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Abstract

The research presented in this paper concerns the determination of the attraction basins of Newton’s iterative method, which was
used to solve the non-linear systems of observational equations associated with the geodetic measurements. The simple
observation systems corresponding to the intersections or linear and angular resections used in practice were considered. The
main goal was to investigate the properties of the sets of convergent initial points of the applied iterative method. Therefore, the
answers to the questions regarding the geometric structure of the basins, their limitations, connectedness, or self-similarity were
sought. The research also concerned the iterative structures of the basin: maps of the number of iterations which are necessary to
achieve the convergence of the Newton’s method. The determined basins were compared with the areas of convergence that result
from theorems on the convergence of the Newton’s method: the conditions imposed on the eigenvalues and norms of the matrices
of the studied iterative systems. One of the significant results is the indication that the obtained basins of attraction contain areas
resulting from the theoretical premises. Their diameters can be comparable with the sizes of the analyzed geodetic structures.
Consequently, in the analyzed cases, it is possible to construct methods that enable quick selection of the initial starting points or

automation of such selection. The paper also characterizes the global convergence mechanism of the Newton’s method for
disconnected basins and, as a consequence, the non-local initial points located far from the solution points.

Key words: basin of attraction, convergence of the Newton’s iterative method, planar intersection/resection

1 Introduction

Determination of the coordinates of the geodetic network nodes
based on the measurements results is related to solving an optimiza-
tion task. A solution to this task in terms of the least squares method
is obtained by means of the iterative Newton-Gauss’s method (Ghi-
lani, 2017; Kroszczynski and Winnicki, 2002; Nielsen, 2013). Appro-
priate selecting solution’s initial values is an essential element of the
iterative methods (Lothar, 1993; Kroszczynski and Winnicki, 2002).
Due to the process of linearization of observation equations systems,
the initial point of the procedure is usually selected sufficiently close
to the determined point. In the case of geodetic networks, approxi-
mate values of the network nodes’ coordinates are computed using
specialized software based on measurements that define the net-
work (Cepek, 2002; Siki, 2018). In this study, the authors dealt with
a more general problem of determining the initial approximations.

The issue in question was: how far can the initial point be from
the solution point (attractor) for the process to be convergent? The
question is justified because the applied iterative method results
from linearization. On the other hand, the common practice indi-
cates that the solution may quite often be determined for the initial
points that do not meet the locality conditions. Usually, in such
cases, the solution is found at the cost of the increased number of
iterations. The existence of sets of the '"non-local" initial points
may facilitate, for example, the automatic selection of the initial
approximations of the iterative method (Lothar, 1993; Qureshi et al.,
2024). This kind of study may also contribute to constructing prac-
tical selection rules. Due to the complexity of the problem resulting
from the multidimensionality of the studied issues (in the case of
complex networks), we focused our attention on basic geodetic con-
structions, such as linear and angular intersections (Ghilani, 2017).
In this case, the solutions of the quadratic non-linear equations sys-
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tems are sought after (the number of unknowns equals the number
of measurements; see (Kelley, 1995; Kincaid and Cheney, 2002)).
We noticed during the study that the appropriate selection of the
initial points is closely related to the determination of the basins
of attraction, i.e., the sets of points for which the applied iterative
Newton’s procedure is convergent for the discussed cases.

This paper is organized as follows. The theoretical background
contains definitions and theorems used here (Section 2). Our main
results that concern the study of the properties of the determined
basins of attraction are presented in Sections 3 to 5. We considered
the issues of limitedness of the sets of the initial points, and we
characterized their geometric structures. We determined the maps
of the iteration numbers that are necessary to achieve the conver-
gence of the solution. The areas of the basins are compared with
the potential areas of convergence resulting from the theorems
concerning the convergence of Newton’s iterative method. Con-
nectedness and hypothetic self-similarity of geometric structures
and iterative basins are indicated. It has been proved that an appro-
priately quick convergence of the initial points far from the solution
point is possible. Various schemes of the convergence realized on
disconnected sets are also suggested. The discussion and summary
of the obtained results are presented in Section 6.

2 Theoretical background

The study of the properties of the nonlinear systems of equations is
closely related to the study of convergence of the iterative methods
used to solve these systems. The following nonlinear systems of
equations are considered:
F(x)=o0, F:R" 5 R" (1)
where F is a projection (vector function) consisting of observation
equations of the considered geodetic constructions — classic pla-
nar intersections or resections (Uren and Price, 1985). Except for
special cases, there are no strict direct methods for solving the sys-
tems (1). It is a nontrivial issue analyzed earlier by Traub (1982);
Ostrowski (1966); Ortega (1972); Ortega and Rheinboldt (1970) or
Dennis and Schnabel (1996). The iterative Newton’s method based
on the linearization of the observation equations is used to solve:

-1
o gk () TEEY, k=o0,1,.., x° € Bx*)  (2)

where the affine approximation of (2) is obtained by truncating
the Taylor expansion of F at %K after the linear term; F/ (xk) is the
Jacobian (Fréchet derivative) of the projection F; x° is the initial
point, and B(x*) is the so-called ""basin of attraction" for solution
xX*.

According to the definition, the functionG : D ¢ R" — R" is
F-differentiable at x € D for n x n matrix A:

1

H}l‘i”rgom ||G(x+h)—G(x)—Ah}|W =o. 3)

where: V and W — normed vector spaces and A — bounded linear
operator equal to the Jacobian matrix G’(x).

For each solution x* of (2), the basin of attraction B(x*) for the
iterative Newton’s dynamical process P (with "discrete time') can
be defined as the set of all initial points x°:

B(x*) = {x° e R"  {x1 = P(x°), Jim *=x'1 (&)

for which a (finite or infinite) {x*1 producedby P : x° ¢ R" —
{xk1 c RN converges to x*. The linearization of (2) induces nu-
merous questions related to the solution’s existence and its conver-
gence:
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i. How many iterations must be performed to acknowledge that
the solution is achieved?

ii. For what conditions and the initial points the iterations are
convergent?
iii. Are the sets of such points limited or unlimited?

In many cases, these questions may only be answered partially.
In particular, it concerns the determination of the sets of all initial
points, i.e., the basins of attraction for which the iterative process
of Newton’s method is convergent.

The system (2) may be replaced by an equivalent fixed-point
method system:

x*1 = G(xK) (5)

where the iterative function G(x¥) = x* — F(xk)_lF(xk), G:R" -
R™. Here, the point of attraction x* refers to the fixed point x* =
G(x*) of the iteration scheme (2).

The fixed-point method is used in numerous proofs of theorems
(so-called "contraction-mapping theorems" and many of its vari-
ants) concerning the convergence of the iterative Newton’s method
(Ortega and Rheinboldt, 1970).

2.1 Selected convergence results

Analyzing the theorems concerning the convergence of the itera-
tive methods, two types can be distinguished. One type refers to
the theorems of local convergence, which assume the existence of
solution x* and the presence of such neighborhood D of x* that each
initial point from D is convergent to x*. Localness means that the
initial point is appropriately close to x*: e.g., see the Newton’s At-
traction Theorem (Ortega and Rheinboldt, 1970). For the theorems
of another type, the existence of solution x* is not assumed. Still,
it is shown that for some conditions enforced on the projection F
and the initial points set of Newton’s method, there is a solution
to which the iterative process is convergent, like the Contraction-
Mapping Theorem or the Newton-Kantorovich Theorem (Ortega
and Rheinboldt, 1970). It would be ideal if the Newton’s methods
were convergent for every initial point belonging to the area of the
projection domain F. Within this research, this case of the linear
intersection is studied. Global convergence of iterative methods
is rare. Typical assumptions in the theorems, usually very rigor-
ous, guarantee not much more than local convergence. In order to
illustrate the problem, the theorems of the mentioned types may
be quoted. The first one is Ostrowski’s theorem (Ostrowski, 1966;
Ortega and Rheinboldt, 1970)) which gives the sufficient conditions
for a solution of F(x) = 0 to be a point of the attraction.

Theorem 2.1 (Uren and Price, 1985). Suppose that G(x) = x —
F/(x)'F(x) : D ¢ R" — R" has a fixed point x* ¢ D where G
is F-differentiable at x*. If the spectral radius A = p(G'(x*)) < 1
then x* is a point of attraction of the fixed-point iteration (5) and,
simultaneously, of the Newton’s iteration scheme (2).

In this theorem, the existence of x* had to be assumed. More-
over, only local instead of global convergence is guaranteed, and
merely sufficiency, but not the necessity, of the condition is asserted
(Ortega and Rheinboldt, 1970). Differentiability of G at x* results in
the existence of the neighborhood of x* (S = S(x*,5) c D, & > 0)
that is a set of the initial points for which the iterative Newton’s
method is convergent. Presented research indicates that the neigh-
borhood is usually defined by a small value of the parameter & and,
because of this, it is usually only a part of the basin of attraction.
Dennis and Schnabel (1996) indicated that the radius of Newton’s
method convergence is inversely proportional to the relative non-
linearity of F at x*. They suggested that the relative nonlinearity of
a function is the critical factor determining the behavior of the iter-
ative algorithms, and all convergence theorems could be restarted
and proven in terms of this concept. It was illustrated in detail in
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Dennis and Schnabel (1996) that, in the worst case, it is estimated
based on the extension of the quadratic convergence region in the
direction from x* in which F is the most nonlinear. On the other
hand, the region of convergence of the Newton’s method may be
much larger in a direction of less nonlinearity of F. For this rea-
son, among others, the basins of attraction must not be considered
equivalent with areas of convergence resulting from the assump-
tions of the theorems concerning the convergence of the Newton’s
method.

The other type of theorem is associated with the Banach fixed-
point theorem (Banach, 1922), also known as the Contraction-
Mapping Theorem. This classical theorem considers any iterative
method of the form x¥ = G(xk) and states conditions for G under
which the sequence {x*} converges to a point x* from any point
x9 in a region D. Furthermore, x* is shown to be the unique point
in D such that G(x*) = x*. The Contraction-Mapping Theorem is
broader (but weaker due to the speed of the convergence) than the
Ostrowski’s Theorem or the mentioned above Newton-Kantorovich
Theorem (Dennis and Schnabel, 1996). In the theorem presented
below which is a version of the Contraction-Mapping Theorem
(Ortega and Rheinboldt, 1970), it is characteristic that neither the
existence of a solution x* nor local convergence (x° is sufficiently
close to x* ) are assumed.

Theorem 2.2 (Ortega and Rheinboldt, 1970). Suppose thatG : D C
R" — R" maps a closed set S c D into itself and that there exists
p > 1,and a constant A € (0,1) such that:

HG”(y) - GP(X)H <AIlV—X|, VX,y€S (6)

Then G has a unique fixed point x* = G(x*) in Sand forany x° € S
the iterations converge to and satisfy:
k

—-x*|| <

=

e [T

This theorem can be used to test whether there is any region D
such that the points generated by xk = G(xk) fromanx® e Swill
converge to the root of F. Furthermore, the theorem indicates that
if an area D is found in which the theorem contraction condition is
satisfied, it is a basin of attraction. Since we do not assume local
convergence, a convergence study for the initial points far from
the solution x* may also be considered. However, there is a certain
disparity here because the Newton’s method, as a consequence of
the expansion into the truncated Taylor series, is a local procedure.
It may be noticed that theorems of this type theoretically permit a
broader range of search for basins of attraction. We observe it in the
case of the considered here basins of attraction of linear and angular
intersections and combined linear intersection and angular resec-
tion. It is possible to analytically confirm some of the geometric
properties of these sets, e.g., in the case of the existing symmetry
of the intersections. Then, global contraction is possible on all R —
the attraction set is a space or subspace of R". More complex cases
that cannot be dealt with by means of analytic methods must be
analyzed using numerical computations, mainly because there are
the sets of the initial points x° distant from x* and convergent to
the solution x*, which do not satisfy the contraction condition and
the conditions of local theorems.

2.2 The Newton’s method algorithm

In order to determine the vector of the solution x**! for the sub-
sequent iteration step k + 1 using the relations (2), the following
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system of the linear equations is solved:

F (xk> AX = -F (xk> ,Ax = xK_xk L xk1 - xkiax k=0,1,. ..

(8)
This approach enables to avoid the inverse Jacobian F’ (Xk) compu-
tation. The criteria for completing the computations are based on
the conditions concerning achieving by function F(x¥) components
values sufficiently close to zero:

F(xX) < e (9)

and sufficiently small differences of distance (norm) between the
subsequent vectors of iteration:

ka+1 - ka < ex. (10)

In practice, the parameters e and ey are related to the measure-
ments’ uncertainty. The machine precision is often assumed for
the values of er and ¢, e.g., the relative spacing between any two
adjacent numbers in the machine’s floating point system. Another
condition type is related to the permissible number of iterations. It
enables the stopping of the computations in the case of the solution
divergence. In general, the number of iterations depends on the
iterative algorithm’s convergence type. For standard assumptions
concerning function F, when the initial point x° is sufficiently close
to x*, Newton iteration scheme converges at a quadratic rate to the
solution: xX — x* (see Kelley, 1995). Quadratic convergence means
that the distance between the subsequent approximations and the
precise solution x* decrease according to the following relation:

X

Hx"” —-x* ,C>0 (11)

< CHXk -x*

This property is important because a small number of itera-
tions is required to achieve a prescribed accuracy in the computa-
tions. Generally, there are various types of convergences (Ortega
and Rheinboldt, 1970). In numerous cases considered in research,
at least linear convergence is found when the initial points are far
away from the solution point:

ka“l - x* ,0<a<1 (12)

< ocHXk - x*

In the case when « ~ 1, it is unacceptably slow.

2.3 Methods of constructing the basins of attraction

Both the analytical and practical approaches to analyzing the prop-
erties of the attraction basins B are discussed in Nusse and Yorke
(1998). In the practical approach to determining the basins, the
areas D belonging to the domain of the function F are covered by
regular grids of various sizes and spatial resolutions. The nodes
of the grids are the initial points x° of the Newton’s method. The
convergence of the method for x° € D means that x° belongs to
the basin of attraction B. This method of grid generation was used,
e.g., for presenting the map of the number of iterations required
to achieve the solution x*. In the cases of studies of basins bound-
aries and basins finiteness related with very extent areas, randomly
generated sets of the initial points x° are used:

(le’yj(')) = Xpmin + (Xmax = Xmin) - i) Ymin * Ymax = Ymin) - G

i:]'lnlj:]"mY (13)

where X, ;1 , Xmax, Ymin» Ymax denote values defining the size of the
basin, and ;, (jare pseudorandom numbers of uniform distribu-
tion.

The balls of the random numbers are used to study Newton’s
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Figure 2. Subfamily of linear intersections.

method convergence. They are generated by the following relations:

X; = Xo + Iy - sin(t;), y; = Yo + i - cos(t;), t =27 &;, 1; = 4/,

i=1,n, (14)

where: (xo,Vo) — the coordinates of the ball center.

3 Linear intersection

The linear intersection (Fig. 1) is designed to estimate the position
of an unknown point C(x, y) using two distances a and b measured
from two known points Aand B. In order to simplify the calculations
it was assumed that the intersection base of the length of c coincides
with the y-axis of the geodetic coordinate frame.

Two non-equivalent — concerning the iterative methods — sys-
tems of observation equations for linear intersection are considered:
polynomial (15) and radical (16) which in the assumed coordinate
system are written as follows:

fioy)=x+y* —a? =0
F(x) = (15)
fay)=x+(c-y?-b*=0

ixy)=vx2+y2—a=0
F(x) = (16)

fa(uy)=/x2+(c-y)>-b=0

where a and b are the measured distances, c is the known length of
the intersection base and y is the coordinate of point A.

The equations systems (15) and (16) are invariant with respect
to translation vector [tx, ty] and isotropic scaling s (s — scale coef-
ficient), i.e., the replacement of coordinates: x’ =ty +s-x, y’ =
ty +s-y, ¢’ =ty +s.cand measurements: a’ =s-a,b’ =s-b. For
this reason, the geometric properties of the basins of attraction of
the systems subjected to such transformations are the same. An
example of a studied subfamily of intersections: (0 < a < 2, 0 <
b < 1, ¢ = 1) belonging to the family defined by the inequality:
0<a<2,0<b<2, 0<c«<2ispresented in Fig. 2. The exact
solution (x*, y*) of the systems (15) and (16) in the assumed co-
ordinate system is given by the following relations (see Appendix
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6):

*:i\/(a+b—C)(a+b+c)(c+b—a)(c+a—b)
2¢

X

17
. _a-b2+c a7

y 2C

The expression in the root in (17) is positive, which results from
the triangle inequalities: a+b—c > 0,a+b+c>0,c+b—a > 0and
¢ +a—b > 0. This study is limited to the case of positive solutions:
X > 0.

3.1 Polynomial variant of the linear intersection

For studying the basin of attraction of the linear intersection (15),
the following iterative function of Newton’s method is used (the
superscripts k are omitted here):

G(x) =x - F'(x) 'F(x)

x| 1 [e-wix yix x2 +y? —a?
_{] E[ 1 —1]'{x2+(c—y)2—b2} (18)

x F(x)7 U I

where F/(x) ! is the reciprocal of the Jacobian matrix F’(x) of the
projection F(x) (15). The matrices F’(x) and F/ (x)"tare singular in
points coinciding with the y-axis of the coordinate system (Fig. 1).
Expanding (18) and applying y* from (17), we obtain:

906y") } , {g(X)] (19)

G(x) = {(a2 —b? +¢2)/(2c) y*

Relation (19) indicates that G(x) is a function of the coordinate x
only. It means that independently of the value of x after the first iter-
ation, the value of y is constant and equal to y*. Hence, the solution
is sought along a straight line perpendicular to y at y*. Substituting
y* to g(x,y*), after elementary conversion (see Appendix 6), we
obtain:

. (a+b-c)(a+b+c)(c+b—a)(c+a-b)

X
900 = 2 8c2x

>0,

for x>0 (20)

Including the exact solution x* (17) in (20), we may rewrite it as an
iterative function of the root of the quadratic equation x?> = ¢, ¢ =
()

x = g(x) = x/2 + (x*)*/(2x) > 0, for x>0 (21)

Relation (21) indicates that after the first iteration, for any initial
point of the coordinate x° > 0, we obtain a point of the coordinate
x = g(x°) > x*. This remark is due to the inequality:

x = g(x) = x/2. + (x*)*[(2x) > x*, x>0
which for x > 0 is equivalent to the following true inequality:
X2 —2xx" + (x*)? = (x—x*)? > 0,

for every x 7 x*.

This is illustrated in Fig. 3a where the balls K(x°) of the ran-
domly generated initial points x° are converted into line segments
coinciding with the straight line y = y* which coordinates x satisfy
the condition: x > x*. This result is of importance in the study of
the boundaries of the basin of attraction of the polynomial linear
intersection.

Considering (21) we may notice that in the case when the initial
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Figure 3. (a) — projection of the balls of the initial points after the first
iteration of the Newton’s method, (b) — number of iterations
forx° — o*.

value of the coordinate approaches the y-axis, i.e., X — 0*, then
x! = g(x°) — +oo. Consequently, the number of iterations as a func-
tion of log, (x°),x° = 27!, i = 1, nalso increases (see Fig. (3b). This
indicates that the number increases approximately exponentially
with decreasing x° = 27/, i = 1, n. This effect can be seen in Fig. 4
where the contour lines presenting the numbers of iterations are
packed together in the lower parts of the plots.
Determining the derivative g’(x):

g (x) = 1/2 — (x*)*/(2x?), for x > x* (22)

and including the inequality (21) (satisfied already after the first
iteration), we may notice that:

-1/2<g'(x) <1/2, (0 < ")’/ <1, lim ¢'(x) =1/2). (23)

Relation (23) indicates that projection g(x) is contractive for every
X > 0.
Determining the derivative G’ (x) of projection (19), we obtain:

G'(x) = [g/f)") g] (24)

Relation (24) indicates that Ax = g’(x) is the non-zero eigen-
value of matrix G’. According to (23) Ax = |¢’(x)| < 1/2, which
means that G is a contractive projection in the half-plane: x > 0,
which includes the intersected point.

The fragments of the attraction basins for various linear inter-
sections presented in (18) are obtained by covering the area of in-
tersections with a regular grid in which nodes are the initial points
x% = (x%,y°) of the Newton’s method. The numbers of iterations
(gray-scale bar legend in Fig. 4) necessary to achieve the solution
(x*,y*) for theassumed accuracy ¢ (ex, ep) are determined for each
of the points.

The obtained results indicate that the basin of attraction of the
Newton’s method for the polynomial variant of the linear inter-
section given with (15) is theoretically unlimited. Regardless of
the shape of the intersection construction which is defined by the
measurements a and b it is the half-plane x > o that includes the
intersected point (x*, y*). In the case of (x* < 0,y*), the basin of
attraction is a symmetric reflection of the basin for x > o.
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3.2 Radical variant of the symmetric linear intersection

For studying the basins of attraction (16) the following iterative
Newton’s function is used:

6x) - H _ [(c CYWRETER y /X + (- yPix

2
L R I L
) P (25)
VX2 +y2—a
' L/x2 +(c-y)?* - b}

Ifif217

Similarly, as for the intersection (15), the matrices F’(x) and
F’(x) " are singular for the initial points (x°, y°) coinciding with
the y axis, i.e. on the straight line given by x = 0, especially when
the initial points x° coincide with the points that determine the
intersection base. Fig. 5a presents fragments of the symmetric
basin of attraction for the symmetric intersection: a = b = ¢ = 1.
It can be seen that there are non-local neighborhoods (of radiuses
comparable to the intersection base length) for which the initial
points are convergent after a few (3 or 4) iterations. Fig. 5b and 5¢
illustrate that decreasing value of ¢ (ex, ef) changes the iterative
structure of the basin (smaller values of e correspond to larger num-
bers of iterations). However,  does not impact the global geometric
structure of the basin of attraction. Differentiability of the function
(25) and the quadratic convergence of the Newton’s method in an
appropriately small neighborhood of x* indicate that if the initial
point is convergent for 4, it is also convergent for ¢, < ¢;.

The case of the symmetric intersection, subjectable to an an-
alytic approach, is considered during the study of the basic prop-
erties of the basin of attraction of the linear intersection (25). The
exact solution of the intersection is the point of the coordinates:
x* = @ ,¥* = 1. Considering the symmetry of the basin of attrac-
tion in Fig. 5, a fragment of the straight line y* = 1 was assumed
as the set of the initial points. Including the equations of the obser-
vation system (16) in (25), the component g(x) (see Fig. 6a) of the
iterative function G of the Newton’s method was determined as:

- _| 900
X = G(x) = L}* - %}

900 = (@ + 1 - Dix 26)
(

1_ 2+ 1)/x2
i \/x+4)/x.

Function g(x) has its minimum (g’ (x = ?) =0, g'(x= ?) >
0) at point x* = ? with the value of g(?) = § (Fig. 6b). For
this reason, for every initial value x° 7 x*, we have x = g(x°) >
x*. The condition: 0 < A = g’(x) < 1 is satisfied in the range
X e (? , 00) because the maximum value of the derivative of the
projection satisfies the condition: ¢g’(x) < 1 and the limit value:
XlgerlQ g’ (x) = 0. It means that the projection (26) is contractive on

the straight line y* = 1. In general, without limitation to the case
presented in Fig. 7a it may be noticed (Fig. 7b and 7c) that the
balls of the initial points of (y # y*) are projected into similar areas
(resembling the profiles of the Zukowski’s wings). The areas are
located above the straight line defined by the equation: x = x* =
v3/2. In subsequent iterations, they are converged to an area that
includes point x* accepted as the intersection solution.

The obtained results signify that the basin of attraction of the
symmetric intersection is (theoretically) unlimited on the straight
line y = y*. The symmetry of the set does not, however, answer the
question of what it is like in other directions. Analytical calculations
related to e.g. the direction perpendicular to the straight line y = y*
are much more complicated. It is because, unlike for the polynomial
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Figure 4. Fragments of the basins of attraction of the polynomial variant of the linear intersections including the iterative structure (for ¢ = 1and
e =1079).
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Figure 6. Component g(x) of the iterative function of the Newton’s method.
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Figure 7. Projection of the balls of the random initial points for the Newton’s iterations.
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Figure 8. (a) — process of expanding areas of the initial points, (b) — set
of curves of the relations between the number of iterations
and the width of the basin of attraction.

intersection (15), the convergence mechanism (Fig. 7b and 7c)
is entirely different. The method of the least squares is applied
to assess the number of the iterations necessary for determining
the basin of attraction of a given width y = +2J, j = —1,0,..,1,
measured along the straight lines defined by equations: x = 2k k=
-m, ..., 0,..,N.

It appears that expanding the area by a unit in Fig. 8 in alarge
range of the coordinates (x, y) requires 1.6 iterations on average. Fig.
8a reveals the areas of the width of 2048 and 4096 units covered
with randomly generated initial points. Fig. 8b also illustrates the
limitedness of the basin of attraction. It results from achieving on
every straight line x = const such a value of the coordinate y = 2J
for which the number of iterations is zero (vertical lines in Fig. 8b).
The lack of convergence of Newton’s method is basically caused by
the singularity of the Jacobian matrix F/(x) and, in consequence,
inappropriate system conditioning (8). The presented construction
does not prove the infinity of the attraction set in the direction of
the y axis. It proves that it is not a half-plane as it is in the case
of the polynomial intersection (15). It may be proved (using MAT-
LAB Symbolic Toolbox) that if x — oo then the eigenvalues of the
derivative of projection G'(x) (26):

Ax

—/(c + (—=4a2 + 8ab — 4b2 + c2)
- 2C !
_/(c— (=462 + 8ab — 4b2 + )
2C :

27)

)\y*}

For the case of the symmetric intersectiona = b = ¢ = 1: Ax =

—1, )\y =0.
The performed calculations indicate that the limit Ay = —1
is achieved through values almost equal to Ay = —1 but greater

than Ay > —1. Then, the initial points are relatively quickly close

to the straight line y = y*. However, they slowly converge to

x = x*. It causes a dramatic increase in the number of iterations

and the computing time. If x — 0 and y — oo the Jacobian matrix
. , _| o

lim F'(x,y) = { o

y—o0

ered linear intersection become singular — the Newton’s method is

1 } and its reciprocal F/ (%)™ of the consid-
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not convergent.

In Fig. 9 are presented the eigenvalues | Amax| and the norms of
the G’(x) derivative for the linear intersections. Fig. 9 also presents
the sets of the initial points (lighter grey areas) for which the maxi-
mum eigenvalues | Amax| and the norms of the derivative || G'(x)||,,
are smaller than one (generally |Amax| < 1implicates the existence
of HG’(X)H2 < 1 (see Kincaid and Cheney, 2002).

The conducted calculations indicate that the conditions of the
above-quoted Ostrowski’s Theorem 2.1 and Contractive-Mapping
Theorem 2.2 are satisfied locally in the neighborhood of the solution
point. The convergence of the Newton’s method for the initial points
x° located far away ( on H > ¢) from the solution point x* may
also be noticed (Fig. 9). From this figure it can also be noticed
that the areas of the initial points ||G’||, < 1are included in the
basins of the linear intersections (25). It means that the condition
[Amax| < 1, and respectively ||G’||, < 1, is not compulsory for
the iterative convergence of Newton’s method in the case of the
considered intersections.

3.3 Schemes of convergence

Considering the particular case (28) of the contraction condition
(Theorem 2.2), the relations of the distances between the respective
initial points in the consecutive iterations of the balls K(x°) are
studied:

-1

<1, j=1,.,n, q>s=0,1,.

(28)
The satisfying condition (28) means that the initial points x° suc-
cessively move closer to the point of the solution x* of the inter-
section (Fig. 10). The performed simulations indicate that for the
intersections presented in Fig. 7b and 7c, inequality (28) is satisfied
for the balls K/ (x°) with odd or even iteration indexes j. These balls
are separated by the straight line y = y* (Fig. 7). Inequality (28)
is not satisfied for the subsequent indexes j, e.g., j = 0,1 (Fig. 7b)
because, in spite of the contraction condition, the area 1 is greater
than the area 0 of the initial points. Results equivalent to those
presented in Fig. 10 were obtained for various random realizations
of the sets of the initial points x°.
According to the Contraction-Mapping Theorem 2.2, relation
(28) for the analyzed cases of the linear intersections may be written
as:

— (@ _ o
u}- = HX}. X

I

HGP(X) - GP(x*)

‘ - HGk+2(x) —x*

< ka -x*

)

vx € K(x%), k=0,1,.. (29)

The plots in Fig. 10 also show that here we have at least linear
convergence (12). The contraction coefficients u; decrease from
one iteration step to the next which means increasing the speed of
the convergence of Newton method when point x* is approached.
Generally, the contraction condition of Theorem 2.2 should be satis-
fied for every pair (j, m) of points belonging to the ball of the initial
points (x}9, x%,) € K(x9),ie.:

tm = [ =48 2 - <

j#m, jym=1,..,n, ¢>s=0,1,.. (30)

The conducted calculations indicate that this is not the case
because there are subsets of pairs of points belonging to K(x°) for
which (30) is not satisfied. It is necessary to make an important
note that for the balls of the initial points, especially those located
appropriately far away from x°, the basic conditions of Theorem 2.2
are not satisfied because x* ¢ K(x°) and G(x) does not map a closed
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Figure 10. Contraction process of the linear intersection.

set K(x°) into itself (Fig. 7). In the case of asymmetric intersections
(a 7 b), the situation is more complex and requires additional study
which is beyond the scope of this paper.

3.4 Basins of attraction of asymmetric linear intersec-
tions

The selected fragments of the asymmetric linear intersections
basins of attraction are presented in Fig. 11.

They are defined by the nonlinear system (16) for various val-
ues of the lengths of the distances a and b and the constant (unit)
length of the base: ¢ = 1. They are obtained by covering the selected
areas of the function F(x) (16) domain with grids of various spatial
resolutions, whose nodes were the initial points of the iterative
Newton’s method. Unlike the basins of linear symmetric intersec-
tions, the asymmetric basins have more complex geometric and
iterative structures. The differences grow with the increase of the
departure from symmetry (see Fig. 11). It may be noticed in Fig.
11 that the structures of these basins depend on the intersection
shape determined by the values of measurements a and b. They are
generally disconnected and usually composed of numerous sepa-
rate subsets which we call ""branches". The branch that contains
the intersection is regarded as the main one. The performed calcu-
lations indicate that the branches are observable in a wide range
of coordinates values: x = 107, y = +10'© expressed in the units
defined by the length of the intersection base c (see Fig. 12).

The plots in Fig. 12 are obtained by increasing the areas (see
Fig. (11g, 11h, 11i) to which the randomly generated initial points
belonged.

In the case of the last plot in Fig. 12, the area of: {x = +10'8, y =
+10'8} was declared. Analyses of the results of numerous real-
izations of the generated points show that the convergent ones
belong to a smaller area: {x = +10'7, y = +10'0}. Therefore, it

200

o L o
300 400 0 100 200 300 400

J J

may be believed that the basin of attraction is finite in this case.
To the study of the behavior of the Jacobian matrix F’ of the sys-
tem (16) at the limit (x — oo, ¥ — o), in the straight lines bunch:
x —x* = o(y — y*) passing through point x* of the intersection
solution we apply the analytical approach. It occurred that the limit

. . . x 1
acobian matrices: lim F' (x,y) = —-L are
J x= o (Y—y* )+x* =00 *y) Vo2+1 x 1
—00

singular for every straight line of the bunch. It indicates that New-
ton’s method is not convergent for very large values of the coordi-
nates (x, y) of the initial points, the Newton’s method is not con-
vergent. The practice shows that the convergence is lost for finite
values of the order of £10'7.

Studying the impact of the limited number of iterations on the
basins of attraction of the linear intersection, we found that in-
creasing the number may impact their geometric structure. Fig.
13a and 13b show the change in the width of the intersection basin
branch (Fig. 11f) with the increase of the limit value from 20 to 1000
iterations.

Fig. 13c and 13d illustrate the differences between the basins
obtained for 1000 and 20 iterations, and for 1000 and 100 iterations.
In the latter case, there is a trace difference. It means a certain state
of saturation, i.e., for large values of the number of iterations, the
process of widening is scarce. Then, the shape and the area of the
basins of attraction are practically unchanged.

Analyzing the cross-sections (Fig. 14) it is found that there
are boundary initial points x° which very slowly converge to the
solution x*. It is determined by the initial phase of the iteration
characterized by linear convergence with the value of parameter
« = 1(12). When point x* is being approached, the speed of conver-
gence increases becoming quadratic (11) in an appropriately small
neighborhood of x*. The cross-sections show that the slowly con-
vergent boundary initial points x° are concentrated on the edges of
the branches of the basin of attraction. It can also be seen in Fig. 11
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Figure 13. The impact of the number of iterations on the geometric structure of the basin of attraction.
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Figure 15. Bifurcation of the family of the linear intersection — the number of iterations: 500, ¢ = 107°.

to 16.

Fig. 15 presents the basins of asymmetric linear intersections
of the family b = ¢ = 1, 1 < a < 2 with the increasing value of the
distance a. It may be noticed that with the continuous change of the
length of the distance a, which is also the case for other families, the
geometric structure of the basins of attraction changes qualitatively.
Therefore, such qualitative changes in the basin structure have the
features of bifurcation phenomena observed in dynamic systems
(Guckenheimer and Holmes, 1983).

The plots in Fig. 16 present the fragments of the basins of at-
traction of asymmetric intersection. They result from successive
(ten-time) increases in the size of the grid of the initial points. It
may be noticed that in the subsequent figures, similar geometric
structures appear. These were observed earlier in better resolution
(for smaller grid distance); here, in the lower resolution, they appear
as sets of lines (see, e.g., the last plot in Fig. 16). In general, it may
be stated that the basins of attraction of linear intersections which
is strongly asymmetric look similar in larger scale and smaller scale.
This remark also concerns their iterative structures. Such invari-
ance is characteristic of self-similar structures (Barnsley, 2000).

4 Angular intersection

The angular intersection is a task of determining coordinates of
the intersected point C using measured angles « at point A and
B at point B (Fig. 17). In order to simplify the equations used in
the paper it is assumed (without any loss of generality) that the
intersection base of the length of ¢ coincides with the y axis of the
geodetic coordinate frame, i.e., x4 = xg = 0,y4 = ¢, yg = 0.

In this frame, the analytic solution may be obtained e.g., from
the following relation (Ghilani, 2017; Uren and Price, 1985):

c c-cot(p)

x= cot(x) + cot(p)’ y= cot(x) + cot(p) 1)

4.1 Basins of attraction of angular intersection

For the study of the properties of basins of attraction of the angular
intersection, a non-linear system of observation equations binding

angular measurements « and g with the coordinates of the inter-
sected point (x, y) and the coordinates of the base c is constructed:

fi(,y) = Z +arctan Y€ -« = 0
FI(X,y): , ‘5o
fo(x,y)=Z—arctany - p =0
fiy) =3 —arctan ;€ —x =0
Fy(x,) = <o
fo(,y) = Z +arctan¥ — g =0
(32)

This form of the system is related to the possibility of assuming
any point belonging to the plane, i.e. xX° € D ¢ R? for an initial
point x° of the Newton’s iterative procedure. Equations (32) express
the differences of the angles calculated using the iterations of the
coordinates x of the initial point x° and the measured angles « and
3. The angles determined using the coordinates are the differences
of azimuths of the left and right angle arms respectively for x > 0
and x < 0. Relations in (32) are true for the assumed location of
the intersection base (Fig. 17). It may be noticed that systems (32)
are invariant concerning translation and isotropic scaling (Helmert
transformation), i.e., replacement of coordinates: x’ = ty +s-x, V' =
ty +s - y. It means that the properties of the basins of attraction
of the transformed systems are the same. Considering (32), the
following iterative system may be written (in the form of a fixed-
point system):

{ x—-F(x)"'F;(x), x>0
x=G(x), G(x)= (33)

x—F,(x)"'F5(X), Xx<O0

Relation (32) indicates that for the Jacobian matrix F’(x) and its
reciprocal F/(x) ™! the following relations are satisfied:

F; (x) = —F; (%),
B =-FxT,
e N T (34)
x2+(c=y) x2+(c-y)
Fj (x) = )
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Figure 16. Self-similarity of the geometric and iterative structures of the basin of attraction.
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Figure 17. Angular intersection.

It may be noticed that F/(x) and F/(x)~! are singular on the
straight line x = 0, in particular in the points determining the base
(x=0,y=0)and (x =0, y = ¢).

4.2 Area of convergence of the Newton’s method of an-
gular intersection

The basins of attraction of the angular intersection for various mea-
sured values of angles «, 3, assumed values of accuracy ex = ef =
10~% and the maximum number of iterations imax = 103 are pre-
sented in Fig. 18. Analyzing the obtained results, one may notice
that the basins of symmetric intersections (Fig. 18a, 18b and 18c)
are symmetric. The straight line perpendicular to the line segment
of the intersection base passing through the solution point is the
axis of symmetry. The basins of mirror intersections (Fig. 18a,
18b) have no shared parts. It proves (indirectly) an appropriate
definition of the observation equation set in (32) and the iterative
function (33). The existence of such parts would mean ambiguity,
i.e., the existence of the initial points simultaneously convergent to
the solutions of different intersections.

The areas of the convergent initial points presented in Fig. 18
are limited. Their linear sizes correspond to a few units of the
intersection base. In order to verify this observation a series of
tests concerning covering the intersections by grids of large sizes
x,19 € (-10,10°) or randomly generated sets of the initial points
(13) are conducted. The maximum number of iterations necessary
to achieve the solution x° is also studied. For the assumed accuracy
ex = ep = 1079 it did not exceed 23 (gray-scale bar legend in Fig.
18). The iterative structures presented in Fig. 18 corresponding
to various intersections are similar. The basins of asymmetric in-
tersections (Fig. 18d, 18e, and 18f) are deformed versions of the
symmetric intersections (Fig. 18a), i.e. they are homeomorphic.
This observation does not apply to the basin shown in Fig. 18c be-
cause it lacks e.g. subsets of the type: Fig. 19d, 19e, visible in Fig.
18a. Such subsets are also missing in the basins of intersections for
angles « = B < 40° (the limit values of the angles for which the
structures of the type presented in Fig. 19d and 19e disappear are
not studied in details). Therefore, it may not be stated that in every
case continuous change of angles «, p is followed by continuous
change of the geometric structures. A main area including the in-
tersection and subordinate areas, may be distinguished in the case
of each of the basins. They may be seen especially in the magnifica-
tions of the rectangular areas: Fig. 19a to 19d, marked in Fig. 18a as
(1), (12), (2), (3), and (3a). Magnification (1) in Fig. 19 reveals the
geometric similarity and similarity of the iterations distribution
with the main area. This similarity may be noticed (Fig. 19) for
the area (1a), then (1b) etc. It seems that fragments (3) and (3a) in
Fig. 19 have a different geometric and iterative structure than the
main area of the basin of attraction. However, from the topologi-
cal point of view, they are probably homeomorphic. Increasing, in
this case the resolutions of the grid of the initial points, one may
also find fragments similar to it ((3a) in Fig. 19). Such behavior is
characteristic of self-similar sets (Barnsley, 2000).

The conducted analysis indicates that basins of attraction at the
angular intersections are spatially limited and disconnected sets.
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They are hypothetically composed of an infinite number: B = G B].

J=1
of the subsets B; of the initial points which demonstrate features of
self-similarity. Generally, the initial points x° of the deeper embed-
ded sets (of greater values of the index j) converge more slowly, but,
as indicated by the results presented in Fig. 19 and 20, the number
of iterations may be comparable with the number of the iterations
of the main structure. For this reason, the following question was
asked: how do the initial points x° belonging to various fragments
of the basin of attraction (see Fig. 20) converge?

If the initial point (denoted by 0) is within a fragment of the
main basin, the points of the following iterations converging to
the solution remain within the fragment. The number of iterations
depends on the location of the start — the light areas correspond to
the smaller number of iterations. When it is started from a fragment
of Fig. 20b, there is a snap through to the main fragment of a similar
number of iterations. Analogically, the initial points (Fig. 20c)
first snap through to the bottom fragment, and then to the main
fragment after which they converge, depending on the location in
the fragment, to the intersection solution in a few iterations. The
described mechanism causes the initial points x° ¢ B; located in the
areas of small numbers of iterations to converge very quickly (in this
case, it may be considered as a specific "tunneling" phenomenon).
Abstractly thinking, an infinite series of iterations corresponding to
an infinite series of subsets B; (j = 1, ...co) belonging to the families
of the initial points of the basin of attraction may theoretically be
considered. Then the number of iterations necessary to achieve the
solution x* is infinite. In practice, it means that it is possible to
assume for x° a convergent point after realizing a large number of
iterations. However, the probability of selecting such a point x° e B;
is relatively small. It decreases with increasing index j because the
areas occupied by the sets B; decrease very quickly.

The eigenvalues | Amax | and norms of the derivative G’ (x) of the
projection G(x) of angular intersection are also studied. Due to the
high complexity of the relations defining them, they are not in their
full form in the paper. Fig. 21 presents the sets of the initial points
x° (darker grey areas) for which the norm |G/ (x]|, is smaller than

one: ’

G’ (x")H2 < 1. For the considered intersections (Fig. 21) all

points of the sets from )

G’(xo)H2 < 1 converge to the solutions x*

because they are entirely contained in the basins of attraction of
the intersections.

They are not local sets such as a result from the differentiability
of G(x) in solution point x* and are usually considered in theo-
rems concerning the convergence of Newton’s method (see, e.g.,
Ostrowski’s Theorem 2.1). Inequality of the areas of the basins and
sets with ||G’ (x")H2 < 1 indicates that there are areas of basins

with ‘
Ostrowski’s Theorem 2.1 is not a necessary condition for conver-
gence (Ortega, 1972). Theoretically, the existence of such areas of
‘ G (XO)H2 < 1 may result from the Newton-Kantorovich Theorem

2.2 which makes no assumptions about the existence of a solution.
It shows that if F/(x) is non-singular and Lipschitz continuous in
aregion containing x°, which is satisfied for the considered inter-
sections, and the first step of Newton’s method is sufficiently small
relative to the nonlinearity of F(x) defined by Dennis and Schnabel
(1996), then there must be a root in this region. It is necessary to
note that the indicated theorems do not apply in the case of the
disconnected basins of attraction.

G’ (x°) Hz < 1 which confirms that the condition provided in

5 Combined linear intersection and angular re-
section

The combined linear intersection and angular resection (see Fig.
22) is a task of performing two inhomogeneous observations in the
ABC triangle: the angular of the angle v at point C and the linear
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Figure 22. Combined linear intersection and angular resection.

one presented as the length of the straight line segment |BC| = a.
The calculation of the coordinates of the points determined using
the combined linear intersection and angular resection may come
down to solving the angular intersection using the sine theorem
(csin « = asiny) for calculating angles: «and B = 180° — (o + ).

5.1 Basins of attraction of the combined intersection and
resection

In order to simplify the equations, the intersection base is assumed
to be of a unit length (¢ = 1) and coinciding with the y-axis of the
geodetic coordinate frame, i.e., x4 =xg =0,y =c=1, yg =0.In
this frame, a non-linear system of observation equations binding
the measurements of a, v and the coordinates of the intersected
point (x, y) has the form of:

fixy)=ve+y2—a=0
Fl(x>y): . x>0
fo(x,y) =arctan¥ —arctan 3¢ -y = 0
f1(X,y): \/W—G:O
F (x,y) = Xx<o0
fo(x,y) = arctan ¥3€ —arctan ¥ —y = 0
(35)

The systems in (35) are written in the iterative form (the super-
scripts are omitted):

x-F(x)"'F(x), x>0

x = G(x), G(X):{ (36)

x—-F,(x)"1F,(x), x<o0

where after introducing the following denotations:

d=x/

e=yl\/x2+y2,
g=(c—YN/*+(c-y)?

h=x/\/x2+(c-y),

X2+ Y2,

the Jacobian matrices have the form:

d e
Fi (%) = )
—(g+e) (d-h) (37)
d e
F, (x,y) = :
(g+e) (d-h)

Equations 35 are invariant concerning translation and isotropic
scaling of coordinates: x’ = tx+s-x, y’ = ty+s-yand measurements:
a =s-a,b’ =s-bandc’ =s-c. Jacobian matrices F’; and ¥/, are
singular for points on the straight line x = 0. Fig. 23 presents
basins of attraction of the combined intersection and resection for
the assumed (unit) length of the base and selected lengths of the
distance a and angle .

They belong to the family of combined intersections and resec-
tions defined by the inequalities: c =1, 0 < a < 2, b < a + c. Fig.
23c and 23d present mirror combined intersections and resections
(a =1, y = 60°). Their basins are separate, which (according to the
theory) indirectly confirms the correctness of the equation systems
in (35). It may be noticed that the geometric and iterative structures
of the basins (for the established: limit number of iterations — imax
and accuracy ¢y, ey are homeomorphic, i.e., they change contin-
uously with continuous change of measurements: a and v Basins
corresponding to close neighborhood of v = 45° (Fig. 23(e) to (h))
are an exception. It can be seen (Fig. 23g) that the set is composed
of sets of the type (Fig. 23e and 23h). Fig. 23f also presents one
of the transitional forms very close to the basin of v = 45°. In the
basin’s ""dotted" areas, there are both convergent and divergent
initial points. Generally, decreasing or increasing the value of angle
v, v 7 45° causes switching the geometric structures of the basins
between the types (Fig. 23e and 23h) both ways. Such behavior
results from the jumping (Fig. 24) character of the function course
f2(x,y) of the observation system in (35).

It was also noticed that for v approaching 45° results in a quick
decrease of the neighborhood radius of the intersected point deter-
mined by the intersected point and its closest divergent point (see
Fig. 24 and 25b). Although, in these cases, the areas of basins are
also appropriately large, there may be divergent points in a very
small neighborhood of the intersected point. This effect is disad-
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Figure 24. Jumping course of function f,(x, y), ¢ = 1.

vantageous from the practical computational point of view. In all
analyzed cases (Fig. 23), the radiuses did not exceed the unit value
of the base length.

Studying geometric structures of combined intersections and
resections shows that, like in the case of angular intersections,
they are limited and disconnected, i.e., composed (theoretically)
of an infinite: B = G B;, number of subsets B; of convergent initial

J=1

points (Fig. 23 and 26). It is the result of analyses conducted for
successively increased resolutions of grids of the initial points in Fig.
23. The analyses showed that the subsets have similar geometric
and iterative structures. In the neighborhood of each of the subsets,
there are similar subsets which become visible after an appropriate
increase in resolution (Fig. 26). Theoretically, this procedure may
be repeated any number of times.

Results similar to the ones for angular intersections are obtained
when the process of convergence of the initial points x° from vari-
ous fragments of basins of attraction (Figure 27) is studied.

Reaching the main fragment B; which includes the intersected
point by an initial point (its iterations), is related to performing
a certain number of snaps through B, — B;, k > j between the
subsets By, and Bj of the basin (Fig. 27). This number depends on
the location of the start and it is usually greater than the number of
iterations of angular intersections. It is characteristic that only one
iterative point corresponds tosubset B;, j = 1, . . . , n. The conducted
analysis indicates that a greater number of iterations is possible
only within the main fragment of the basin. Like for angular inter-
sections, the snaps through occur into areas of a similar number
of iterations. We notice that for the initial points belonging to dif-
ferent sets B; there are various convergence schemes (Figures 27a
and 27c¢). It may signify that sets Bj belong to different families,
classifiable on the basis of the schemes.

The study of the eigenvalues | Amax | and norms of the derivative
G’ (x) of the projection of combined intersections and resections
indicates that there are shared parts of basins of attraction and
sets of the initial points for which the norm ||G’(x)|| satisfies the
condition: ||G'(x)|| < 1 (Fig. 28). Unlike in the case of the angular
intersections, these sets may not be entirely included in the basins
of combined intersections and resections (Fig. 28(a) and (d)). For
v = 45° the area ||G'(x)|| < 1 contracts as the solution point x*. is
approached. The radius of the neighborhood containing convergent
points quickly decreases. It may be shown that in point x*(x =
1,y = 1), which is the intersection solution, the matrix |G’ (x)||
of the derivative of the projection and its norm are undetermined.
The obtained results confirm that the condition: ||G'(x)|| < 1is not
necessary for achieving iterative convergence of Newton’s method.

6 Summary and conclusions

The purpose of the study was not to determine the solutions using
an iterative method. The purpose was to show what problems can
be encountered when considering more complex geodetic networks.
Due to the nonlinearity of the observation systems of geodetic net-
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works (e.g., linear-angular), the iterative methods are used to de-
termine the solution. In practice, programs that equalize networks
usually require approximate values of the coordinates of points
to be determined. The question can be asked whether it can be
done automatically and how much it is an arbitrary choice. It can
be guided in this case by some rules and criteria resulting from
the construction of a set of initial conditions (basins of attraction).
For example, in the case of a linear intersection (e.g., GPS), it is
possible to conclude that the basin of attraction is the half-plane
behind the intersecting point. At the same time, things become
more complicated when dealing with angular or mixed intersec-
tions/resections). The paper considers simple geodesic structures
because, in the case of more complex structures, we encounter the
problem of multidimensionality of the geometric structures under
study.

The results of this research indicate that basins of attraction of
the considered basic geodetic constructions are characterized by
vast heterogeneity of geometric and iterative structures. By per-
forming theoretical simulations, we demonstrate that basins of
polynomial linear intersections are theoretically unlimited half-
planes determined by the straight line passing through the points
of the base and the intersected point. The basins of attraction of
radical linear intersections are characterized by greater complexity
of geometric structures and distributions of iterations. The struc-
ture complexity of the intersections increases with the increase
in departure from the symmetric intersection. Generally, they are
disconnected and composed of many geometrically similar subsets
— branches (the effect of the set of affine projections of variable
values of coefficients determined by nonlinear functions of obser-
vation sets). The analysis indicates that basins of the symmetric
intersection in the direction of the x-axis are unlimited and limited
in the direction of the y-axis. The existence of unlimited basins
is attractive from the computational point of view because every
initial point is convergent.

Based on the performed computations for asymmetric cases of
intersections, we notice that for very large values of coordinates
of the initial points of Newton’s method, the Jacobian matrices of
the iterative systems are singular. It signifies the limitedness of
the basins of attraction. In the case of limited basins, the infor-
mation concerning the range of values of initial point coordinates
is valuable, especially in the case of the existence of disturbances
in the iterative process and controlling it. We also notice that the
initial points on the edges of the branches of the basin correspond
to large values of the number of iterations and appropriately long
time of convergence The mixed convergence is observed here, i.e.,
linear far from the point of solution (the branch edge), the quicker,
the closer the iterative point is to the constant point, and finally
quadratic.

The study on basins of attraction of asymmetric linear inter-
sections for various resolutions of grids of the initial points shows
similarity of the obtained geometric structures and distributions of
iterations in a wide range of changes of spatial scales. The similarity
of iterative structures causes the initial points located far from the
solution point to converge similarly quickly as the ones in the solu-
tion’s vicinity. The difference in the number of iterations is related
here to the necessity of performing snaps through between the
embedded branches (subsets) of the basin of attraction: Bj, j>1.

When studying the impact of changes in the shape of the inter-
sections on the basins we show that discrete changes of the value of
measurement of the distance a for established unit lengths of the
distance b and base ¢ (family b = ¢ = 1) correspond to qualitatively
different basins of attraction (different number of branches). Such
changes are typical for the bifurcation known from the non-linear
dynamic systems theory. We also determine the potential areas of
convergence of the Newton’s method resulting from the condition
applied to the spectral radius: |[Amax| < 1 (or norm ||G'(x)|| < 1).
The performed calculations indicate that Newton’s method is con-
vergent for the initial points belonging to such sets. Since the sets
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are contained in the basins of attraction, the condition |Amax| < 1
(||G’'(x)]| < 1) is not necessary, in the case of the considered intersec-
tions, for ensuring iterative convergence of the Newton’s method.
This conclusion also concerns angular intersections and the com-
bined intersections/resections.

The study on basins of angular and combined intersections
shows that they are limited and disconnected, i.e., they are com-
posed of separate subsets. The more precise high-resolution analy-
sis showed that there are similar subsets in their neighborhood. For
this reason, hypothetically, each of the considered basins of attrac-
tion comprises an infinite number of limited subsets of converging
the initial points. The diameters of the areas of basins of the ana-
lyzed families of angular and combined intersections/resections
may reach the value of a few units of the base length. Theyare bigger
than those resulting from the condition: |Amax| < 1(||G'(x)|| < 1).
We also notice that they rise with the increase in the length of the
distances. In the subsets of the main basins of angular intersections,
there are neighborhoods of the intersected points, whose radiuses
are also of the order of the base length. It gives the possibility of
quick selection of the initial point. On the other hand, the basins
of the combined intersections/resections for v ~ 45° may even
have very small neighborhoods of the intersected point that in-
clude the divergent points. In the case of the angular intersections,
continuous change of « and p angles corresponds to basins whose
geometric and iterative structures are similar to the structure of
the symmetric intersection basin assumed as the reference one.
Continuous change of y angle of the combined intersections and
resections may lead to the effect of change of the structure resulting
from the trigger property of the function of the observation sys-
tem. Combined intersections and resections for angles v ~ 45°
correspond to basins of complex transitional structures, and the
basin for v = 45° is composed of subsets appearing in basins be-
fore v < 45° and after switching v > 45°. These effects are not
observed in the case of angular intersections. The initial points of
angular and combined intersections/resections located far from
the solution point may converge as quickly as the ones in the close
neighborhood. The initial points belonging to various disconnected
subsets of intersection basins converge to the solution through a
series of snaps through. They are not accidental but realized ac-
cording to specific schemes. Therefore, we deal with convergence
on a global scale, i.e., convergence realized on a disconnected set of
the basin of attraction. This kind of convergence has probably not
been formalized in the form of appropriate mathematical theorems
yet. We notice that in these cases, the basic assumptions of the
convergence theorems are not satisfied. For example, balls K(x°)
of convergent initial points do not contain the solution point x*.
The basic condition of contracting, which provides unambiguity
of solutions (fixed point method), is not satisfied either. In the ex-
amples presented in the paper, the iterative Newton’s function G
does not project balls K(x°) into themselves but converts them into
disconnected sets.

Summarizing, the basins of attraction of the considered inter-
sections/resections may be analyzed with respect to the shape of
the grid determined by the linear or angular measurements; the
assumed accuracy of the determined solution x* (determining the
local structure in the vicinity of x*) and the number of iterations.
Due to the amount of parameters determining the basin, it is a mul-
tidimensional manifold. A 2D spatial set composed of convergent
initial points is related to each set of parameters. The multidimen-
sionality of the considered basins is associated with a number of
issues. Some of them are analyzed in the paper; others only men-
tioned may be subjected to a detailed research. Moreover, the results
presented in the paper may constitute the basis of theoretical re-
search of more complex nonlinear systems of observation equations.
Inthe case of simple indentations, two coordinates are determined —
the set of the initial conditions is two-dimensional (it can also have
a self-similar nature as indicated by the work and, consequently, an
incomplete fractal dimension). In the case of Hansen’s or Marek’s
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kink, the basin of attractions is already four-dimensional. The
study of such sets requires appropriate computational and inter-
pretive techniques. According to the authors, this work can be a
prelude to the study of the geometric structure of basins of attrac-
tion of more complex geodesic networks. Knowledge of the basin of
attraction allows selection of a set of the initial conditions for which
the iterative procedure converges.
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Appendices
Derivation of the formula (17)

Formula (17) is the result of solving the system of equations (15):

{fl(x,y)=x2+y2—a2=o
, X>0

fa,y)=x2+(c-y)>-b2=0

The solution is obtained by subtracting the second from the first
system equation (15):

C+y?—a®)-(C+y?*—2cy+c2-b*) =0
from where we get the variable y:
_a?-b%+c?
y= 2c ’

Substituting y to the first equation:

X¥=a*-y*=(a-y)a+y) = (bz—(c—a)2> ((c+a)2—b2)

2C 2C
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after ordering we get formula (17):

\/(a+b—c) (a+b+c)(c+b—a)(c+a-D)
2C :

X =

Derivation of the relation for the function g(x) (20)

Relationships (18) and (19) for the iterative function G(x) indicate
that the function g(x) has the form:

gx)=x-(c-y)

fl(xyy) fZ(ny)
2ox Y2k (38)

where f;(x, y) and f,(x, y) are functions of system (15):

{ fitby)=x*+y*-a*=o0
, X>0

fr(xy) =2+ (c=y? b =0

Substituting the equation of the system (15) and the known value
ofy = % (17) into (38) we get:

=X+ 2a?b? + 2a%c® + 2b*c — a4 — b4 — ¢+

g =3 8c2x
_x, (@a+b)y® = *))(c> - (a-b*)
T2 8c2x

and finally:

gx) = §+(a+b—c)(a+b+c)(c—a+b)(c+a—b) 50, for x> 0.

2 8c2x


http://dx.doi.org/10.3390/axioms13060341
http://dx.doi.org/10.14311/gi.17.2.1
http://dx.doi.org/10.14311/350

	Introduction
	Theoretical background
	Selected convergence results
	The Newton’s method algorithm
	Methods of constructing the basins of attraction

	Linear intersection
	Polynomial variant of the linear intersection
	Radical variant of the symmetric linear intersection
	Schemes of convergence
	Basins of attraction of asymmetric linear intersections

	Angular intersection
	Basins of attraction of angular intersection
	Area of convergence of the Newton’s method of angular intersection

	Combined linear intersection and angular resection
	Basins of attraction of the combined intersection and resection

	Summary and conclusions

