (darker grey areas) for which the norm ∥∥G′(x∥∥2 is smaller than
one: ∥∥∥G′(x0)∥∥∥2 < 1. For the considered intersections (Fig. 21) all
points of the sets from ∥∥∥G′(x0)∥∥∥2 < 1 converge to the solutions x∗
because they are entirely contained in the basins of attraction ofthe intersections.They are not local sets such as a result from the differentiabilityof G(x) in solution point x∗ and are usually considered in theo-rems concerning the convergence of Newton’s method (see, e.g.,Ostrowski’s Theorem 2.1). Inequality of the areas of the basins andsets with ∥∥∥G′(x0)∥∥∥2 < 1 indicates that there are areas of basins
with ∥∥∥G′(x0)∥∥∥2 < 1 which confirms that the condition provided in
Ostrowski’s Theorem 2.1 is not a necessary condition for conver-gence (Ortega, 1972). Theoretically, the existence of such areas of∥∥∥G′(x0)∥∥∥2 < 1 may result from the Newton-Kantorovich Theorem
2.2 which makes no assumptions about the existence of a solution.It shows that if F′(x0) is non-singular and Lipschitz continuous ina region containing x0, which is satisfied for the considered inter-sections, and the first step of Newton’s method is sufficiently smallrelative to the nonlinearity of F(x) defined by Dennis and Schnabel(1996), then there must be a root in this region. It is necessary tonote that the indicated theorems do not apply in the case of thedisconnected basins of attraction.

5 Combined linear intersection and angular re-
section

The combined linear intersection and angular resection (see Fig.22) is a task of performing two inhomogeneous observations in theABC triangle: the angular of the angle γ at point C and the linear
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(a) (b) (c)

(d) (e) (f)

Figure 18. Basins of attraction of angular intersections.

(a) (b) (c)

(d) (e)

Figure 19. Magnified fragments of the basin of attraction of symmetric angular intersection.

(a) (b) (c)

Figure 20. Convergence of the initial points for various fragments of the basin of attraction of the angular intersection.
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(a) (b) (c) (d)

Figure 21. Areas of the iterative Newton’s method initial points for ∥∥G′(x∥∥2 < 1.

Figure 22. Combined linear intersection and angular resection.

one presented as the length of the straight line segment |BC| = a.The calculation of the coordinates of the points determined usingthe combined linear intersection and angular resection may comedown to solving the angular intersection using the sine theorem(c sinα = a sinγ) for calculating angles: α andβ = 180◦ – (α + γ).
5.1 Basins of attraction of the combined intersection and

resection

In order to simplify the equations, the intersection base is assumedto be of a unit length (c = 1) and coinciding with the y-axis of thegeodetic coordinate frame, i.e., xA = xB = 0, yA = c = 1, yB = 0. Inthis frame, a non-linear system of observation equations bindingthe measurements of a, γ and the coordinates of the intersectedpoint (x, y) has the form of:

F1 (x, y) =
 f1 (x, y) = √x2 + y2 – a = 0

f2 (x, y) = arctan y
x – arctan y–c

x – γ = 0 , x > 0

F2 (x, y) =
 f1 (x, y) = √x2 + y2 – a = 0

f2 (x, y) = arctan y–c
x – arctan y

x – γ = 0 , x < 0
(35)The systems in (35) are written in the iterative form (the super-scripts are omitted):

x = G (x) , G (x) =
 x – F′1 (x)–1 F1 (x) , x > 0
x – F′2 (x)–1 F2 (x) , x < 0 (36)

where after introducing the following denotations:
d = x/√x2 + y2,
e = y/√x2 + y2,
g = (c – y)/√x2 + (c – y)2,
h = x/√x2 + (c – y)2,

the Jacobian matrices have the form:

F′1 (x, y) =
 d e

– (g + e) (
d – h

)
 ,

F′2 (x, y) =
 d e

(g + e) (
d – h

)
 .

(37)

Equations 35 are invariant concerning translation and isotropicscaling of coordinates: x′ = tx +s·x, y′ = ty +s·y and measurements:
a′ = s · a, b′ = s · b and c′ = s · c. Jacobian matrices F′1 and F′2 aresingular for points on the straight line x = 0. Fig. 23 presentsbasins of attraction of the combined intersection and resection forthe assumed (unit) length of the base and selected lengths of thedistance a and angle γ.They belong to the family of combined intersections and resec-tions defined by the inequalities: c = 1, 0 < a < 2, b < a + c. Fig.23c and 23d present mirror combined intersections and resections(a = 1, γ = 60◦). Their basins are separate, which (according to thetheory) indirectly confirms the correctness of the equation systemsin (35). It may be noticed that the geometric and iterative structuresof the basins (for the established: limit number of iterations – imaxand accuracy εx, εF are homeomorphic, i.e., they change contin-uously with continuous change of measurements: a and γ Basinscorresponding to close neighborhood of γ = 45◦ (Fig. 23(e) to (h))are an exception. It can be seen (Fig. 23g) that the set is composedof sets of the type (Fig. 23e and 23h). Fig. 23f also presents oneof the transitional forms very close to the basin of γ = 45◦. In thebasin’s "dotted" areas, there are both convergent and divergentinitial points. Generally, decreasing or increasing the value of angle
γ, γ ̸= 45◦ causes switching the geometric structures of the basinsbetween the types (Fig. 23e and 23h) both ways. Such behaviorresults from the jumping (Fig. 24) character of the function course
f2(x, y) of the observation system in (35).It was also noticed that for γ approaching 45◦ results in a quickdecrease of the neighborhood radius of the intersected point deter-mined by the intersected point and its closest divergent point (seeFig. 24 and 25b). Although, in these cases, the areas of basins arealso appropriately large, there may be divergent points in a verysmall neighborhood of the intersected point. This effect is disad-
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 23. Basins of attraction of the Newton’s iterative method of the combined intersection and resection.
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Figure 24. Jumping course of function f2(x, y), c = 1.

vantageous from the practical computational point of view. In allanalyzed cases (Fig. 23), the radiuses did not exceed the unit valueof the base length.Studying geometric structures of combined intersections andresections shows that, like in the case of angular intersections,they are limited and disconnected, i.e., composed (theoretically)
of an infinite: B = ∞⋃

j=1 Bj, number of subsets Bj of convergent initial
points (Fig. 23 and 26). It is the result of analyses conducted forsuccessively increased resolutions of grids of the initial points in Fig.23. The analyses showed that the subsets have similar geometricand iterative structures. In the neighborhood of each of the subsets,there are similar subsets which become visible after an appropriateincrease in resolution (Fig. 26). Theoretically, this procedure maybe repeated any number of times.Results similar to the ones for angular intersections are obtainedwhen the process of convergence of the initial points x0 from vari-ous fragments of basins of attraction (Figure 27) is studied.Reaching the main fragment B1 which includes the intersectedpoint by an initial point (its iterations), is related to performinga certain number of snaps through Bk → Bj, k > j between thesubsets Bk and Bj of the basin (Fig. 27). This number depends onthe location of the start and it is usually greater than the number ofiterations of angular intersections. It is characteristic that only oneiterative point corresponds to subset Bj, j = 1, . . . , n. The conductedanalysis indicates that a greater number of iterations is possibleonly within the main fragment of the basin. Like for angular inter-sections, the snaps through occur into areas of a similar numberof iterations. We notice that for the initial points belonging to dif-ferent sets Bj there are various convergence schemes (Figures 27aand 27c). It may signify that sets Bj belong to different families,classifiable on the basis of the schemes.The study of the eigenvalues |λmax| and norms of the derivative
G′(x) of the projection of combined intersections and resectionsindicates that there are shared parts of basins of attraction andsets of the initial points for which the norm ∥∥G′(x)∥∥ satisfies thecondition: ∥∥G′(x)∥∥ < 1 (Fig. 28). Unlike in the case of the angularintersections, these sets may not be entirely included in the basinsof combined intersections and resections (Fig. 28(a) and (d)). For
γ = 45◦ the area ∥∥G′(x)∥∥ < 1 contracts as the solution point x∗. isapproached. The radius of the neighborhood containing convergentpoints quickly decreases. It may be shown that in point x∗(x =1, y = 1), which is the intersection solution, the matrix ∥∥G′(x)∥∥of the derivative of the projection and its norm are undetermined.The obtained results confirm that the condition: ∥∥G′(x)∥∥ < 1 is notnecessary for achieving iterative convergence of Newton’s method.

6 Summary and conclusions

The purpose of the study was not to determine the solutions usingan iterative method. The purpose was to show what problems canbe encountered when considering more complex geodetic networks.Due to the nonlinearity of the observation systems of geodetic net-

works (e.g., linear-angular), the iterative methods are used to de-termine the solution. In practice, programs that equalize networksusually require approximate values of the coordinates of pointsto be determined. The question can be asked whether it can bedone automatically and how much it is an arbitrary choice. It canbe guided in this case by some rules and criteria resulting fromthe construction of a set of initial conditions (basins of attraction).For example, in the case of a linear intersection (e.g., GPS), it ispossible to conclude that the basin of attraction is the half-planebehind the intersecting point. At the same time, things becomemore complicated when dealing with angular or mixed intersec-tions/resections). The paper considers simple geodesic structuresbecause, in the case of more complex structures, we encounter theproblem of multidimensionality of the geometric structures understudy.The results of this research indicate that basins of attraction ofthe considered basic geodetic constructions are characterized byvast heterogeneity of geometric and iterative structures. By per-forming theoretical simulations, we demonstrate that basins ofpolynomial linear intersections are theoretically unlimited half-planes determined by the straight line passing through the pointsof the base and the intersected point. The basins of attraction ofradical linear intersections are characterized by greater complexityof geometric structures and distributions of iterations. The struc-ture complexity of the intersections increases with the increasein departure from the symmetric intersection. Generally, they aredisconnected and composed of many geometrically similar subsets– branches (the effect of the set of affine projections of variablevalues of coefficients determined by nonlinear functions of obser-vation sets). The analysis indicates that basins of the symmetricintersection in the direction of the x-axis are unlimited and limitedin the direction of the y-axis. The existence of unlimited basinsis attractive from the computational point of view because everyinitial point is convergent.Based on the performed computations for asymmetric cases ofintersections, we notice that for very large values of coordinatesof the initial points of Newton’s method, the Jacobian matrices ofthe iterative systems are singular. It signifies the limitedness ofthe basins of attraction. In the case of limited basins, the infor-mation concerning the range of values of initial point coordinatesis valuable, especially in the case of the existence of disturbancesin the iterative process and controlling it. We also notice that theinitial points on the edges of the branches of the basin correspondto large values of the number of iterations and appropriately longtime of convergence The mixed convergence is observed here, i.e.,linear far from the point of solution (the branch edge), the quicker,the closer the iterative point is to the constant point, and finallyquadratic.The study on basins of attraction of asymmetric linear inter-sections for various resolutions of grids of the initial points showssimilarity of the obtained geometric structures and distributions ofiterations in a wide range of changes of spatial scales. The similarityof iterative structures causes the initial points located far from thesolution point to converge similarly quickly as the ones in the solu-tion’s vicinity. The difference in the number of iterations is relatedhere to the necessity of performing snaps through between theembedded branches (subsets) of the basin of attraction: Bj, j ≫ 1.When studying the impact of changes in the shape of the inter-sections on the basins we show that discrete changes of the value ofmeasurement of the distance a for established unit lengths of thedistance b and base c (family b = c = 1) correspond to qualitativelydifferent basins of attraction (different number of branches). Suchchanges are typical for the bifurcation known from the non-lineardynamic systems theory. We also determine the potential areas ofconvergence of the Newton’s method resulting from the conditionapplied to the spectral radius: |λmax| < 1 (or norm ∥∥G′(x)∥∥ < 1).The performed calculations indicate that Newton’s method is con-vergent for the initial points belonging to such sets. Since the sets
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(a) (b) (c)

Figure 25. Neighborhoods of the solution points for γ ≥ 45◦ and γ < 45◦.

(a) (b) (c) (d)

Figure 26. Structure of the basin fragment (1a) (see Fig. 23c) for increasing resolution of the starting point grids.

(a) (b) (c)

Figure 27. Initial points convergence schemes.

(a) (b) (c) (d)

Figure 28. Areas ∥∥G′∥∥2 < 1 of the initial points of the iterative Newton’s method of combined intersections and resections.
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are contained in the basins of attraction, the condition |λmax| < 1(∥∥G′(x)∥∥ < 1) is not necessary, in the case of the considered intersec-tions, for ensuring iterative convergence of the Newton’s method.This conclusion also concerns angular intersections and the com-bined intersections/resections.The study on basins of angular and combined intersectionsshows that they are limited and disconnected, i.e., they are com-posed of separate subsets. The more precise high-resolution analy-sis showed that there are similar subsets in their neighborhood. Forthis reason, hypothetically, each of the considered basins of attrac-tion comprises an infinite number of limited subsets of convergingthe initial points. The diameters of the areas of basins of the ana-lyzed families of angular and combined intersections/resectionsmay reach the value of a few units of the base length. They are biggerthan those resulting from the condition: |λmax| < 1 (∥∥G′(x)∥∥ < 1).We also notice that they rise with the increase in the length of thedistances. In the subsets of the main basins of angular intersections,there are neighborhoods of the intersected points, whose radiusesare also of the order of the base length. It gives the possibility ofquick selection of the initial point. On the other hand, the basinsof the combined intersections/resections for γ ≈ 45◦ may evenhave very small neighborhoods of the intersected point that in-clude the divergent points. In the case of the angular intersections,continuous change ofα andβ angles corresponds to basins whosegeometric and iterative structures are similar to the structure ofthe symmetric intersection basin assumed as the reference one.Continuous change of γ angle of the combined intersections andresections may lead to the effect of change of the structure resultingfrom the trigger property of the function of the observation sys-tem. Combined intersections and resections for angles γ ≈ 45◦correspond to basins of complex transitional structures, and thebasin for γ = 45◦ is composed of subsets appearing in basins be-fore γ < 45◦ and after switching γ > 45◦. These effects are notobserved in the case of angular intersections. The initial points ofangular and combined intersections/resections located far fromthe solution point may converge as quickly as the ones in the closeneighborhood. The initial points belonging to various disconnectedsubsets of intersection basins converge to the solution through aseries of snaps through. They are not accidental but realized ac-cording to specific schemes. Therefore, we deal with convergenceon a global scale, i.e., convergence realized on a disconnected set ofthe basin of attraction. This kind of convergence has probably notbeen formalized in the form of appropriate mathematical theoremsyet. We notice that in these cases, the basic assumptions of theconvergence theorems are not satisfied. For example, balls K(x0)of convergent initial points do not contain the solution point x∗.The basic condition of contracting, which provides unambiguityof solutions (fixed point method), is not satisfied either. In the ex-amples presented in the paper, the iterative Newton’s function Gdoes not project balls K(x0) into themselves but converts them intodisconnected sets.Summarizing, the basins of attraction of the considered inter-sections/resections may be analyzed with respect to the shape ofthe grid determined by the linear or angular measurements; theassumed accuracy of the determined solution x∗ (determining thelocal structure in the vicinity of x∗) and the number of iterations.Due to the amount of parameters determining the basin, it is a mul-tidimensional manifold. A 2D spatial set composed of convergentinitial points is related to each set of parameters. The multidimen-sionality of the considered basins is associated with a number ofissues. Some of them are analyzed in the paper; others only men-tioned may be subjected to a detailed research. Moreover, the resultspresented in the paper may constitute the basis of theoretical re-search of more complex nonlinear systems of observation equations.In the case of simple indentations, two coordinates are determined –the set of the initial conditions is two-dimensional (it can also havea self-similar nature as indicated by the work and, consequently, anincomplete fractal dimension). In the case of Hansen’s or Marek’s

kink, the basin of attractions is already four-dimensional. Thestudy of such sets requires appropriate computational and inter-pretive techniques. According to the authors, this work can be aprelude to the study of the geometric structure of basins of attrac-tion of more complex geodesic networks. Knowledge of the basin ofattraction allows selection of a set of the initial conditions for whichthe iterative procedure converges.
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Appendices

Derivation of the formula (17)
Formula (17) is the result of solving the system of equations (15): f1 (x, y) = x2 + y2 – a2 = 0

f2 (x, y) = x2 + (c – y)2 – b2 = 0 , x > 0

The solution is obtained by subtracting the second from the firstsystem equation (15):
(x2 + y2 – a2) – (x2 + y2 – 2cy + c2 – b2) = 0

from where we get the variable y:

y = a2 – b2 + c2
2c .

Substituting y to the first equation:
x2 = a2 – y2 = (a – y)(a + y) =

(
b2 – (c – a)2

2c

)( (c + a)2 – b2
2c

)

after ordering we get formula (17):

x =
√(

a + b – c
) (

a + b + c
) (

c + b – a
) (

c + a – b
)

2c .

Derivation of the relation for the function g(x) (20)
Relationships (18) and (19) for the iterative function G(x) indicatethat the function g(x) has the form:

g(x) = x – (c – y) f1(x, y)2cx – y f2(x, y)2cx , (38)
where f1(x, y) and f2(x, y) are functions of system (15):

 f1 (x, y) = x2 + y2 – a2 = 0
f2 (x, y) = x2 + (c – y)2 – b2 = 0 , x > 0

Substituting the equation of the system (15) and the known value
of y = a2–b2+c22c (17) into (38) we get:

g(x) = x2 + 2a2b2 + 2a2c2 + 2b2c2 – a4 – b4 – c4
8c2x

= x2 + ((a + b)2 – c2))(c2 – (a – b2))8c2x

and finally:
g(x) = x2 + (a + b – c)(a + b + c)(c – a + b)(c + a – b)8c2x > 0, for x > 0.
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