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Abstract
Outlier detection and identi�cation are still important issues in the quality control of geodetic networks based on least
squares estimation (LSE). In addition to existing network reliability measures, the paper proposes the LSE-based concept
(together with the associated measures) of the Outlier-Exposing Potential (OEP) for Gauss-Markov models. The greater the
model’s redundancy, the more the con�guration of its responses to gross errors exposes the location of these errors, and
hence, the greater the model’s OEP. The potential is given in the basic version and the extended version. The former
considers only the e�ect of the model’s redundancy, while the latter also considers the masking e�ect due to random
observation errors at a speci�ed magnitude of gross error. For models that have regions of unidenti�able errors, the
corresponding OEP components have zero values. The re�ection of OEP in the values of Minimal Identi�able Bias (MIB) is
shown. It is proposed that OEP derived based on least squares adjustment be treated as a property of the model itself. The
theory is illustrated on several 1D and 2D networks. The research is limited to models with uncorrelated observations and
the case of a single gross error. These limitations enabled the formulation of clear properties of general character, not
complicated by observation correlations and multiple-outlier combinations.
Key words: least-squares adjustment, uncorrelated observations, redundancy matrix, disturbance/response relationship,
response concentration index

1 Introduction

Gauss-Markov Models (GMMs) represent theoretical models
for a wide class of observation systems used in geodesy. As sen-
sitive to outliers, the LSE is not classi�ed as a robust estimation
(Huber, 1972; Maronna et al., 2006). However, when applied in
an iterative mode for the GMMs with a particularly high level
of redundancy, it may, by successive removal of outliers, yield
parameter estimates almost cleared from the in�uence of gross
errors. The use of the term ‘almost’ is here necessary since, ac-
cording to (Teunissen et al., 2017), the bias in the solution can
never be removed completely.
We would like to point out that following the understanding

of the notion of an outlier as in Lehmann (2013), we will treat

the outlier as an observation contaminated by a gross error.
The model’s redundancy causes that in parameter determi-

nation the observations become interrelated, and thanks to it,
they may check themselves mutually. This enables detection
and identi�cation of outliers. It is redundancy that is an es-
sential element in the Baarda reliability theory for quality con-
trol of geodetic networks (Baarda, 1968) and in its further de-
velopments (e.g., Teunissen 2006, 2018; Rofatto et al. 2020;
Lehmann et al. 2020). Baarda’s theory shows that the greater
the redundancy of a GMM, the greater the concentration of its
LS-induced responses to gross errors in their location or equiv-
alently, the smaller smearing e�ect of LSE (Durdag et al., 2022).
This makes detecting and identifying outliers easier and more
e�ective.
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Getting to know and characterizing the abovementioned
ability of GMMs of response concentration and thus the expo-
sure of outliers, con�rmed in practice, would require careful
analysis. Undertaking such research would be primarily im-
portant from the point of view of quality control theory for
geodetic observation systems modeled by GMMs. Some advan-
tages for practical applications would also be expected from the
research.
Following the above considerations, the objectives of the pa-

per are:
• to characterize and quantify the redundancy-dependent
property of exposing the outliers in LS adjustment in GMMs,
considering the model’s redundancy impact only,

• to characterize and quantify the property as above, consid-
ering both the impact of the model’s redundancy and that
of random observation errors,

• to investigate the possible re�ection of OEP level in MIB
values.
We shall assume the case of a single gross error and uncor-

related observations. The case of multiple gross errors would
complicate the formulation of clear general properties. As for
the second assumption, the research was originally intended
to include models with correlated observations. However, the
feasibility analysis of such a broadly outlined task led to con-
�nement to models with uncorrelated observations. The main
arguments, apart from the one in the �rst assumption, were
that:
• due to observation correlations the redundancy matrix in a
standardized model loses its valour of being the covariance
matrix of LS residuals;

• the correlation matrices bring into models a considerable
variety of information characterizing the measurement pro-
cess, but being di�erent from the original models’ features.

2 Properties of the redundancy matrix for a
standardized Gauss-Markov Model

The redundancy matrix for a standardized GMM is a main ele-
ment of the theoretical basis of the present research and that
is why we present its properties.
Let us consider a GMM with uncorrelated observations:

Ax + e = y; e∼N(0,C) (1a)
where:
y - the n× 1 vector of observations,
A - the n× u design matrix; rank A = u – d (d – defect, d ≥ 0),
x - the u× 1 vector of unknown parameters,
e - the n× 1 vector of random errors,
C - the n×n covariance matrix for observations; diagonal, pos.
de�nite.
With the standardization matrix S = C– 12 , we get the equiv-

alent standardized form of (1a):
Asx + es = ys; es∼N(0, I) (1b)

where, e.g., As = C– 12 A.The LS estimator of the vector vs = –es, being the vector ofLS residuals in the model (1b), is given by (Prószyński, 1994):
v̂s = –Rs · ys (2)

where:
Rs = I – As(ATs As)+ATs (3)

(∗)+denotes a pseudoinverse, for d = 0 it becomes a regular in-
verse.
As an idempotent and symmetric matrix, Rs is an orthogo-nal projector; rank Rs = TrRs = n– u+ d = f, where f is a modelredundancy. Rs is a redundancy matrix for the standardizedGMM (1b).
It can readily be shown that Rs = Cv̂s = I – Cŷs , where Cŷsand Cv̂s are the covariance matrices for the vector of estimatedstandardized observations and the vector of residuals in a stan-

dardized model, respectively.
Let us note that the commonly used redundancy matrix R =

I – A(ATC–1A)+ATC–1 (for the original model (1a), e.g., Ding
and Coleman 1996; Durdag et al. 2022) is not symmetric and
is not a covariance matrix like Rs. Since Rs = SRS–1, Rs and Rare similar matrices with the corresponding diagonal elements
being equal.
On the basis of (2) we immediately get a disturbance/response

relationship for the model (1b), i.e.,
∆v̂s = –Rs ·∆ys (4)

where:
∆ys - the vector of standardized gross errors (i.e., distur-bances),
∆v̂s - the vector of changes in LS residuals (i.e., responses).The value ranges of the elements of the matrix Rs are asfollows (Chatterjee and Hadi, 2009; Prószyński, 2012):

rii, i = 1, . . .,n, 0 ≤ rii < 1
rij, i, j = 1, . . .,n, j 6= i, 0 ≤

∣∣∣rij∣∣∣ ≤ 0.5
rii = 0 implies rik = 0, where k = 1, . . .,n, k 6= i.

The diagonal elements rii of the matrix Rs, abbreviated as
ri(i = 1, . . .,n), are partial redundancies, also termed the re-dundancy contributions of individual observations (Ding and
Coleman, 1996). We will simply call them redundancy indices.
The model’s average redundancy index r is the following:

r =
∑
n ri
n = n – (u – d)n = fn . (5)

Denoting by n0 the number of observations for which f = 1for a given model (1a), we get from the formula (5):
r0 = 1

n0 =
1

u – d + 1 , 0 < r0 ≤ 0.5 (6)

where r0 is a minimal non-zero value of r for a given model.Hence, the range of non-zero values of r for models can be
de�ned as [r0, 1). We shall call r0 a model minimal averageredundancy.
The non-diagonal elements rij are the covariances betweenthe LS-estimated i-th and j-th standardized observation. With

ri > 0.5, the increase in the values of ri implies the decrease in
rij (j = 1, . . .,n); j 6= i) in terms of the absolute value.
Proof. For Rs as an orthogonal projector, we can write r2i +∑n
j=1,j 6=i r2ij = ri, and so, ∑n

j=1,j 6=i r2ij = ri – r2i , which �nally yields∣∣∣rij∣∣∣max < √ri – r2i (j = 1, . . .,n; j 6= i). For ri > 0.5, it is adecreasing function.
From the relationship (4) it follows immediately that with

rij = 0 for a particular pair of the observations such that ri 6= 0and rj 6= 0, the disturbance in the i-th one will not induce anyresponse in the j-th one.
There aremodels whosematrix Rs has some or even all rows(and therefore columns) linearly dependent, which makes out-

lier identi�cation impossible. The observations corresponding
to these rows were called the Region of Unidenti�able Errors -
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RUE (Prószyński, 2008). Since, in general, there can be several
RUEs in a model, we give a de�nition of a single RUE being a
set of q observations.
De�nition:

RUE(q) =
{
yi, yj, . . . , ym(q) :

∣∣∣rij∣∣∣ =√ri · rj, . . . ,∣∣rim∣∣ =√ri · rm, ..., ∣∣∣rjm∣∣∣ =√rj · rm(q(q–1)/2)
} (7)

where ri, rj, rm, rij, rim, rjm are the corresponding elements of
the matrix Rs, q(q– 1)/2 is a number of unidenti�ability condi-tions.
The unidenti�ability condition for a pair of observations can

be transformed into the following equivalent form:
∣∣∣rij∣∣∣ =√ri · rj ≡

∣∣∣rij∣∣∣√ri ·√rj = 1 ≡
∣∣∣ρ(v̂s,i, v̂s,j)∣∣∣ = 1 (8)

which means that the LS residuals for the i-th and j-th obser-
vation in the standardized model should be linearly dependent.
We quote below a condition for non-existence of RUEs:

• in a model with a redundancy level such that ri > 0.5 (i =1, . . .,n), there cannot exist any RUE.
The condition results directly from the maximal absolute

value of non-diagonal elements of Rs being 0.5.It is easy to prove that for the q observations constituting a
particular RUE(q), all the Baarda w-statistics, i.e.,

wi = v̂s,i
σ(v̂s,i) = –

{Rs}i√ri · ys, i = 1, . . ., q (9)

where {Rs}i – the corresponding row of the matrix Rs, willhave identical absolute values.
The property holds for any set of observation standard devi-

ations that can be assumed in amodel (1a). This means that the
existence of RUEs in a model (1a) depends only on the structure
of its design matrix A.
We can distinguish a Global RUE (q = n), covering all the

observations in a model, and a Local RUE (2 ≤ q < n) covering
some observations in a model. There can be several Local RUEs
in a model. A model with Rs of rank equal to 1 (i.e., f = 1),always forms a Global RUE, e.g., a leveling loop. In such mod-
els, outliers can be detected depending on their magnitude but
cannot be identi�ed.
The above properties of RUEs lead to the following conclu-

sion regarding the identi�ability of outliers and determining
Minimal Identi�able Biases (MIBs) (Teunissen, 2018; Imparato
et al., 2018) or Identi�ability Indices (IDs) (Prószyński, 2015):
• an outlier yk(with rk 6= 0) is identi�able, and hence MIBk(orIDk) is determinable if f ≥ 2 and yk /∈ RUE.

3 Proposal of a concept of outlier-exposing
potential of a GMM

The LSE based disturbance/response relationship shows that
the greater the redundancy of the model, the greater the con-
centration of model responses in the location of observation
disturbance. According to this property, it becomes easier and
easier to identify observations contaminated by gross errors,
i.e., outliers. By successive removal of dominating outliers one
may �nally determine the LS estimates of the model param-
eters comparable in terms of correctness to those obtained in
robust estimations, provided random errors are normally dis-
tributed.

Therefore, we have both theoretical and empirical grounds
to conclude that with a su�ciently high level of model redun-
dancy, LSE demonstrates in terms of standardized residuals
an advantageous behavior in the presence of outliers. So, we
propose terming this speci�c LS-based property of a GMM the
outlier-exposing potential.
In contrast to robust estimation procedures, LSE does not

introduce observation weighting other than that being an in-
tegral element of a given GMM. Let us also note that the re-
dundancy matrix Rs that generates the LS model responses de-pends only on the standardized design matrix As (see formula(3), which determines the model’s redundancy. So, the ad-
vantageous concentration of model responses mentioned above
can be regarded as associated with the original model (1a).
The above statements lead to the conclusion that the outlier-
exposing potential displayed by LSE can also be considered a
redundancy-resulting property of the model itself.
We will �nally propose the following descriptive de�nition:

Outlier-Exposing Potential (OEP) of a GM model – the ability of
GMM, conditioned by redundancy level, to yield LS responses
to a gross error so that the response dominating in terms of
size is in the contaminated observation, thereby exposing an
outlier.
A precise de�nition will be contained in a corresponding

measure given further on. The presentation of the measure
will be preceded by deriving an auxiliary index based on the
changes in the outlier test statistics (∆w) induced by a single
gross error in a model.
The index denoted as RCij and termed a response concentra-

tion index, referring to the i-th observation contaminated by a
gross error and the j-th not contaminated observation, is de-
�ned by:

RCij =
∣∣∣∆wi(i)∣∣∣ – ∣∣∣∆wj(i)∣∣∣∣∣∣∆wi(i)∣∣∣ = 1–

∣∣∣∆wj(i)∣∣∣∣∣∣∆wi(i)∣∣∣ = 1–
∣∣∣ρ(v̂s,i, v̂s,j)∣∣∣ (10)

where ρ(v̂s,i, v̂s,j) is the coe�cient of correlation between the
LS residuals in the standardized model (1b), RCij takes valueswithin the interval [0, 1].
Since ρ(v̂s,i, v̂s,j) = ρ(wi(i), wj(i)), the formula (10) is con-sistent with a well-known property (Förstner, 1983). The prop-

erty says that in addition to the probabilities of I type, and II
type errors (not applicable in the proposed approach), the cor-
relation between the outlier test statistics is decisive for iden-
tifying the contaminated i-th observation.
Derivation of the formula (10):

On the basis of (9), we get ∆wi(i) = ∆v̂s,i(i)√ri
and ∆wj(i) = ∆v̂s,j(i)√

rj
.

Assuming a gross error in the i-th observation (∆ys,i) andusing (4), we can write ∆v̂s,i(i) = –ri · ∆ys,i and ∆v̂s,j(i) = –rij ·
∆ys,i.Hence, we obtain:

1 –
∣∣∣∆wj(i)∣∣∣∣∣∣∆wi(i)∣∣∣ = 1 –

∣∣∣rij∣∣∣ ·∆ys,i√
rj
√ri ·∆ys,i

= 1 –
∣∣∣rij∣∣∣√ri√rj = 1 –

∣∣∣ρ(v̂s,i, v̂s,j)∣∣∣ .
(11)

From semi-positive de�niteness of the matrix Rs it followsthat ∣∣∣∆wi(i)∣∣∣ ≥ ∣∣∣∆wj(i)∣∣∣. The more the value of ∣∣∣∆wi(i)∣∣∣ exceeds
the value of ∣∣∣∆wj(i)∣∣∣, the greater is RCij, i.e., the concentrationof themodel’s response to a gross error at its location. For the i-
th and j-th observation belonging to RUE (i.e., unidenti�able),
we have RCij= 0.
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Based on the RCij indices, we establish a measure for OEP:

OEP = 1
n(n – 1)

n∑
i=1

n∑
j=1,j 6=i

RCij (12)

which is an average value of the RCij index in a model.The RCij indices are non-diagonal elements of a matrix
K(n × n) de�ned by K = 1n – ∣∣Cor(Rs)∣∣, where: Cor(Rs) – acorrelation matrix formed based on the redundancy matrix Rs,Cor(Rs) = (diagRs)–1/2 · Rs · (diagRs)–1/2, 1n – the n× n matrixof ones, ∣∣Cor(Rs)∣∣ – a matrix with elements being the absolutevalues of the elements of Cor(Rs).The matrix Cor(Rs) contains complete information aboutthe model’s response to gross error in each observation. It in-
dicates pairs of observations for which there is no disturbance
transmission, i.e., RCij = 1, and pairs belonging to RUE, i.e.,RCij = 0.With the appropriate summation order in the formula (12),
one may indirectly determine the OEP component values (de-
noted as OEPi) for each of the n observations, i.e.,

OEPi = 1
n – 1

n∑
j=1,j 6=i

RCij, i = 1, . . .,n. (13)

OEP for a given GMM could be represented as, for example,
a set of the following three elements:

{OEP,OEPmin, OEPmax} (14)
where OEPmin and OEPmax are the extreme values of OEPi.For a model being a Global RUE (e.g., a leveling loop), OEP =
0. It is easy to check that for the model (1a) with A(n × 1) =
[1 1 . . . 1]T and C(n × n) = σ2I (n ≥ 2), OEP = OEPmin = OEPmaxwill be the following:

OEP = n – 2n – 1 (15)
and since r = 1 – n–1, we get for this model:

OEP = 2 – 1r , r0 = 0.5. (16)
Properties of RCij and OEP:

• as it is shown in the derivation of the formula (10), RCij andhence OEP do not depend on the magnitude of the gross
error ∆ys,i;• the smaller the correlation between the i-th and j-th LS
residual in the standardized model, the greater the RCij. Itis known that the correlation is the smaller, the more re-
mote (in terms of the connections in a network) is the j-th
observation from the i-th one;

• with rij = 0 where ri 6= 0 and rj 6= 0, we have ρ
(v̂s,i, v̂s,j) = 0and hence RCij = 1;• for a pair of observations where rj = ri, we can modify (11)as shown below:

1 –
∣∣∣∆wj(i)∣∣∣∣∣∣∆wi(i)∣∣∣ = 1 –

∣∣∣rij∣∣∣√ri√ri = 1 –
∣∣∣rij∣∣∣
ri

= 1 –
∣∣∣∆v̂s,j(i)∣∣∣∣∣∣∆v̂s,i(i)∣∣∣

whichmeans that RCij for such a pair can equivalently be de-termined using increments in the LS residuals in the stan-
dardized model (1b);

• an increase in the model’s redundancy due to adding some
observations results in an increase in OEP. For ri > 0.5, withthe increase in n, ri values increase while rij values decrease,

and this causes an increase in OEP;
• from the formula (15) it follows that with n → ∞, OEP → 1.
The range of OEP values is thus [0, 1);

• since for f = 1, OEP = 0, the “0” level of the OEP for a given
model falls at r0 (see (6));• even though OEP for a given model increases with increas-
ing r, due to the di�erent positions of the OEP’s “0” on the
r axis for various models (see (6)), it is not possible to for-
mulate a general dependence of OEP on r covering all the
models;

• changing standard deviations of the observations, which is a
modi�cation of the model, implies the change in OEP value;

• OEP is invariant to equal changes in all the σ values since
this does not a�ect the redundancy matrix Rs;• it is di�cult to establish a strictly justi�able lower accept-
able limit for the OEP values. The de�nition of OEP shows
that the higher the OEP value, the more the distribution of
the model’s responses to gross error (without taking into
account the e�ect of random errors) exposes the location of
the infected observation. Since at OEP = 0.5, the response
at the location of the gross error is on average twice as large
as the response in any other observation, this value could be
considered a lower acceptable limit. Then OEP > 0.5 would
be treated as a required level of the potential. With very
high OEP values, e.g., OEP > 0.9, it could be expected that
the response distribution may expose 2 or more gross errors
(especially those located remotely from each other).

4 Extending the RCij and OEP measures to
cover the impact of observation errors

The RCij de�nition as in (10) will be replaced by that below:

RC(r)ij =
∣∣∣wi(i)∣∣∣ – ∣∣∣wj(i)∣∣∣∣∣∣wi(i)∣∣∣ = 1 –

∣∣∣wj(i)∣∣∣∣∣∣wi(i)∣∣∣ . (17)

On the basis of (9), we get:

wi(i) = –
( {R}i√ri · es +√ri ·∆ys,i

)
,

wj(i) = –
 {R}j√

rj
· es + rij√

rj
·∆ys,i

 ,
(18)

where es is a vector of standardized observation errors;
es∼N(0, 1), ∆ys,i is a standardized gross error in the i-th ob-servation, and hence:

RC(r)ij = 1 –

∣∣∣∣∣ {R}j√
rj
· es + rij√

rj
∆ys,i

∣∣∣∣∣∣∣∣∣ {R}i√ri · es +√ri ·∆ys,i
∣∣∣∣ , (19)

where the resulting index RC(r)ij is a random variable, with prob-ability distribution di�cult to establish.
To have an unambiguous measure for model analyses, rep-

resentative for all possible vectors es, we will assume the expec-
tation of this variable, i.e., E(RC(r)ij ), determined empirically.
To determine E(RC(r)ij ) empirically we have to realize the for-mula (19) using a su�ciently large number of numerically sim-

ulated vectors es (10000 simulations were applied). As a �nalresult, we take an arithmetic mean of all the values obtained for
individual vectors es. Also, empirical variance, i.e., var(RC(r)ij ),
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can be determined. We estimate the precision of indices for
±0.01.
To avoid complicating the notation, we will further omit the

expectation value symbol. Although the ∆ys,i symbol does not
appear in a general notation RC(r)ij , it will be visible in a speci�c
notation RC(r)ij (∆ys,i = a).
We can see that with es = 0, RC(r)ij for any value of ∆ys,i

becomes RCij. Like in the case of RCij and OEP (see (12)), on
the basis of RC(r)ij one can form an outlier-exposing potential
for a whole network, denoted by OEP(r) and being an extended
version of OEP:

OEP(r) = 1
n(n – 1)

n∑
i=1

n∑
j=1,j 6=i

RC(r)ij , (20)

where both all RC(r)ij and OEP(r) are determined for a speci�edvalue of ∆ys,i.Analogously to (13) and (14), we shall write:

OEP(r)i = 1
n – 1

n∑
j=1,j 6=i

(RC(r)ij ) , i = 1, . . .,n (21)

{OEP(r), OEP(r)min, OEP(r)max} (22)
where all the quantities are based on the same speci�ed value
of ∆ys,i.
Properties of RC(r)ij and OEP(r) obtained empirically:

• RC(r)ij (∆ys,i = a) = RC(r)ij (∆ys,i = –a);
• for some size of gross error ∆ys,i, RC(r)ij may take negativevalues;
• with increasing ∆ys,i, RC(r)ij tends asymptotically to RCij;• if the i-th and j-th observations belong to RUE, then in
addition to RCij = 0 (as was already proved) there is also
RC(r)ij = 0, regardless of the size of ∆ys,i;

• OEP(r)(∆ys,i = a) = OEP(r)(∆ys,i = –a);
• for some size of gross error ∆ys,i, OEP(r) may take negativevalues;
• with increasing ∆ys,i, OEP(r) tends asymptotically to OEP;• for the i-th and j-th observation not belonging to RUE, there
is a relationship RC(r)ij < RCij, regardless of the size of ∆ys,i.
For models without RUEs this results in that OEP(r) < OEP,
regardless of the size of ∆ys,i.
The last three properties apply also to OEP(r)i , OEP(r)min and

OEP(r)max.Some of the above properties concerning OEP and OEP(r) are
shown in Figure 1, for the model (1a) with A(n× 1) = [1 1 . . . 1]T
and C(n×n) = σ2I for n = 3, . . . , 10. It should be noted that for
n = 2, due to a Global RUE in this model, OEP and OEP(r) have
zero values.

5 Seeking re�ection of OEP in MIB values

Due to conceptual di�erences, OEP and MIB (Teunissen, 2018;
Imparato et al., 2018) cannot be compared directly. However,
we can talk about a relation such as the re�ection of OEP in
the MIB values. Following the OEP de�nition, in models with
larger OEP we can expect lower values of Minimal Identi�able

Figure 1. Variability of OEP and OEP(r)(∆ys) with increase in n (for
n = 3 and ∆ys = 4, OEP = 0.50, OEP(r) = 0.49)

Bias (MIB). In other words, in a model with greater OEP it
should be possible to identify an observation contaminated by
a gross error of smaller magnitude.
Prior to the analysis of speci�c examples, we introduce the

following auxiliary coe�cient:

γi =
OEP(r)i,MIB
OEPi , (23)

where: OEP(r)i,MIB – a simpli�ed notation for OEP(r)i (∆ys,i =MIBs,i), MIBs,i – standardized MIB for the i-th observation(α = 0.05, β = 0.20).
The coe�cient γi indicates the amount of reduction of theredundancy-induced potential of the i-th observation due to

random observation errors and a gross error of the size of
MIBs,i, contaminating this observation.For models where OEPi = OEP for i = 1, . . . , n, the index
i may be omitted. This applies also to MIBs,i where MIBs,i =MIBs (i = 1, . . . , n).In Table 1 we show the results of computations for the ob-
servation scheme as in Ex. 5 (see Sect. 6). The results for some
other schemes are given in a descriptive form.
The range of variation of γi for Ex.5 is [0.87; 0.94] and theaverage value γ = 0.91.
The results as regards γ for other schemes are the following:

• Ex. 2-6 obs. For each observation we have OEP(r)i,MIB = 0.54;OEPi = 0.6; MIBs,i = 5.21; γi = 0.90;• Ex. 4-9 obs. For observation y8 and y9 that do not belongto RUEs γi = 0.91 and 0.94 respectively;• Ex. 4-10 obs. Except for y3, y4 and y5 that belong to RUE:
γi[0.84; 0.94], γ = 0.88;• Ex. 4-12 obs. Except for y3 and y4 that belong to RUE:
γi[0.85; 0.91], γ = 0.88;• For Ex. 3*(GPS)-12 obs., where the matrix Rs has a specif-ically disadvantageous structure regarding the transfer of
disturbance e�ect between the individual observations (see
Sect. 6), we got γi[0.82; 0.84], γ = 0.83.
In the search for the relationship between OEPi and MIBs,i,the Pearson correlation coe�cient for these quantities was

checked for three Examples, obtaining:
• Ex. 4-12 obs. (excl. y3 and y4 that belong to RUE) ρ = –0.87(strong correlation);
• Ex. 5-13 obs. (see Table 1); ρ = –0.80 (strong correlation);
• Ex. 3(GPS)-12 obs.; ρ = –0.53 (moderate correlation – most
probably due to the speci�cally disadvantageous structure
of Rs).
The negative correlation is consistent with the expectation
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Table 1. Relation between OEPi, OEP(r)i and MIBs,i for observation scheme as in Ex. 5-13 obs.
Obs. No. 1 2 3 4 5 6 7 8 9 10 11 12 13

MIBs,i 9.58 5.89 7.81 7.25 5.95 5.04 7.19 5.81 5.21 7.73 5.78 4.67 4.70
OEP(r)i,MIB 0.61 0.65 0.65 0.65 0.66 0.66 0.65 0.64 0.69 0.64 0.66 0.71 0.69
OEPi 0.65 0.71 0.72 0.71 0.74 0.73 0.70 0.70 0.78 0.70 0.73 0.82 0.78
γi 0.94 0.91 0.91 0.92 0.90 0.90 0.92 0.92 0.88 0.92 0.90 0.87 0.88

that the greater redundancy-induced potential of a model for a
given observation should enable its identi�cation (as an outlier)
if infected with a gross error of smaller size.
The empirically obtained overall result γi[0.84, 0.94], γ =0.90 (excl. Ex. 3), and especially the negative linear correlation

between OEPi and MIBs,i(i = 1, . . ., n), show that there existsa re�ection of the OEPi values in the MIBs,i values. The re-�ection allows us to state that the concept of outlier-exposing
potential proposed in this work is reasonable and correct. We
may then expect that higher OEP and OEPi values may implygreater e�ectiveness and e�ciency in identifying outliers.

6 Observation schemes used in tests

The computations were carried out for the following observa-
tion schemes and their observational variants:
• Ex. 1. Repeated measurements of one quantity; A(n × 1) =
[1 1 . . . 1]T
– 3 obs.; σ1 = σ2 = σ3 = 1mm
– 3* obs.; σ1 = 1mm, σ2 = 3mm, σ3 = 2mm
– 4 obs.; σ1 = σ2 = σ3 = σ4 = 1mm

• Ex. 2. 4-point leveling scheme (Figure 2a)
– 5 obs. σ1 = σ2 = . . . = σ5 = 1mm, RUE 1 = {y1, y2}; RUE2 = {y3, y4}
– 5* obs. σ1 ÷ σ5 : 2, 2, 3, 3, 2 [mm], RUE as above;
– 6 obs. σ1 = σ2 = . . . = σ6 = 1mm; rij = 0 for (y1,y3),(y2,y4), (y5,y6)

• Ex. 3. 4-point 2D GPS scheme (Figure 2b)
– 10 obs. σ1 = σ2 = . . . = σ10 = 10mm, RUE 1 = {y1, y3};RUE 2 = {y2,y4}; RUE 3 = {y5,y7}; RUE 4 = {y6,y8}, 50elements rij = 0 in Rs;
– 12 obs. σ1 = σ2 = . . . = σ12 = 10mm, 84 elements rij = 0in Rs;
– 12* obs. σ1 ÷ σ12 : 2, 2, 3, 3, 2, 2, 4, 4, 2.5, 2.5, 5, 5[mm], rij = 0 as above;

• Ex. 4. 7-point levelling scheme (Figure 3a)
– 9 obs. σ1÷σ9 : 2, 1, 2, 1, 2, 2, 1, 2, 2 [mm]; RUE 1 = {y1,
y7}; RUE 2 = {y2, y6}; RUE 3 = {y3, y4, y5}

– 10 obs. as 9 obs. + y10, 1–3, σ = 1mm ; RUE= {y3, y4, y5}
– 11 obs. as 10 obs. + y11, 3–5, σ = 1mm; RUE= {y3, y4, y5}
– 12 obs. as 11 obs. + y12, 2–6, σ = 1mm; RUE= {y3, y4}

• Ex. 5. 5-point angle-linear scheme (Figure 3b, Table 2)
– 9 obs. σ1 ÷ σ9 : 2, 3, 2, 3.5, 3, 4 [mm], 3, 3, 3 [”]; RUE1 = {y1,y2,y5,y7,y8}; RUE 2 = {y3,y4,y9}
– 10 obs. as 9 obs. + angle y10, 2-3-1 (C-L-R code), σ = 3”,RUE = {y3,y4,y9}
– 11 obs. as 10 obs. + angle y11, 3-5-2 (C-L-R code), σ = 3”,RUE = {y3,y4,y9}
– 13 obs. as 11 obs. + distances y12, 1-4, σ = 4.5mm, y13,2-4, σ = 4mm

• Ex. 6. 14-point angle-linear scheme (Figure 4)
– 48 angles (σ = 10”) and 48 distances (σ = 5mm)

(a) (b)

Figure 2. (a) 4-point levelling scheme, (b) 2D GPS scheme; LocalRUEs marked with colours

(a) (b)

Figure 3. (a) 7-point leveling scheme, (b) 5-point angle-linearscheme; Local RUEs marked with colours

Figure 4. 14-point angle-linear network

Table 2. Approximate coordinates [m]
No. 1 2 3 4 5

X 25.0 112.5 240.0 202.0 2.0
Y 11.0 7.0 135.0 240.0 200.0
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Table 3. The computed OEP values versus the redundancy levels
r

Ex. u d r0 n OEPmin OEPmax OEP r

Ex. 1 2 1 0.50
3 0.50 0.50 0.50 0.67
3* 0.36 0.68 0.52 0.67
4 0.67 0.67 0.67 0.75

Ex. 2 4 1 0.25
5 0.42 0.44 0.43 0.40
5* 0.33 0.54 0.49 0.40
6 0.60 0.60 0.60 0.50

Ex. 3
GPS 8 2 0.14

10 0.74 0.75 0.75 0.40
12 0.82 0.82 0.82 0.50
12* 0.78 0.85 0.81 0.50

Ex. 4 7 1 0.14
9 0.52 0.63 0.57 0.33
10 0.61 0.79 0.66 0.40
11 0.66 0.81 0.74 0.46
12 0.70 0.82 0.77 0.50

Ex. 5 10 3 0.13
9 0.37 0.53 0.43 0.22
10 0.51 0.62 0.57 0.30
11 0.58 0.69 0.64 0.36
13 0.65 0.82 0.73 0.46

Ex.6 28 3 0.04 96 0.93 0.98 0.96 0.74

Table 4. Values of OEP and OEP(r)(∆ys) for Ex. 2
Ex. 2. 6 obs. ∆ys1 2 3 4 5 6

OEP 0.60 OEP(r) -0.44 -0.07 0.30 0.48 0.53 0.55
OEPmin 0.60 OEP(r)min -0.45 -0.08 0.30 0.48 0.53 0.55
OEPmax 0.60 OEP(r)max -0.43 -0.06 0.30 0.48 0.53 0.55

7 Results of the OEP and OEP(r) computations
and their discussion

In the case of models containing RUEs, the extended version
of the potential is determined only for individual observations
that do not belong to RUE, i.e., with non-zero OEP(r)i .
i. Empirical study of OEP
The results shown in Table 3 con�rm the properties formu-
lated based on theoretical considerations (see Sect. 3). Here
are some additional conclusions:
• di�erentiation of observation accuracy results in the dif-
ferentiation of the OEPi values (see Ex. 1-3*obs., Ex. 2-5*obs. and Ex. 3-12*obs. as compared to Ex. 1-3obs., Ex.
2-5obs. and Ex. 3-12obs., respectively);

• the residuals’ correlation structure in Ex. 3(GPS), espe-
cially for 12 observations, is speci�c due to many observa-
tion pairs with rij = 0, and hence RCij = 1. This contributesto high OEP values at a not particularly high level of r;

• very high OEP values in Ex. 6 have been caused not only
by a high redundancy level of amodel but also by the in�u-
ence of a great many mutually remote observations (i.e.,
with RCij close to 1).

ii. Empirical study of OEP(r)
The relation between OEP and OEP(r) for some levels of ∆ys,iis shown in Figure 1 (Sect. 4) for the observation scheme as
in Ex. 1 with n = 3, . . ., 10. Similar information, but in a
tabular form, is presented for the observation systems as in
Ex. 2-6obs., Ex. 5-13obs. and Ex. 6 (Tables 4, 5, and 6).
The above results (together with the intermediate ones) con-

stitute the information that was used for the formulation of the
properties of RC(r)ij , OEP, and OEP(r), presented in Section 4.

Table 5. Values of OEP and OEP(r)(∆ys) for Ex. 5
Ex. 5. 13 obs. ∆ys1 2 3 4 5 6

OEP 0.73 OEP(r) -0.43 -0.04 0.30 0.50 0.60 0.65
OEPmin 0.65 OEP(r)min -0.52 -0.32 -0.07 0.16 0.35 0.48
OEPmax0.82 OEP(r)max -0.35 0.17 0.52 0.66 0.72 0.75

Table 6. Values of OEP and OEP(r)(∆ys) for Ex. 6
Ex. 6. 96 obs. ∆ys1 2 3 4 5 6 7

OEP 0.96 OEP(r) -0.30 0.25 0.58 0.72 0.79 0.83 0.85
OEPmin 0.93 OEP(r)min -0.43 -0.02 0.35 0.57 0.69 0.75 0.79
OEPmax0.98 OEP(r)max -0.22 0.38 0.67 0.78 0.83 0.86 0.88

Verifying these properties on a larger set of observation sys-
tems would also help develop the optimal number of simula-
tions of random error vectors. The weakness of the measures
adopted for the outlier-exposing potential of a model is the
averaging of the values of RCij indices, which does not re�ecttheir actual variation in a model.
Although the OEP and OEP(r) measures do not have a prob-

abilistic basis, such as in statistical hypotheses testing, they
describe the model’s properties related to the process of iden-
tifying outliers. That is why we believe they can be considered
auxiliary reliability measures in addition to the existing ones
such as MDB and MIB.

8 Concluding remarks

The basic version of OEP indicates the outlier-exposing abil-
ity of a given model induced by its redundancy, independent
of the magnitude of gross error. The extended version OEP(r)
shows the reduction of this ability due to the masking e�ect of
observation errors, for the speci�ed magnitude of gross error.
Both versions enable comparing di�erent models despite their
di�erent minimal average redundancy.
Although they do not have a probabilistic basis, they provide

information about the model’s outlier-exposing ability level,
making outlier detection and identi�cation easier. In this re-
spect, they can supplement the existing reliability measures
such as MDB and MIB.
Besides the GMMs for network adjustment, the proposed

concept also applies to such GMMs as, e.g., linear regression,
similarity transformation, or a�ne transformation.
A desired direction of future research would be to investi-

gate the degree of correlation of the OEP level of the model with
the level of e�ectiveness and e�ciency of identifying outliers
(as a separate or inherent diagnostic procedure) in parameter
estimation using robust and non-robust methods. The results
of the research presented in this paper allow us to expect a pos-
itive correlation. It is also planned to work on specifying the
value of the acceptable lower limit of OEP, adopted here based
on approximate reasoning.
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