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Abstract
Mineral classification using hyperspectral imaging represents an essential field of research improving the understanding ofgeological compositions. This study presents an advanced methodology that uses an optimized 3D-2D CNN model for automaticmineral identification and classification. Our approach includes such crucial steps as using the Diagnostic Absorption Band (DAB)selection technique to selectively extract bands that contain the absorption features of minerals for classification in the Cupritezone. Focusing on the Cuprite dataset, our study successfully identified the following minerals: alunite, calcite, chalcedony,halloysite, kaolinite, montmorillonite, muscovite, and nontronite. The Cuprite dataset results with an overall accuracy rate of95.73 % underscore the effectiveness of our approach and a significant improvement over the benchmarks established by relatedstudies. Specifically, ASMLP achieved a 94.67 % accuracy rate, followed by 3D CNN at 93.86 %, SAI-MLP at 91.03 %, RNN at89.09 %, SPE-MLP at 85.53 %, and SAM at 83.31 %. Beyond the precise identification of specific minerals, our methodology provesits versatility for broader applications in hyperspectral image analysis. The optimized 3D-2D CNN model excels in terms of mineralidentification and sets a new standard for robust feature extraction and classification.
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1 Introduction

Hyperspectral imaging has become increasingly important in thepast few decades in various remote sensing applications, includingmineral exploration, environmental monitoring, and agriculture.One of its main applications is mineral identification, where dis-tinctive spectral signatures, which depend on chemical composi-tion and crystal structure, are examined for classification purposes(Dennison et al., 2004). Hyperspectral imaging offers significantadvantages in mineral identification by providing a more detailedspectral information as compared with multispectral or monospec-tral imaging techniques. This capability facilitates the discrimi-nation of minerals with similar spectral signatures. In addition,hyperspectral imaging allows us to identify minerals in poorly lit,heavily vegetated or isolated areas and distinguish minerals mixedwith or hidden in other materials (Chakraborty et al., 2022).Researchers have previously explored the classification of min-erals in hyperspectral images using several traditional methods.

Alongside the Spectral Angle Mapper (SAM) (Yuhas et al., 1992),Spectral Information Divergence (SID) (Chang, 1999), the SpectralCorrelation Mapper (SCM) (De Carvalho and Meneses, 2000), othermethodologies, including the Bayesian Classifier (Langley et al.,1992), K-means Classification (El Rahman, 2016), and Spectral In-dices (Kumar et al., 2015), have undergone a thorough examination.SAM quantifies the spectral angle between the pixel spectral sig-natures (Tripathi and Govil, 2019), SID measures informationaldivergence, and SCM is based on spectral correlation (Li and Niu,2015). The Bayesian Classifier uses conditional probabilities forclassification (Kozoderov et al., 2015), K-means Classification isbased on spectral signature similarity (Ranjan et al., 2017), andSpectral Indices employ specific band ratios (Mahlein et al., 2013).While these traditional techniques have proven effective in extract-ing distinctive spectral features from minerals, it is paramountto acknowledge their specific limitations: Notably, these methodsencounter challenges when confronted with the inherent complex-ity of hyperspectral data and distinguishing minerals with similar
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spectral signatures. In addition to these challenges, the scarcity oflabeled samples poses a significant obstacle to training deep learn-ing models for mineral identification and classification (Rao et al.,2019). 2019). To address these issues, we propose an integration ofthe diagnostic Diagnostic Absorption Band (DAB) selection tech-nique to select and extract bands that contain the absorption char-acteristics of the minerals selected for classification in the Cupritearea. This method, specifically, allows us to target spectral bandswhere the absorption characteristics of the minerals are most pro-nounced, facilitating their distinction and precise identificationin hyperspectral data. Moreover, by reducing the spectral dimen-sions, we simplify the complexity of the data while preserving theessential information necessary to extract robust features for clas-sification. In this way this approach improves the performance andreliability of deep learning models for hyperspectral image analysisin mineral classification Hecker et al. (2019).Deep learning has become the current approach to Hyperspec-tral Image Categorization (HSI) as it can independently capturehierarchical features, ranging from basic to complex, directly fromhyperspectral data. These captured features have proven highly ef-fective in a number of visual industrial missions. However, despitethe widespread application of deep learning to remote sensing andhyperspectral image analysis, most studies have focused mainly onurban, landscape, and vegetation categories, using data sets suchas: the Pavia University, the Salinas scene, and Indian pines. Inparticular, research on mineral classification is still rare and limited.Mou et al. (2017) used Recurrent Neural Networks (RNN) toclassify hyperspectral images accurately. Their RNN model wasspecifically designed to process the sequential hyperspectral pixeldata and incorporated a new activation function, PRetanh, whichsignificantly improved the data processing capabilities (Mou et al.,2017). Regarding the application of mineral classification based onhyperspectral images, (Deng et al., 2021) have introduced a methodfor classifying minerals in hyperspectral images based on the At-tenuation Spectral Absorption Index (ASAI) to extract absorptioncharacteristics from diagnostic mineral bands. These features areintegrated to construct an ASAI vector and are subsequently appliedto develop a Multilayer Neural Network (MLP) model for mineralidentification. While this approach focuses primarily on spectral ab-sorption attributes, it neglects explicit considerations of the spatialcomplexities inherent in hyperspectral data (Deng et al., 2021).Convolutional Neural Networks (CNNs) have garnered consider-able praise for their effectiveness in feature extraction due to theirinherent capacity to learn hierarchical representations from rawdata. It is essential to clarify the roles of the different types of CNNin this context. A 1D CNN is designed to process one-dimensionaldata, such as time series, audio signals, or sequences where infor-mation is ordered along a single dimension (Ige and Sibiya, 2024).2D CNNs excel at spatial feature extraction thanks to their abil-ity to process two-dimensional data, such as images (Kong et al.,2022). Meanwhile, 3D CNNs have a superior ability to extract spec-tral features compared to 1D and 2D CNNs (Ma et al., 2023). In themineral identification process, the robustness of CNNs is demon-strated by their ability to capture complex spectral patterns fordistinguishing different minerals (Ozdemir and Polat, 2020). Thisprowess is particularly notable when considering the architectureof CNNs, which comprises 3D and 2D convolutional layers. 3D con-volutional layers play a crucial role in hyperspectral data processing,as they are designed to address the extra spectral dimension presentin hyperspectral images. These layers can effectively capture thenuanced spectral characteristics specific to different minerals byanalyzing spectral information at multiple wavelengths simulta-neously, thus enhancing the model’s discrimination capabilities.Meanwhile, 2D convolutional layers complement 3D convolutionallayers by focusing on capturing spatial information in the givenimage. They analyze the spatial relationships between neighbor-ing pixels, enabling the model to discern features and structuresthat help identify mineral types according to their SpectroSpatial

relationships. This information is essential for accurate mineralidentification, especially in cases where minerals have similar spec-tral signatures but differ in spatial distribution or arrangement(Fırat et al., 2022).Zhang et al. (2022) proposed the application of deep learningmethodologies for mineral classification in hyperspectral remotesensing data by developing and evaluating three distinct neural net-work architectures, including a hybrid 1D and 2D CNN. 1D neuralnetworks can hardly capture spectral information as they are lim-ited in terms of integrating spatial-contextual information. Theselimitations highlight the importance of using more complex ar-chitectures, such as 2D or 3D neural networks, which can exploitinherent spatial and spectral features more effectively, thereby im-proving the classification performance (Zhang et al., 2022). Re-garding the application of 3D and 2D convolution neural networks,citet28 proposed the hybridSN architecture, which uses spatial andspectral information in addition to 3D and 2D convolutions, whichis superior to recent urban and vegetation classification approaches,as confirmed by experiments on three standard datasets. In addi-tion, the hybrid SN model offers superior computational efficiencyand achieves high performance, regardless of limited training data(Roy et al., 2019). Ghaderizadeh et al. (2021) presented a novel ap-proach proposing a hybrid 3D and 2D convolution model for urbanand vegetation classification of Hyperspectral Images (HSI). Theirarchitecture exploits spatial and spectral features to improve classi-fication performance obtained from 3D and 2D convolutions. Thiscombination of 3D and 2D CNN reduces the number of training pa-rameters and is less computationally complex (Ghaderizadeh et al.,2021).Our research introduces a new approachan innovative approachto mineral identification in hyperspectral images by proposing ahybrid 3D-2D CNN architecture optimized for automatic mineralclassification. In hyperspectral imaging, 2D CNNs and 3D CNNsare often used together to take advantage of their ability to com-bine spatial and spectral features. Specifically, the 3D CNN extractsselected spatial features, which the 2D CNN then refines. This com-plementary relationship between the 3D and 2D CNNs allows for acomplete extraction of the spatial and spectral features of each pixel,as observed in several studies, such as those by Roy et al. (2019) andGhaderizadeh et al. (2021). In general, the 3D-2D CNN combina-tion is often considered the most effective approach for identifyingand classifying hyperspectral images due to its ability to capturespectral features (each pixel containing a rich spectral signature)and spatial features (patterns and structures visible across spectralbands). It fully exploits the potential of hyperspectral data, con-sidering the complex relationships between spectral and spatialinformation, and holds a promise for the future of mineral classifi-cation.Unlike previous studies, which mainly focused on hybrid ar-chitectures for urban and vegetation classification, our innovativeapproach applies these hybrid models for the first time in mineralclassification. A careful integration of spectral and spatial infor-mation, enables our hybrid CNN model to identify minerals moreaccurately, with significantly higher efficiency which outperformstraditional methods and previous studies in this field. In addition,our optimized hybrid model substantially reduces the number ofparameters to be trained as compared to the existing 3D-2D CNNmodels while maintaining comparable performance. This superiorefficiency makes our model a practical and cost-effective solutionfor mineral classification in hyperspectral images. By refining sev-eral hyperparameters and optimizing the model architecture, weaim to improve the accuracy of mineral classification in hyperspec-tral images further.The following sections of our study are structured to provide acomprehensive explanation of our approach. Section 2 details thematerials and methods and offers an overview of our optimized 3D-2D CNN hybrid architecture. Section 3 presents an in-depth analysisof the results, comparing our optimized 3D-2D CNN with existing
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approaches to highlight its superiority in mineral classificationtasks. Finally, Section 4 concludes our study by summarizing themain results and proposing directions for future research.

2 Materials and methods

2.1 Diagnostic Absorption Bands selection

Hyperspectral images contain large volumes of spectral data, withsome bands potentially redundant or containing only minimal in-formation relevant for mineral classification (Peyghambari andZhang, 2021). Mineral classification in hyperspectral images hasbeen a significant challenge in geology and earth sciences (Van derMeer et al., 2012). These images capture detailed spectral informa-tion, allowing us to identify minerals based on their unique lightabsorption properties (Laukamp et al., 2021). Different mineralsexhibit distinct absorption bands in their spectra, acting as finger-prints (Figure 1). Analyzing these spectral signatures allows us todistinguish different types of minerals (Beiswenger et al., 2018).DAB selection method focuses on identifying specific absorptionfeatures in the spectral signature of minerals. Each mineral exhibitsunique absorption characteristics at particular wavelengths, whichare diagnostic criteria to differentiate it from other minerals (Table1). In our study, the DAB technique was implemented using ENVIsoftware, a powerful tool for hyperspectral image analysis (Xingand Gomez, 2001). The process begins with the analysis of the cen-tral absorption frequencies of each mineral, as illustrated in Figure1 and summarized in Table 1. After selecting the relevant diagnosticabsorption bands for each mineral class, the other spectral bandswere removed, leaving only the critical bands that provide the nec-essary information for accurate mineral identification. This processsignificantly reduces the dimensionality of the data, which has thefollowing advantages:
• Improved Classification Efficiency: by focusing on the most rel-evant spectral information, the DAB selection method stream-lines the feature extraction and classification process, whichtranslates into shorter processing times and lower computa-tional costs.• Enhanced Feature Extraction: with fewer and more informativebands, feature extraction algorithms can operate more effec-tively. This allows for the extraction of more robust and discrim-inative features that accurately represent the unique spectralproperties of each mineral accurately.• Reduced Noise Sensitivity: hyperspectral data can be suscepti-ble to noise from various sources. By selecting only the mostinformative bands, the DAB method helps mitigate the impactof noise on the classification process, leading to more reliableresults.• Interpretability: focusing on a smaller set of diagnostic bandscan enhance the interpretability of the classification results. Byunderstanding which bands contribute most to the classificationof a particular mineral, geologists can gain valuable insights intothe mineral composition of the study area.

Figure 1 illustrates the spectral signatures of these minerals,highlighting their unique absorption frequencies. Additionally, Ta-ble 1 summarizes the diagnostic band characteristics for each min-eral. After implementing the DAB selection method, the spectraldimension of our hyperspectral image is reduced to a compact set ofnine crucial diagnostic bands. This reduction in spectral dimension,achieved by the DAB method, simplifies the data while increasingits informative value. It provides a solid basis for feature extractionand the subsequent classification of minerals in the hyperspectral

Table 1. Spectral characteristics of identified minerals
Mineral Class Diagnostic Bands (nm)

Alunite 2170–2320Calcite 2160–2340Chalcedony 2250Halloysite 2170–2210Kaolinite 2170–2210Montmorillonite 2210Muscovite 2200–2350Nontronite 2290

image. The resulting DAB vector is formulated as follows:
DAB = [B2160, B2170, B2200, B2210, B2250,

B2290, B2320, B2340, B2350]. (1)

Our study focuses on eight mineral classes: alunite, calcite, chal-cedony, halloysite, kaolinite, montmorillonite, muscovite, and non-tronite. The selection was motivated by these factors:Firstly, it was essential to ensure a sufficient number of formationand test samples for a robust assessment of model performancewhile avoiding mixed pixels due to limitations in spatial resolutionand mineralization effects. The wide distribution of the mineralclasses in the Nevada Cuprite mining area allowed for their selection(Figure 3).Additionally, we selected only these classes to facilitate direct com-parisons with other studies, which commonly use seven mineralclasses: alunite, calcite, chalcedony, halloysite, kaolinite, mont-morillonite, and muscovite (Deng et al., 2021). We included thenontronite class because of its specific absorption characteristicsin the chosen spectral range (2000 to 2500 nm) and its large pixelarea, making it a particularly useful representation for our analysis.
2.2 Convolutional Neural Network

Recently, a number of new deep learning methodologies appliedto classification have been developed. CNNs have been emergingas leading architectures in this landscape. These networks consistof several layers, including convolutional, pooling, and fully con-nected layers, using specific mathematical operations to extractand analyze relevant features from input data (Gu et al., 2018; Bhattet al., 2021). The pooling layer plays a crucial role in reducing thespatial dimension of the feature map, while the fully connectedlayer, adopting a multilayered perceptron approach, connects allneurons to succeeding layers. The output characteristics of the lat-ter layer allow the characteristics to correspond with the output.Mathematically, the output of input X corresponds to the following:
Y = ω(W × X + B). (2)

Here, Y represents the output, W denotes the weight, B signifies thebias, and the function ω(.) corresponds to the nonlinear activationapplied to a weighted sum of inputs, where the ReLU activationfunction is used in this section and can be expressed as follows:

ReLU(x) =
x, if x > 0;

0, if x ≤ 0. (3)

The use of the ReLU function has the following advantages: Firstly,the constant derivative associated with positive values increasesthe learning speed of the network. Secondly, the network layersextract features useful for the final classification (Ghaderizadehet al., 2021).
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1. Mineral diagnostic signatures – unveiling absorption frequencies: (a) Alunite, (b) Calcite, (c) Chalcedony, (d) Halloysite, (e) Kaolinite, (f)Montmorillonite, (g) Muscovite, (h) Nontronite.

Our 3D-2D-CNN model comprises three distinct stages:
• Patch extraction: selects small samples around each image pixel.• Feature extraction: a deep learning model analyzes patches toextract discriminating features.• Label identification: each pixel is classified according to the char-acteristics of its corresponding patch.

Pooling layers have been removed from all three models to max-imize the amount of usable information. Consider our HSI as a cubewith width (W), height (L), and depth (H) representing the numberof spectral bands. After selecting the most informative bands (di-agnostic bands, DAB), we obtain an input image Ip of dimensions(W × L × B), where B is the number of selected bands. We aim topredict the class (label) for each pixel. The first step in the patchextraction is to create patches around each pixel. The size of thesepatches (P × P × B) depends on the center of the individual pixels.Since pixels near the edges of the image may not contain enoughdata to create the desired patch size, we use a fill operation to addadditional information, creating a ”background” for these edgepixels. The position of each pixel in the image is (x, y). The totalnumber of patches generated is calculated as follows:
Np = (W – (P + 1)) × (L – (P + 1)). (4)

Therefore, the entry of the patch Ip will be expressed as I(x,y)
pand covers a length between x – (p – 1)/2 and x + (p – 1)/2 and awidth between y – (p – 1)/2 and y + (p – 1)/2. Each patch extractedusing multiple channels is processed separately as an image. Thedeep CNN model with 2-D convolution layers extracts feature mapsfor the patches. The operating formula for the 2-D CNN in eachlayer is as follows:

Yα,β
l,f = f

(∑
Fm

Y∑
j=0

X∑
i=0

W i,j
l,f,Fm

⊗ Xl–1,Fm
α+i,β+j + bl,f

)
. (5)

In the context of a 2D-CNN network, l is the processed layer, and fis the feature map of layer l. Variables (α,β) indicate the positionin the patch, while (x, y) represent the position of the kernel in thefeature map f of layer l. Fm represents the total number of inputfeature maps in the neuron, while (i, j) indicates the position of theconvolution filter on the feature map f of layer l. The 3D-CNN modelincludes an additional spectral band sorting step, which is absentfrom the 2D-CNN model. The sorting orders images of similar spec-tral bands into sequences, preserving their spectral correlations.Both models share the same patch extraction and label recognition

steps. Feature extraction in the 3D-CNN model uses a 3D convo-lution operator, unlike 2D-CNN, which applies a 2D convolutionoperator (Ghaderizadeh et al., 2021). The 3D convolution formula isgiven below:

Yα,β,γ
l,f = f

(∑
Fm

Z∑
k=0

Y∑
j=0

X∑
i=0

W i,j,k
l,f,Fm

⊗ Xl–1,Fm
α+i,β+j,γ+k + bl,f

)
. (6)

The patch has a specific size (X, Y, Z), encompassing both spatialdimensions (width and height) and spectral dimensions (number ofbands). Each data point on the patch is identified by its spatial coor-dinates (α,β) and spectral band (γ). Similarly, during convolution,the filter’s position in a feature map is denoted by (i, j, k), where
i and j represent its spatial position, and k indicates the specificspectral band over which the filter operates in the feature map.
2.3 Our proposed 3D-2D CNN

This study introduces our optimized hybrid CNN architecture formineral classification from hyperspectral images. Our approachleverages a 3D-2D CNN specifically designed to exploit spatial andspectral information present in these complex images. As illus-trated in Figure 2, our optimized architecture comprises four 3Dconvolution layers designed to capture specific spatial and spectralfeatures of the hyperspectral image data.The kernel sizes used in these 3D layers are defined as 8×3×3×7×1(i.e., F11 = 3, F12 = 3 and F13 = 7), 16 × 3 × 3 × 5 × 8 (i.e., F21 = 3, F22 = 3
and F23 = 5), 16 × 3 × 3 × 3 × 16 (i.e., F31 = 3, F32 = 3 and F33 = 3), and
32 × 3 × 3 × 3 × 16 (i.e., F41 = 3, F42 = 3 and F43 = 3) for the four layers,respectively. As an example, the size 16 × 3 × 3 × 5 × 8 indicates theuse of 16 3D convolution kernels of dimension 3 × 3 × 5 for each ofthe 8th input feature maps. The 2D section of our model consists ofthree 2D convolution layers. These are, respectively, 128×3×3×32(that is, F11 = 3 and F12 = 3), 64 × 3 × 3 × 128 (that is, F21 = 3 and
F22 = 3) and 32 × 3 × 3 × 64 (that is, F31 = 3 and F32 = 3). The size of64 × 3 × 3 × 128 corresponds to 64 2D convolution filters of size3 × 3, with 128 output feature maps.Finally, by flattening the output of the seventh layer, all neuronsare connected to those in the subsequent layer, which comprises256 neurons, followed by a layer of size 128, and ultimately culmi-nating in the last classification layer with a total of 8 mineral classes.Table 2 provides an overview of the proposed model regarding layertypes, output map dimensions, and parameter counts. In particu-lar, the maximum number of parameters reside in the initial dense
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Figure 2. Proposed work (architecture of our Optimized 3D-2D CNN for mineral classification)

(fully connected) layer. Consequently, the proposed model’s totalnumber of parameters depends on the number of classes within thedata set. For the Cuprite dataset, the total count of trainable weightparameters in the proposed model amounts to 648,232. All weightsare randomly initialized and then refined using the backpropaga-tion algorithm with the Adam optimizer and Softmax activationfor classification. We configured our networks to 100 epochs andmini-batches of 256 samples (Batchsize), with a learning rate setat 0.001 without data augmentation. This design enables our hybridCNN network to efficiently capture spatial and spectral informationfrom hyperspectral images, using 3D convolutions to exploit thespectral richness of the data and 2D convolutions to extract finerspatial features.
2.4 Experimental settings

Dataset description and training configurationLocated in Nevada, the Cuprite mine offers a unique field of studydue to its abundant mineral deposits. The hyperspectral data setacquired by the AVIRIS sensor in the area provides a valuable tool formineral identification research. Covering an area of 400×350 pixelsand containing 50 near-infrared bands, this data set enables explo-ration of the spectral properties of various minerals (Swayze et al.,2014). By employing advanced deep learning methods, researcherscan now confirm the mineral composition of the region with anunprecedented level of precision, instilling confidence in the accu-racy of our findings. Exploiting this database paves the way for newapplications in mining exploration and natural resource manage-ment. A comprehensive understanding of the mineral distributionin the Cuprite region will help optimize resource extraction andminimize the environmental impact of mining activities. Furtherdetails, including a false color image and a ground truth map, are

Table 2. Summary of our optimized 3D-2D CNN architecture
Layer (Type) Output shape Parameters

Input Layer (25, 25, 9, 1) 0Conv3D 1 (Conv3D) (19, 23, 7, 8) 512Conv3D 2 (Conv3D) (15, 21, 5, 16) 5776Conv3D 3 (Conv3D) (13, 19, 3, 16) 6928Conv3D 4 (Conv3D) (11, 17, 1, 32) 13856Reshape 1 (Reshape) (11, 17, 32) 0Batch Normalization 1 (11, 17, 32) 128Conv2D 1 (Conv2D) (9, 15, 128) 36992Conv2D 2 (Conv2D) (7, 13, 64) 73792Conv2D 3 (Conv2D) (5, 11, 32) 18464Flatten (Flatten) (1760) 0Batch Normalization2 (1760) 7040
Dropout 1 (Dropout) (1760) 0Dense 1 (Dense) (256) 450816Dropout 2 (Dropout) (256) 0Dense 2 (Dense) (128) 32896Dropout 3 (Dropout) (128) 0Dense 3 (Dense) (8) 1032
Total Parameters 648232
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Figure 3. Ground truth and false color image of the cuprite dataset

available in Figure 3 for visualization.Our computing infrastructure, based on an Intel Core i7-12700Fprocessor coupled with 64 GB of memory, formed the basis of ourexperimental work. Furthermore, to ensure our results’ optimalefficiency and reproducibility, we exploited the computing perfor-mance of a GeForce RTX 3070 Ti GPU.We normalized the spatial dimensions by extracting 3D patchesof size 25×25×9 for all previous methods. Each patch was processedindependently as an image, with the central pixel representing thetarget mineral class, ensuring efficient training and extraction ofspatial and spectral features. The dataset was randomly partitionedinto 70% for training, 10% for validation, and 20% for testing. Tomaintain balance across all mineral classes, we selected a total of650 samples per class: 500 samples for training (70%), 50 samplesfor validation (10%), and 100 samples for testing (20%). We care-fully ensured that image patches did not overlap, preventing anyinformation leakage between the training and testing sets. Thisstep is crucial to maintain the independence of the test data andavoid any bias in the model evaluation.
Optimization methodsOverfitting in hyperspectral mineral classification limits the abil-ity of CNN models to classify unpublished data. Our methodologyaddresses this challenge by incorporating optimization techniquesas: batch normalization, L2 regularization, learning rate decay,dropout, and K-fold cross-validation. These techniques improvelearning stability collectively and promote superior model general-ization for robust classification performance.
• Regularization: We specifically focus on integrating L1 and L2regularization methods into our 3D-2D CNN architectures. L1regularization promotes the selection of characteristics by pe-nalizing the absolute values of the network weights. In contrast,L2 regularization stabilizes the model by penalizing the squaredmagnitudes of the weights, reducing the risk of overfitting andimproving generalization to new data (Farhadi et al., 2022). Af-ter careful hyperparameter tuning, we selected regularizationstrengths of 0.006 for L1 and 0.016 for L2. By incorporating thesetechniques, we aim to balance model complexity and generaliza-tion capacity, ultimately facilitating precise and robust mineralclassification in hyperspectral imagery, as demonstrated on theCuprtie dataset.

• Batch Normalization: To improve training stability and conver-gence, we meticulously integrated batch normalization intoour 3D-2D CNN architecture, employing a configuration with amomentum of 0.99 and an epsilon of 0.001. This technique nor-malizes activations between layers, reducing internal variationsand accelerating the learning. By maintaining consistent inputthroughout the network, batch normalization helps avoid van-ishing or exploding gradients, leading to smoother optimization(Jung et al., 2019). This approach balances model complexitywith generalization for robust mineral classification in hyper-spectral images.• Dropout: Dropout regularization has been seamlessly incorpo-rated into our 3D-2D CNN architectures to enhance model ro-bustness and mitigate overfitting. During training, this regu-larization technique randomly deactivates a quarter (25%) ofneurons in each layer. By discouraging interdependencies be-tween neurons, dropout encourages the network to learn moreindependent features, enhancing generalization and reducingover-fitting (Wu and Gu, 2015).• Learning Rate Decay: We applied learning rate decay, settingit to a value of 1e-07. This strategy ensures that the learningrate gradually decreases during training, enabling the model toconverge more efficiently toward an optimal solution.• K-Fold Cross Validation: Finally, we used the K-Fold cross-validation technique, subdividing our dataset into four folds(K = 4). This approach enabled full validation of the perfor-mance of our model, which was trained and evaluated on sev-eral subsets of data. By systematically going through differentcombinations of training and validation sets, we obtained a com-prehensive assessment of our model’s generalizability. Throughthe meticulous application of K-Fold cross-validation, we pre-pared to validate the robustness and reliability of our mineralclassification model.
Our study replicated all experiments under identical conditionsto ensure fair comparisons, including consistent data preprocessingsteps such as normalization and data splitting. By maintaining uni-form hyperparameters across different methods, we ensured thecomparability of results. The selected hyperparameters, summa-rized in Table 3, were tuned based on preliminary experiments tooptimize performance while maintaining fairness and consistencyacross methods.

3 Results and discussion

3.1 Evaluation metrics

In our study, we used various measures to evaluate the performanceof our classification approach. In addition to assessing overall modelaccuracy (OA), we used the Kappa coefficient to measure the agree-ment between predicted and actual classifications, which providesa comprehensive assessment considering the chance agreement.In addition, we calculated average accuracy (AA) to provide class-specific assessments, revealing potential performance gaps be-tween different classes (Story and Congalton, 1986; McHugh, 2012).These complementary evaluation measures have enabled us to gaina better understanding of the capabilities and limitations of ourclassification model, as shown in the following equations:
OA = (TP + TN)(TP + TN + FP + FN) , (7)

Kappa = P0 – Pe1 – Pe
, (8)
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Table 3. Hyperparameters used for comparisons
Method Parameter Value

SAM Maximum Angle(radians) 0.1

SPE-MLP Hidden Layers Sizes 100SAI-MLP Solver AdamASMLP Batch Size 256Learning Rate 0.001Activation Function ReLUMax Iterations 1000
3D-CNN Activation Function ReLU3D-2D CNN Epochs 100RNN Batch Size 256Optimizer AdamLoss Function CategoricalCrossentropyLearning Rate 0.001Regularization (L1) 0.006Regularization (L2) 0.016Momentum 0.99Epsilon 0.001Dropout 25%Learning Rate Decay 10–7

K-Fold 4Number of Units (RNN) 128Number of Layers (RNN) 3Type of RNN Used LSTM

AA = ( 1
N ) ×

i=n∑
i=0

TPi
TPi + FPi

, (9)

where:
• TP is the number of true positives,• TN is the number of true negatives,• FP is the number of false positives,• FN is the number of false negatives,• P0 is the observed agreement,• Pe is the expected agreement by chance.

In addition, we have integrated the F1-Score, recall, and pre-cision measures into our evaluation, thus obtaining a better un-derstanding of the model’s performance in various aspects. Theseevaluation measures are listed below:
Precision = TP(TP + FP) , (10)

Recall = TP(TP + FN) , (11)

F1-Score = 2 × Precision × RecallPrecision + Recall . (12)

3.2 Classification rResults

In this section, we present the mineral classification results of ouroptimized 3D-2D convolutional neural network (CNN) model for theclasses: Alunite, Calcite, Chalcedony, Halloysite, Kaolinite, Mont-morillonite, Muscovite, Nontronite. Figure 4 illustrates the learningcurves of our model, showing its performance in terms of accuracyand loss over the learning periods. The model performs remarkablywell during the learning process, achieving an accuracy of 99.43%.This high accuracy underlines the effectiveness of the proposed ap-proach in accurately classifying minerals from hyperspectral data.

Figure 4. Learning curves of Optimized 3D-2D CNN for mineral classifi-cation

Table 4. Detailed mineral classification results using our Op-timized 3D-2D CNN
Classes Precision Recall F1-Score

Alunite 0.95 0.97 0.96Calcite 0.97 0.96 0.97Chalcedony 0.94 0.95 0.95Halloysite 0.94 0.94 0.95Kaolinite 0.92 0.91 0.92Montmorillonite 0.93 0.93 0.94Muscovite 0.98 0.98 0.98Nontronite 0.93 0.94 0.93
Average 0.95 0.94 0.95
Overall Accuracy 0.9573
Average Accuracy 0.9508
Kappa 0.9481

Furthermore, the loss function shows a steady decrease over theepochs, reaching a minimum value of 0.0730 after 100 epochs. Thisdownward trend indicates that the model learns efficiently from thetraining data, minimizes errors, and improves its predictive capac-ity. These results validate the effectiveness of our optimized CNNarchitecture in achieving outstanding performance in mineral clas-sification tasks, highlighting its potential for practical applicationsin mineralogy and remote sensing.The results presented in Table 4 give a detailed overview of theperformance of our classification model for eight mineral classes inthe cuprite zone. Each mineral class shows high accuracy values,between 93% and 95%, indicating our model’s high performancein mineral classification. This level of accuracy guarantees the reli-ability of the model’s predictions, which is crucial for applicationsrequiring accurate mineral classification. It is worth noting thatthe recall values for all mineral classes are high, ranging from 91%to 98%. This recall rate underscores the model’s effectiveness incapturing the majority of instances belonging to each mineral class,a crucial factor for comprehensive mineral mapping and analysistasks. The combination of high precision and recall further high-lights the robustness of our model in accurately identifying mineraloccurrences within hyperspectral data.The F1 scores for each mineral class, all above 92%, reflect aharmonious balance between precision and recall. Achieving pre-cisely balanced recall is crucial to ensuring the model’s predictionsare accurate and complete, particularly in scenarios where FP or FNcan have significant consequences. The general evaluation of ourmodel reveals a remarkable performance in mineral classificationusing the cuprite dataset. The overall accuracy is 95. 73%, with anaverage precision of 95. 08% and the Kappa coefficient of 94.81%for all mineral classes confirm the consistency and reliability of ourapproach. These significant results underline the usefulness of ourmodel for practical applications in mineralogy and remote sens-
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Table 5. Performance evaluation of Optimized 3D-2D CNN against state-of-the-art methods (Deng et al., 2021)
Classe Name SAM SPE-MLP RNN SAI-MLP 3D-CNN ASMLP Our method

Alunite 0.9198 0.9267 0.9464 0.9423 0.9607 0.9522 0.9603Calcite 0.8077 0.8641 0.9043 0.9182 0.9478 0.9543 0.9728Chalcedony 0.7163 0.8957 0.9037 0.9073 0.9339 0.9233 0.9527Halloysite 0.8779 0.8331 0.8956 0.9012 0.9387 0.9537 0.9492Kaolinite 0.8053 0.8357 0.8842 0.8754 0.9090 0.9186 0.9233Montmorillonite 0.7690 0.8021 0.8374 0.8961 0.9291 0.9353 0.9443Muscovite 0.8853 0.9047 0.9507 0.9332 0.9706 0.9679 0.9809Nontronite 0.8144 0.8529 0.8491 0.8669 0.9039 0.9284 0.9226
AA 0.8245 0.8644 0.8964 0.9051 0.9367 0.9417 0.9508

OA 0.8331 0.8553 0.8909 0.9103 0.9386 0.9467 0.9573

Figure 5. Confusion matrix of our Optimized 3D-2D CNN for mineralclassification

ing. More specifically, they indicate high confidence in the model’sability to classify mineral occurrences consistently and accurately.The precision of our model in classifying mineral occurrences isessential for mineral prospecting and geological mapping efforts,as it allows areas of interest to be identified and delineated with ahigh degree of reliability.The confusion matrix, as illustrated in Figure 5, offers a com-prehensive insight into the performance of our optimized 3D-2DCNN model for mineral classification. It covers a wide range ofmineral classes, including: Alunite, Calcite, Chalcedony, Halloysite,Kaolinite, Montmorillonite, Muscovite, and Nontronite; providinga detailed understanding of the model’s performance. Examiningthe diagonal elements representing correct predictions, we observe,generally, high values, indicating a strong performance in classify-ing instances for each mineral class correctly.
3.3 Comparison with state of the arts

The effectiveness of our 3D-2D CNN, designed for mineral classi-fication from hyperspectral images, is evaluated through a com-parative analysis of various classification methods recognized inthe specialized literature. SAM method directly measures spec-tral similarity by calculating the angle between two spectra (Yuhaset al., 1992). The Spectral-Multilayer Perceptron (SPE-MLP) in-tegrates a multilayer perceptron (MLP) that processes the entirespectrum for classification. RNNs analyze spectral sequences infive-point segments, allowing them to capture temporal correla-tions between samples (Mou et al., 2017). The Spectral AbsorptionIndex-MLP (SAI-MLP) approach uses the SAI vector as input for anMLP (Deng et al., 2021). An improved variant of this method, calledAttenuation Spectral Absorption Index-MLP (ASMLP), proposes

the construction of an ASAI vector for more efficient extractionof mineral spectral features before its use in an MLP (Deng et al.,2021).Another method based on a specific type of 3D CNN exploits con-volutional neural networks that process three-dimensional data tointegrate spatial and spectral attributes of samples (Li et al., 2017).This technique has limitations in fully exploiting the spatial rela-tionships between different spectral bands, which are crucial inhyperspectral imaging. The integration of 2D CNN layers addressesthis limitation as regards a full exploitation of the spatial informa-tion extracted by the 3D layers. Therefore, the 3D-2D CNN archi-tecture is better suited to capture the complex interplay betweenspectral and spatial features, leading to a more accurate classifica-tion of minerals.The results in Table 5 show that our optimized 3D-2D CNN out-performs other techniques regarding Overall Accuracy (OA) andAverage Accuracy per class (AA), with scores of 95.73% and 95.08%,respectively. This result represents a significant improvement overtraditional MLP-based methods such as SPE-MLP and SAI-MLP, aswell as the SAM method, which does not involve deep learning. Ouroptimized CNN demonstrates superiority over advanced techniquessuch as RNN and standard 3D CNN.The study shows that combining 3D and 2D methods in CNNs im-proves classification, especially when hyperspectral data are used.The improvements are illustrated in Table 5: our proposed 3D-2DCNN architecture outperforms the standalone 3D CNN by more than1.4% in OA and more than 1.85% in AA. These gains highlight theoptimized 3D-2D CNN’s superior ability to capture the complexinterplay between spectral and spatial features.Choosing a 3D-2D CNN over a 3D CNN alone has significant im-plications. The results from our comparative analysis show thatour optimized model delivers superior classification performanceand reduces the computational burden associated with training a3D CNN model. By leveraging the complementary strengths of 3Dand 2D layers, the 3D-2D CNN achieves higher accuracy, making itmore effective and efficient. This superiority is evident in the con-sistent performance gains across different mineral classes, whereour model achieves the highest accuracy in most categories.The improved accuracy achieved by the tour approach under-lines its practical value for real-world mineral classification tasks.However, it is crucial to recognize that despite these successes,limitations exist. Optimization of hyperparameters and trainingon larger, more diverse datasets offer opportunities for model im-provement. In addition, exploring adaptations or combinations ofour optimized CNN with other deep-learning techniques presentsan intriguing direction for tackling specific challenges, such asclassifying minerals with almost identical spectral signatures. Inconclusion, our optimized 3D-2D CNN sets a new benchmark for au-tomatic mineral classification in hyperspectral imaging. This workcreates promising directions for future research and applicationsin remote sensing.



90 | Reports on Geodesy and Geoinformatics, 2024, Vol. 118, pp. 82–91

4 Conclusion

In conclusion, this study successfully implemented an optimized3D-2D CNN model for automatic mineral classification in hyper-spectral images, achieving an impressive accuracy rate of 95.73%on the Cuprite dataset. By integrating the Diagnostic AbsorptionBand (DAB) selection technique, the model effectively extractedessential spectral features for precise mineral identification. Ourmodel convergence and generalization are improved using learningrate decay and K-fold cross-validation. Comprehensive evaluationmetrics, such as AO, Kappa coefficient, and mean accuracy, enabledin-depth assessment of the model’s performance. This researchprovides valuable contributions to mineral classification in hyper-spectral imagery, demonstrating the potential of deep-learningmodels for accurate and reliable mineral detection. Furthermore,future research could explore the application of this model to var-ious hyperspectral datasets and investigate the incorporation ofreal-time processing capabilities for mineral exploration and envi-ronmental monitoring.
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