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Abstract
The article presents an analysis of the effectiveness of selected machine learning methods: Random Forest (RF), Extreme GradientBoosting (XGB), and Support Vector Machine (SVM) in the classification of land use and cover in satellite images. Several variantsof each algorithm were tested, adopting different parameters typical for each of them. Each variant was classified multiple (20)times, using training samples of different sizes: from 100 pixels to 200,000 pixels. The tests were conducted independently on 3Sentinel-2 satellite images, identifying 5 basic land cover classes: built-up areas, soil, forest, water, and low vegetation. Typicalmetrics were used for the accuracy assessment: Cohen’s kappa coefficient, overall accuracy (for whole images), as well as F-1score, precision, and recall (for individual classes). The results obtained for different images were consistent and clearly indicatedan increase in classification accuracy with the increase in the size of the training sample. They also showed that among the testedalgorithms, the XGB algorithm is the most sensitive to the size of the training sample, while the least sensitive is SVM, whichachieved relatively good results even when using training samples of the smallest sizes. At the same time, it was pointed out thatwhile in the case of RF and XGB algorithms the differences between the tested variants were slight, the effectiveness of SVM wasvery much dependent on the gamma parameter – with too high values of this parameter, the model showed a tendency to overfit,which did not allow for satisfactory results.
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1 Introduction

The classification of land use/land cover (LULC) is one of the mostimportant tasks in remote sensing. The development of machinelearning (ML) algorithms, which we have witnessed for many years,has led to the widespread adoption of the (semi)automatic classifi-cation of aerial and satellite images. However, this proliferation ofoptions also makes choosing the optimal solution problematic.Numerous studies and publications have focused on the accu-racy of classification models based on various ML algorithms. Let’sbriefly mention some of them, illustrating the ambiguity prevailingin this field.We can start with the publication by Seydi et al. (2022), whichcompares the effectiveness of identifying flood-prone areas us-

ing methods such as deep neural networks (DNN), support vectormachines (SVM), Random Forest (RF), Extreme Gradient Boost-ing (XGB), and individual decision trees (DT). Among these, XGBachieved the best results, followed by DNN and SVM, clearly outper-forming RF and DT. The effectiveness of XGB is also demonstratedby research conducted by Bigdeli et al. (2023), which highlights itssuperiority compared to multi-layer perceptrons (MLP) and artifi-cial neural networks (ANN). Similarly, Liu et al. (2021) found XGB toperform better than RF. Additionally, Ding (2024) study on precisetracking of peat soil carbon dioxide emissions indicates that XGB ishighly effective, surpassing long short-term memory (LSTM) re-current neural networks (RNN) and performing comparably to SVM.Moreover, SVM is one of the most popular machine learning meth-ods, frequently used in remote sensing and various comparative
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analyses. For instance, in the study by Koppaka and Moh (2020),SVM outperformed Random Forest (RF), convolutional neural net-works (CNN), RNN-LSTM, and RSN with Gated Recurrent Unit(GRU) in crop identification. There is further evidence of SVM’ssuperior effectiveness: Ghayour et al. (2021) demonstrated SVM’ssuperiority over ANN, minimum distance (MD), Mahalanobis (MH),and maximum likelihood (MLC). Similarly, Sobieraj et al. (2022)compared SVM with RF and MLC, showing SVM’s superior per-formance to RF, which, in turn, outperformed decision trees (DT),with DT performing better than MLC. Additionally, Shih et al. (2018)analysis comparing SVM, DT, ANN, and RF revealed varying supe-riority between SVM and DT, depending on the analyzed data. It’sworth mentioning Maxwell et al. (2014a,b, 2015), which also high-light SVM’s greater effectiveness compared to RF. However, studiesby Maxwell and Warner (2015) and Burkholder et al. (2011) in com-parative analyses show RF’s advantage over SVM. The ambiguityin this meta-analysis is further deepened by a series of publica-tions demonstrating similar accuracy for models based on SVMand RF. For example, we can mention the publication by Volke andAbarca-Del-Rio (2020), who demonstrated the superiority of SVMand RF over MLC. Li et al. (2016), and Duro et al. (2012) also foundboth methods to exhibit similar effectiveness, surpassing DT inthis regard. In another study by Cracknell and Reading (2014), SVMand RF achieved better accuracy than ANN. Additionally, Maxwellet al. (2018) research shows varying effectiveness, with SVM out-performing RF in some cases (also compared to DT and ANN). Inthe literature, there are other examples of RF’s clear superiority,such as when compared to SVM and DT Zhao et al. (2024) or MLC(Mousavinezhad et al., 2023).The above overview indicates a lack of unequivocal certaintyregarding the selected methods. Depending on the type of classi-fication task, the processed data, and certainly the training data,comparing different ML methods can yield varying results. Analy-ses specifically focused on methodological effectiveness concerningthese task aspects are relatively scarce. However, let’s highlightsome relevant studies. Shang et al. (2018) in their work analyzedthe impact of training sample size on classification accuracy us-ing Landsat-8 images. The methods considered included SVM, RF,DT, MLC, and Naive Bayes (NB). SVM achieved the best perfor-mance, with overall classification accuracy increasing alongsidethe training sample size for all algorithms, except for NB. Ramezanet al. (2021) study compared SVM, RF, Gradient Boost (GBM), k-Nearest Neighbors (kNN), Single-Layer Perceptron (SLP) ANN, andLearning Vector Quantization (LVQ) for LULC classification. Theyused training data ranging from very small (40 pixels) to very large(10,000 pixels). RF and GBM achieved the best results, even with aslight decrease in accuracy as the training sample size decreased.Notably, SVM and ANN, especially the latter, were sensitive to thisphenomenon. Another example of the efficiency analysis of se-lected methods (SVM, RF, and MLC) can be found in (Kupidura andNiemyski, 2024). The study showed an increase in classificationaccuracy with an increase in the size of the training sample, butit also showed different dynamics of this increase, depending onthe method. With complete training data, MLC showed the highesteffectiveness, but its effectiveness using small training sampleswas definitely the poorest. SVM was characterized by the greatestimmunity to a small size of training sample. Fu et al. (2023) – theiranalysis explored the impact of training sample size on crop identi-fication accuracy using RF. While the literature contains numerousexamples of similar analyses, this study specifically focused on cropidentification. Zheng and Jin (2020) in their research compared DT,RF, XGB. The results highlighted the strong dependence of classifi-cation effectiveness on the training sample size, with DT showingweaker performance. In summary, the choice of ML method shouldconsider the specific context, available data, and the desired trade-offs between accuracy and computational efficiency.Budach et al. (2022), in their comprehensive analysis, alsodemonstrate the significant impact of training data quality on ML

accuracy. In a slightly different context – regression rather thanclassification – they investigated the influence of training data onthe effectiveness of regression trees, kNN, ANN, and RF. An inter-esting study by Figueroa et al. (2012) explored the prediction ofthe necessary sample size for achieving the expected classificationaccuracy. Additionally, research and discussions regarding the im-pact of training sample size on ML effectiveness can be found inpublications such as Raudys and Jain (1991) and Halevy et al. (2009).From the overview presented above, we can draw three key con-clusions:
i. SVM, RF, and XGB are among the most popular and effectiveML methods. While SVM and RF frequently appear in variousstudies, XGB often demonstrates high performance and is oftenranked as the best choice in comparisons.ii. The size of the training sample significantly impacts ML ef-fectiveness. Larger training samples generally lead to better per-formance, but this relationship is not uniform across all methods.iii. The nature of this impact varies for different methods, mak-ing it less straightforward to generalize. Some methods are moresensitive to changes in sample size than others.
The above conclusions are both the motivation for undertakingthe research described in this article and also determine the adoptedmethodology of this research. The 3 most popular or most effectiveML methods mentioned in the previous paragraph, SVM, RF andXGB, were analyzed. The study itself, however, concerned the ef-fectiveness of these methods in the classic task of classifying basicLULC classes and analyzing the dynamics of this effectiveness.

2 Materials and Methods

The aim of our research was to analyze the dynamics of the effec-tiveness of selected ML methods used with great success in remotesensing. This goal dictated the methodology of the analysis. Itwas not an analysis of the accuracy of individual classes, or thedependence of classification accuracy on selected data, etc.Below we present the characteristics of the imagery on whichthe described research was conducted, the methods tested, and themethodology of the research itself.
2.1 Methodology

The general scheme of the methodology is presented in Figure 1.The methodology written in points is as follows:
i. Selection of test areas.ii. Classification of land cover based on visual interpretation toprepare training and test data.iii. Drawing training samples of different sizes.iv. Performing classification using cross-validation with selectedML methods.v. Accuracy analysis and interpretation of results .

Details regarding each stage of the study are presented in the fol-lowing subsections.
2.2 Test imagery

The analysis used fragments of Sentinel-2 satellite scenes from thearea of Warsaw (Poland) and its surroundings. To ensure diver-sity and statistical credibility of the data, photos from 3 differentdates were selected for analysis, and within the scenes, 3 areas of4 km x 4 km were chosen. They differ in the characteristics of landcover. Individual areas from the same dates were treated in theclassification and test process as one whole. This means that boththe training data, the model, and the test data were common to allof them. The selected areas are presented in Figure 2, while the
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Table 1. Details of test imagery
Image symbol Date of aquisition Imagery type Spectral bands GSD Number

of pixels

A 19.04.2020 Sentinel-2 L2A 2, 3, 4, 8 10 m 480 000B 09.05.2020 (blue, green, red,C 22.08.2020 near infrared)

Figure 1. General scheme of the methodology for analyzing the effec-tiveness of ML algorithms

details of the photos are presented in Table 1. Figure 3 presents 3fragments of the satellite scene that make up a single test image.
2.3 Definition of the analyzed land cover classes

In order to ensure full credibility of the obtained results, the en-tire test areas were vectorized. Five land cover classes were distin-guished:
i. built-up area – building complexes or other architectural ob-jects e.g. roads;ii. soil – crop fields not covered by vegetation, river patches,sand mines;iii. water – water bodies e.g. ponds, lakes, reservoirs or water-courses;iv. forest – forests, bushy areas;v. low vegetation – meadows, cultivated fields covered with veg-etation.
These classes were identified through visual interpretation, in-dependently on each of the 9 images (3 test areas and 3 dates). Anexample result of such vectorization for one of the areas based on asingle photo is presented in Figure 4.

2.4 Selection of training samples

In order to ensure the appropriate precision of the analysis, the clas-sification was performed in 20 variants of the sample size – from100 to 200,000 for all classes in total. The number of samples for in-dividual classes varied, as this was proportional to the overall shareof a given class in the image. The drawing of training pixels tookplace randomly and independently for each of the dates of the im-ages being taken, which is why their number for individual classesmay also vary, mainly due to the changing proportional share ofindividual classes in the entire analyzed area, but also due to therandom nature of the selection of training pixels. Details regardingindividual variants: numbers of training pixels – general and forindividual classes for individual variants and dates are presented inTables 2–4.
2.5 Brief presentation of the tested ML algorithms

In the article, we present the results of the comparison of threepopular ML algorithms:
• Random Forests (RF),• Extreme Gradient Boosting – XGBoost (XGB),• Support Vector Machine (SVM).

Random ForestsRF (Ho, 1995, 1998; Breiman, 2001) is an ML method that has beengaining popularity in remote sensing image processing for sometime due to its high effectiveness, resistance to overfitting, andrelatively high resistance to the quality of training data (Belgiuand Drăguţ, 2016). It is an ensemble learning method – it involvesthe use of a large number of individual decision trees. Single deci-sion trees are effective in extracting classes of a multimodal nature,while at the same time suffering from a tendency to overfit. Thecomposition of a random forest – many decision trees built on ran-domly limited data – helps to significantly reduce the tendency tooverfit, while maintaining the advantages of individual trees. Thismakes it applicable in the classification of various types of remotesensing data. The key factor influencing the accuracy and com-putational efficiency of the model is the number of decision trees:increasing the number of trees can make the model less prone tooverfitting (Liaw et al., 2002). On the other hand, it increases thecomputational complexity of the model, which can slow down thetraining and classification process. The second important parame-ter is the number of features in each split in a single decision tree.Many studies use the value of this parameter equal to the squareroot of the number of variables (Duro et al., 2012).
XGBoostXGB (Chen and Guestrin, 2016) is also a method of ensemble learn-ing, also based on decision trees. The difference is that while in thecase of RF the trees are generated independently, in XGB they aregenerated sequentially, and each new tree corrects the errors of theprevious one. The correction is controlled by the gradient of the lossfunction. The final result is the sum of the predictions of all trees,with models that handle errors better having a greater impact onthe final result. The process includes a regularization mechanismthat penalizes for overcomplicating models or assigning too-largeweights to individual features, which avoids overfitting models
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Figure 2. Location of test areas

Figure 3. Example of test images, color composition RGB 843

Table 2. Training sample size for image A (taken on 19.04.2020): total (in pixels and in percentage,relative to the size of the test area) and for individual classes (in pixels)
overall overall built-up area soil forest water low[px] relative [%] [px] [px] [px] [px] vegetation [px]

100 0.02% 16 35 25 5 19200 0.04% 36 69 41 9 45300 0.06% 45 127 56 17 55500 0.10% 78 219 91 26 86700 0.15% 116 303 124 32 1251000 0.21% 160 441 171 46 1821500 0.31% 252 650 255 70 2732000 0.42% 346 875 327 94 3583000 0.63% 531 1281 494 141 5535000 1.04% 892 2139 793 241 9357000 1.46% 1258 2999 1106 348 128910000 2.08% 1792 4275 1585 490 185815000 3.13% 2689 6415 2392 730 277425000 5.21% 4411 10728 4006 1204 465130000 6.25% 5279 12923 4814 1414 557050000 10.42% 8749 21552 8026 2336 933775000 15.63% 13212 32329 11878 3465 14116100000 20.83% 17632 43121 15909 4604 18734150000 31.25% 26671 64637 23764 6778 28150200000 41.67% 35635 86108 31641 9020 37596



Kupidura et al., 2024 | 57

Table 3. Training sample size for image B (taken on 09.05.2020): total (in pixels and in percentage,relative to the size of the test area) and for individual classes (in pixels)
overall overall built-up area soil forest water low[px] relative [%] [px] [px] [px] [px] vegetation [px]

100 0.02% 14 29 21 4 32200 0.04% 33 59 44 9 55300 0.06% 44 96 66 15 79500 0.10% 75 148 114 24 139700 0.15% 99 231 151 30 1891000 0.21% 151 331 213 34 2711500 0.31% 228 496 308 46 4222000 0.42% 302 670 407 65 5563000 0.63% 471 974 600 99 8565000 1.04% 779 1643 963 164 14517000 1.46% 1105 2303 1347 245 200010000 2.08% 1621 3310 1919 313 283715000 3.13% 2405 4943 2852 473 432725000 5.21% 4018 8253 4753 810 716630000 6.25% 4812 9936 5685 982 858550000 10.42% 8017 16562 9435 1615 1437175000 15.63% 11990 24819 14230 2510 21451100000 20.83% 15928 32999 18919 3441 28713150000 31.25% 23906 49576 28435 4048 43035200000 41.67% 31902 66286 37836 6670 57306

Table 4. Training sample size for image C (taken on 22.08.2020): total (in pixels and in percentage,relative to the size of the test area) and for individual classes (in pixels)
overall overall built-up area soil forest water low[px] relative [%] [px] [px] [px] [px] vegetation [px]

100 0.02% 9 24 33 2 32200 0.04% 23 45 70 5 57300 0.06% 38 65 102 12 83500 0.10% 72 96 157 28 147700 0.15% 97 129 222 39 2131000 0.21% 140 194 309 53 3041500 0.31% 215 296 475 77 4372000 0.42% 287 395 630 103 5853000 0.63% 437 594 930 147 8925000 1.04% 741 972 1561 227 14997000 1.46% 1003 1392 2212 312 208110000 2.08% 1410 1982 3139 477 299215000 3.13% 2149 2959 4744 695 445325000 5.21% 3618 4947 7912 1186 733730000 6.25% 4373 5922 9412 1434 885950000 10.42% 7327 9922 15623 2382 1474675000 15.63% 10995 14888 23512 3612 21993100000 20.83% 14672 19850 31367 4820 29291150000 31.25% 22019 29617 47031 7194 44139200000 41.67% 29226 39520 62674 9649 58931
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Figure 4. Example of vectorization result of a fragment of one of the testimages: Image B, acquisition date 09.05.2020.

Table 5. Tested classification variants
ML

algorithm parameter
tested

parame-
ters

variant
descrip-

tion

RF The numberof decision trees 50 RF50100 RF100

XGB The number of nodelevels in a single
decision tree

3 XGBoost35 XGBoost57 XGBoost79 XGBoost9

SVM
Gamma – parameter

defining the influence reach
of a single training example

0.00003 SVM030.00001 SVM010.000003 SVM003

(more effectively than in the case of RF: Allwright (2023); Kumar(2023)). It is assessed that XGB is characterized by greater efficiencyfor large data sets than RF (Kapoor and Perrone, 2021).There are many types of options and parameters that affect theoperation of the XGBoost algorithm. One of them is the booster type.We distinguish Gradient Boosting Tree (GBT), Gradient BoostingLinear, and Dart. The GBT booster (this type of algorithm was usedin the studies presented below) supports such parameters as num-ber of trees, learning rate, and maximum tree depth (maximumnumber of node levels in a single tree).
SVMSVM (Boser et al., 1992; Cortes and Vapnik, 1995) is an algorithmbased on the search for hyperplanes in the feature space that op-timally divide data into different classes. Originally designed todistinguish classes with linear separation, the use of kernel func-tions and kernel tricks allows it to also effectively solve problemsrelated to non-linear separation (Schölkopf, 2002). It is a methodconsidered especially effective for data sets with a large number offeatures/dimensions (Nalepa and Kawulok, 2018).In the case of the SVM method, we also deal with a large numberof options and parameters. The most important include the regular-ization parameter C, which helps control the size of the margin, thetype of kernel, the gamma parameter, which determines the influ-ence of a single training element (a higher gamma value leads to abetter fit of the model to the training data), the maximum numberof iterations, and the tolerance (difference between loss or resultbetween successive iterations) for the stopping criterion.
Tested classification variantsFor individual algorithms, some options and parameters were as-sumed to be constant (these were default values or those specified inthe literature analysis as optimal for the conducted experiment). Atthe same time, to assess a wider spectrum of possibilities of thesealgorithms, variable parameters were chosen, which were usedto test different variants of the process. The list of these variableparameters and their values are presented in Table 5.

The list of options and parameters for individual algorithms,which remained unchanged in various variants, is as follows:
• for RF:

– number of features in each split in a single decision tree:square root of the number of variables,
• for XGBoost:

– booster type: Gradient Boosting Tree;
– number of decision trees: 100;
– learning rate: 0.1;

• for SVM:
– regularization parameter C: 1.0;
– kernel type: radial basis function;
– maximum number of iterations: 1000;
– tolerance: 1e-04.
It should be emphasized that the conducted experiment wasnot aimed at analyzing the impact of the parameters of individualmethods, but at a general analysis of the effectiveness of selectedalgorithms. Therefore, it largely relied on default options and pa-rameters.

2.6 Accuracy assessment

In order to determine the accuracy of individual classification vari-ants, the following accuracy metrics, commonly used in the analysisof classification accuracy in remote sensing, were used:
• for individual land cover classes: F1-score (Hand et al., 2021),precision and recall (Powers, 2007);• generally for the entire classification: kappa coefficient (Cohen,1960) and overall accuracy (or overall success rate) (Labatut andCherifi, 2012) to determine the effectiveness o for precision andrecall (Hand et al., 2021):

precision = TPTP + FP , (1)

recall = TPTP + FN , (2)
where: TP – True Positive, FP – False Positive and FN – FalseNegative.
For F1-score (Hand et al., 2021):

F1 = 2 · precision · recallprecision + recall . (3)
For Kappa index (Sim and Wright, 2005):

kappa = Po – Pc1 – Pc
, (4)

where: Po – observed agreement, Pc – chance agreement.For overall accuracy:
OA = Cc

Co
, (5)

where: Cc – number of pixels classified correctly, Co – total numberof classified pixels.The entire test images were used for the accuracy analysis. Thenumber of test pixels was 480,000. Individual classes were identi-fied in the photointerpretation process.
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3 Results and discussion

Below, we present the results of the conducted research and theiranalysis. First, we provide an analysis performed for individualclasses (primarily based on F1-score values), and finally, an overallclassification analysis (mainly relying on the kappa coefficient).Due to the extensive number of conducted analyses and the result-ing comprehensive tables containing analysis outcomes for specificclasses, they have been included in the Appendix.Before proceeding with the presentation of results and analy-sis, we want to emphasize that the purpose of this research was toanalyze the performance of individual methods, rather than com-paring the accuracies obtained for different classes based on imageacquisition dates. These differences may arise from various factors,such as the varying characteristics of individual classes on differentdates, their consistency, or similarities to other classes. However,we want to focus on analyzing the differences in results obtainedby specific ML algorithms.
3.1 Built-up area

The results obtained for the built-up area class are presented inFigure 5 and Tables 9–11 in the Appendix.Firstly, a clear trend is visible in virtually every analyzed sce-nario: as the size of the training sample increases, classificationaccuracy improves, although the dynamics of this trend can vary.When using the largest training samples, the best results wereachieved with XGBoost7, which was slightly better (with an F1 scoredifference at the level of thousandths) than XGBoost9 and XGBoost5.Applying XGBoost3 consistently yields noticeably weaker resultscompared to scenarios with more tree levels, likely indicating thatXGBoost3 is too inflexible. However, these differences are still small,at the level of thousandths or hundredths. Additionally, there is aconsistent (and equally small) advantage of XGBoost models overRandom Forest (RF). When comparing the two RF models, RF100performs better due to its larger number of decision trees, althoughthe difference is only at the level of thousandths.With a smaller training sample size, the RF variants performslightly better than XGBoost (though there are occasional excep-tions). One of the SVM variants – with the smallest gamma pa-rameter value: SVM003 – is worth commenting on. For the leastnumerous training sample, it consistently gives much better re-sults than the other models (from a few hundredths to even over0.1). This advantage consistently decreases as the size of the train-ing sample increases. In the case of the largest training samples,the accuracy obtained using SVM003 is clearly worse than the bestresults obtained (by 0.02–0.03).The accuracies obtained using SVM with greater gamma param-eter values are noticeably lower. The values obtained for SVM03deviate from the results of other methods from about 0.1 to even 0.2– depending, on the size of the training sample, among other fac-tors. The SVM01 variant gives slightly better results, but still clearlylags behind the results obtained by other models. This indicates thesignificant importance of overfitting that occurs in SVM modelswhen using too large a gamma value (Wainer and Fonseca, 2021).This is also confirmed by the ambiguous dependence of classifica-tion accuracy on the size of the training sample. While with the useof other variants it increases quite consistently with the trainingsample, in these two cases (especially SVM03) we are dealing withlarge fluctuations of this dependence. This seems to indicate a largedependence on the quality – or “purity” – of the training sampleand problems with generalizing the issue, which would indicateoverfitting. It should be noted that the built-up area class is de-manding to extract due to its large diversity and potential similarityof features to other land cover classes.

3.2 Soil
The results obtained for the soil class are presented in Figure 6 andin Tables 12-14 in the Appendix.The results show similar tendencies to the case of the built-up
area class. A clear increase in accuracy with the size of the trainingsample is visible, although the fluctuations of this dynamic are lessnoticeable (than with the built-up area) in the case of the SVM03and SVM01 variants, which still perform the worst among the ana-lyzed, though in this case the difference is not that great. This maybe due to the lesser diversity of pixel values of this class, comparedto the built-up area class, and therefore less exposure to overfitting.The highest accuracy with the use of the largest training samplewas again obtained using the XGBoost algorithm, in the followingorder: XGBoost7, XGBoost9, XGBoost5, XGBoost3, with the differ-ences being, again, very small (at the level of thousandths of F1).Slightly worse (about one hundredth of F1) was obtained using RF(RF100 again imperceptibly better than RF50).Again, in the case of the smallest training sample, the best re-sults were obtained using the SVM003 variant, although not sounambiguously: in 2 cases (Images A and B) a clear advantage ofthis variant is noticeable, but in the third case (Image C) it givesslightly worse results than other best variants (in this case it is theXGBoost5 variant, and the difference between them is 0.012 F1).
3.3 Forest
The results obtained for the forest class are presented in Figure 7and in Tables 15-17 in the Appendix.In the case of this class, essentially one significant change isnoticeable, compared to the two classes analyzed above. This con-cerns the efficiency of SVM variants: here, such a large drop inaccuracy when using larger gamma parameter values is not notice-able. This may be due to a certain distinctiveness of pixel valuesrepresenting forests, as well as their relative homogeneity. Suchfeatures of the analyzed class could prevent the effect of overfittingand, as a result, a decrease in accuracy. Still generally better results(among SVM variants) are obtained using variants with a smaller
gamma value, but these differences are much smaller. Generally,the efficiency of all 3 SVM variants is relatively higher: with thelargest number of training samples, the accuracy obtained usingthe SVM003 variant and, to a lesser extent, SVM01, are comparablewith other best methods (again these are XGBoost7, XGBoost5 andXGBoost9 variants – with F1 value differences at the level of 0.001).However, the previously observed advantage of SVM003 over otheralgorithms when using a small training sample also becomes theshare of SVM01 here. And it is generally larger than in the case ofother classes.
3.4 Water
The results obtained for the water class are presented in Figure 8and in Tables 18-20 in the Appendix.Here we can observe very strong fluctuations in the dynamicsof the effectiveness of SVM variants: SVM03 and, to a lesser extent,SVM01, i.e., with larger gamma parameter values. It is worth notingthat in the case of this class, individual samples were very few dueto the small share of water surfaces in the test area. While theother variants produced stably effective models, these 2 mentionedvariants probably overfitted. Interestingly, this does not apply toone of the test images: Image C. The analysis of images allows us toassume that this is a matter of greater homogeneity of pixels of thisclass in the image from this date. After all, the results obtained forthis image very much resemble the results obtained for the forestclass. Besides, one can notice a high accuracy of classification, thehighest with the most numerous training samples, with differences– excluding SVM03 and SVM01 – both between variants and trainingdata of different sizes. This is probably due to the fact that this isa class spectrally significantly different from the other analyzedclasses.
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Figure 5. Diagrams of F-1 score values for the built-up area class, in relation to the size of the training sample (the scale of the training sample size islogarithmic)
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Figure 6. Diagrams of F-1 score values for the soil class, in relation to the size of the training sample (the scale of the training sample size islogarithmic)
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Figure 7. Diagrams of F-1 score values for the forest class, in relation to the size of the training sample (the scale of the training sample size islogarithmic)
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Figure 8. Diagrams of F-1 score values for the water class, in relation to the size of the training sample (the scale of the training sample size islogarithmic)
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3.5 Low vegetation

The results obtained for the low vegetation class are presented inFigure 9 and in Tables 21-23 in the Appendix.The results obtained for this class show significant similari-ties to the results for the other classes. With the largest trainingsamples, the models based on XGBoost are characterized by thebest efficiency, although this time the best results were achievedusing XGBoost5, with the differences between individual variantsbeing again very small. However, with smaller samples, their ac-curacy clearly drops, significantly below the accuracy not only ofSVM003, which traditionally already shows the highest efficiency,understood as high effectiveness with few training samples, butalso below the accuracy of both RF variants.
3.6 Overall classification

The results obtained for the entire images are presented in Figure 10and in Tables 24-26 in the Appendix.The values determining the accuracy of the entire classificationare, of course, the result of the accuracy of identifying individualclasses. Thus, of all the scenarios analyzed, the variants of theXGBoost algorithm were characterized by the highest efficiencywhen using the training sample with the highest number of pix-els. Consistently, the best results were obtained for the XGBoost7variant, followed by XGBoost5, XGBoost9 – with the differences inkappa values obtained for the best results being about 0.001. TheXGBoost3 variant turned out to be slightly weaker in this respect,but the difference in kappa values was only a few thousandths. Atthe same time, however, the XGBoost algorithms proved to be themost sensitive to changes in the size of the training sample. In thecase of scenarios with the least numerous training sample, it wasthe XGBoost variants that showed the lowest efficiency, excludingthe SVM03 variant, which turned out to be the worst of all analyzedin every respect. The variant that coped best with a small trainingsample was another SVM variant: SVM003. It consistently and sig-nificantly outperformed other tested variants in this respect (insome cases close to 0.1 kappa difference). At the same time, it gavevery good accuracy with large training samples, worse than the bestvariants only by about 0.01 kappa, but better than those obtainedthanks to RF.Tables 6–8 contain a statistical summary of kappa values for allscenarios (for all types of training samples) for individual variants.They indicate that in the overall comparison, the SVM003 variantperforms the best. Both the mean and median values are unambigu-ously (and often significantly) the best for this variant. Of course,the highest kappa values were obtained for selected XGBoost scenar-ios, but at the same time, the lowest values were obtained for otherscenarios of XGBoost variants (excluding SVM03). On the otherhand, the SVM003 variant has the highest minimum kappa valueamong the analyzed scenarios – consistently for all test images.Combined with the smallest standard deviation value, this allowsus to state that this is the most stable variant, resistant to imper-fections in training data. Considering the differences between theresults obtained by the 3 SVM variants, we might conclude that thisis an algorithm very sensitive to the value of the gamma parameter.The differences between the results of variants of other algorithmswere relatively small.It’s worth noting that the SVM003 variant is better than theothers with training samples of a total pixel count of about 10,000(and smaller). In the case of samples with a count of 15,000 and25,000 pixels, it shows similar accuracy to the XGBoost variants.Only in the case of samples of 30,000 (so, very large) and larger, canwe observe the superiority of selected XGBoost variants, increasingwith the training sample.

Table 6. Image A; statistical summary of Cohen’s kappa coefficient val-ues for all scenarios (dependent on the size of the training sam-ple) for each variant
variant kappa

med. avg. st. dev. max. min.

XGBoost3 0.681 0.655 0.049 0.695 0.521XGBoost5 0.675 0.655 0.049 0.702 0.538XGBoost7 0.668 0.653 0.047 0.704 0.544XGBoost9 0.663 0.651 0.045 0.702 0.545RF50 0.673 0.657 0.038 0.689 0.536RF100 0.677 0.658 0.041 0.691 0.525SVM03 0.608 0.583 0.061 0.639 0.433SVM01 0.665 0.649 0.039 0.681 0.542SVM003 0.687 0.676 0.021 0.695 0.609

Table 7. Image B; statistical summary of Cohen’s kappa coefficient val-ues for all scenarios (dependent on the size of the training sam-ple) for each variant
variant kappa

med. avg. st. dev. max. min.

XGBoost3 0.651 0.626 0.050 0.668 0.503XGBoost5 0.642 0.622 0.051 0.673 0.502XGBoost7 0.632 0.618 0.051 0.674 0.497XGBoost9 0.627 0.616 0.049 0.672 0.499RF50 0.634 0.622 0.036 0.657 0.533RF100 0.638 0.624 0.037 0.660 0.526SVM03 0.575 0.562 0.039 0.599 0.465SVM01 0.628 0.619 0.025 0.645 0.551SVM003 0.652 0.644 0.023 0.664 0.575

Table 8. Image C; statistical summary of Cohen’s kappa coefficient val-ues for all scenarios (dependent on the size of the training sam-ple) for each variant
variant kappa

med. avg. st. dev. max. min.

XGBoost3 0.737 0.722 0.037 0.753 0.616XGBoost5 0.732 0.718 0.039 0.756 0.610XGBoost7 0.726 0.716 0.039 0.756 0.601XGBoost9 0.721 0.714 0.038 0.755 0.601RF50 0.729 0.719 0.031 0.744 0.624RF100 0.730 0.720 0.031 0.746 0.628SVM03 0.680 0.664 0.043 0.703 0.518SVM01 0.721 0.706 0.031 0.732 0.625SVM003 0.739 0.728 0.023 0.748 0.666
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Figure 9. Diagrams of F-1 score values for the low vegetation class, in relation to the size of the training sample (the scale of the training sample sizeis logarithmic)
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Figure 10. Diagrams of Cohen’s kappa coefficient values in relation to the size of the training sample (the scale of the training sample size islogarithmic)
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4 Summary and Conclusions

The conducted analyses allow for the presentation of several conclu-sions regarding the effectiveness of the 3 analyzed ML algorithms:RF, XGB, and SVM.Firstly, in all cases, it was clear that as the size of the trainingsample increased, so did the effectiveness of the classification. How-ever, the nature of this relationship was different for each algorithm.The size of the training sample was most significant in the caseof the XGB algorithm variants. For the largest training samples(from 30,000 to 200,000 pixels), the XGB algorithm demonstratedthe highest effectiveness. However, this effectiveness significantlydecreased as the training sample size decreased. Although this rulegenerally applies to all analyzed methods, the decrease was greatestin the case of XGB. As a result, for smaller samples (below 10,000pixels), XGB variants showed lower effectiveness than the best SVMvariant, and for the smallest samples (from 100 to 1,000 pixels),they showed the lowest effectiveness among the tested variants(excluding 2 weaker SVM variants, more on that below). On theother hand, the size of the training sample was least significant inthe case of the SVM method, although this mainly applies to one ofthe analyzed variants – with the smallest gamma parameter value,therefore the least prone to overfitting. The decrease in the effec-tiveness of this algorithm with the reduction of the training samplesize was the smallest among all analyzed variants. Although theeffectiveness was slightly lower than the best XGB variants for thelargest training samples, their effectiveness equaled for samples be-low 30,000 pixels, and below 10,000 pixels, the SVM algorithm gaveunequivocally and very significantly the best classification results.Generally, it can be stated that it was this algorithm that allowedfor the best results across all analyzed scenarios. The RF algorithmperforms moderately well. Although the decrease in accuracy withthe reduction of the training sample is not as significant as in thecase of XGB, in none of the analyzed scenarios does RF give the bestresults: for the largest training samples its effectiveness is slightlylower than XGB (comparable to SVM), and for smaller ones it isclearly lower than SVM (although slightly better than XGB).The obtained results confirm the dependency observed in otherpublications (Shang et al., 2018; Ramezan et al., 2021; Fu et al., 2023;Kupidura and Niemyski, 2024): a larger training sample size re-sults in greater classification accuracy. Confirmation is also found inthe relatively high effectiveness (compared to other algorithms) ofSVM with a small number of training data (Kupidura and Niemyski,2024). The above results also correspond with the results of otherstudies, confirming the high effectiveness of SVM (Koppaka andMoh, 2020; Ghayour et al., 2021; Sobieraj et al., 2022; Maxwell et al.,2014a,b, 2015; Volke and Abarca-Del-Rio, 2020). The obtained re-sults also seem to confirm previous studies confirming the higheffectiveness of XGB, especially compared to RF (Liu et al., 2021;Seydi et al., 2022). To a large extent, it was also possible to confirmthe general ambiguity resulting from the comprehensive analysis ofthe literature on the subject: different algorithms may have differ-ent effectiveness, depending on the conditions (in this case: the sizeof the training sample). On the other hand, in the obtained results,no confirmation was found of earlier studies indicating a greater ef-fectiveness of RF compared to, for example, SVM (Mousavinezhadet al., 2023; Zhao et al., 2024).The individual algorithms were tested in various variants – withdifferent parameter values – specific to each method. The analysisresults show that in the case of XGB and RF algorithms, the impactof these parameters is relatively small. For the XGB algorithm, thebest results were obtained for 7 node levels – in the case of a largernumber of levels, a decrease in model effectiveness was observed(very small, but clearly on all 3 test images), which could indicateincreasing overfitting. On the other hand, a smaller number ofnode levels could result in too little model flexibility. However, aswe mentioned, the differences between individual variants are verysmall. In the case of RF, better results were obtained thanks to the

model using a larger number of decision trees, but here too thedifference between the effectiveness of both variants is small. Thevalue of the gamma parameter, on the other hand, was of greatimportance. One of the SVM variants, with the smallest gammavalue, showed excellent effectiveness against all tested variants,while the remaining 2, with larger gamma values, were alreadymuch less effective, and the variant with the largest gamma valueclearly lagged behind all tested algorithms, which can be explainedby model overfitting.In light of the above, it is difficult to unequivocally indicatethe best algorithm. The recommendation may depend on the sizeor quality of the training sample. The highest accuracy amongthe analyzed scenarios was achieved thanks to the XGB algorithm.However, the condition was a very large, high-quality trainingsample. In the case of a smaller number of pixels, the SVM algorithmproved to be the best solution, which allowed for the constructionof an effective model despite worse training data, but provided thatthe gamma parameter value was properly tuned.When analyzing the results, conclusions, and recommendationspresented above, it should be remembered that they were based ona specific number of features and classes. The performance of theselected ML algorithms may vary depending on the nature of thetask.

Appendix

Tables 9–26 are attached in a file available at:https://rgg.edu.pl/SuppFile/191766/1/.
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