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Abstract

Modern surveying practice has embraced the use of Global Navigation Satellite System (GNSS) technology due to its attainable
precision and uncomplicated functionality. The adoption of this technology has therefore necessitated the transformation of
coordinates between satellite-based and classical geodetic reference datums. It is known that the 3D similarity-based
transformation models are the most widely used in the literature. However, one major limitation of such models is the
representation of point rotations in space using Euler angles connected to X, Y, and Z-axes, which often leads to matrix
singularities. To overcome this mathematical inconvenience, the dual quaternion is proposed. This paper implements the dual
quaternion algorithm to transform coordinates between the World Geodetic System 1984 (WGS84) and Ghana War Office 1926. To
perform the transformation, 31 common points were divided into two parts: reference and check points. The reference points,
consisting of 24 common points that are evenly distributed across Ghana, were used to derive the transformation parameters. The
remaining 7 points were used to evaluate the derived transformation parameters. The results confirmed that the coordinates
transformed by the dual quaternion algorithm are in average agreement with the measured coordinates, with precision and
accuracy levels of about 0.580 m and 1.023 m. The obtained results follow the Bursa-Wolf model that is already used by the Ghana
Survey and Mapping Division to perform 3D transformations. Hence, the results satisfy cadastral applications, geographic
information works, reconnaissance, land information system works and small-scale topographic surveys in Ghana.
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1 Introduction

Performing three-dimensional (3D) coordinate transformations
involves the use of translation, rotation, and scale parameters that
unify and connect a non-geocentric system to a geocentric system
and vice versa. Such a practice requires the use of 3D transforma-
tion models and their associated transformation parameters, which
are determined using the traditional least squares approach. Al-
though a plethora of transformation models are available in the
literature, 3D similarity-based models such as Helmert, Bursa-

Wolf, Molodensky-Badekas, and Veis are the most widely used and
adopted for coordinate transformation by governmental mapping
agencies, private sector, and field practitioners (Kheloufi and Dehni,
2023; Prasad and Prasanna, 2022; Hussain, 2022; Kalu et al., 2022;
Ruffhead, 2021; Ansari et al., 2017, 2019; Elshambaky et al., 2018;
Okiemute et al., 2018; Mihajlovi¢ and Cvijetinovi¢, 2017; Doukas
et al.,, 2017; Soler et al., 2016). The reason for wider application
can be attributed to the attainable precision and uncomplicated
functionality.

However, scholars (Zeng et al., 2018, 2019, 2020, 2022a,b, 2024;
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Uygur et al., 2022; Bektas, 2022, 2024; Ioannidou and Pantazis,
2020, 2022; Shen et al., 2006) identify some mathematical incon-
veniences of the similarity-based models. One major limitation
is the use of the Euler angle to represent the rotation between the
reference axes of the geocentric and non-geocentric systems. Thus,
Euler angle representation in trigonometric functions of sine and
cosine can lead to dual solutions. In cases where the reference axes
angles are smaller, there is a rapid change in the sine function. Be-
sides, Euler angles exhibit interdependency between the reference
axes when the rotational angle is +£90° about the Y-axis (Bektas,
2022, 2024). Since the Euler angles lack mathematical attractive-
ness, the rotation, translation, and scale parameters are estimated
in dual quaternions to overcome those enumerated challenges. The
introduction of the quaternion eliminates the issue of matrix sin-
gularities. Table 1 gives a summary of recent quaternion-based
coordinate transformation studies. These previous studies (Table 1)
do conclude that all the variants of quaternion methods offer the
mathematical attractiveness of less computational power, faster
convergence, numerical stability, and no initial boundary condi-
tions to implement the algorithm.

A comprehensive overview of the literature (Zeng et al., 2018,
2019, 2020, 2022a,b, 2024; Uygur et al., 2022; Bektas, 2022, 2024;
Ioannidou and Pantazis, 2020; Shen et al., 2006) indicates that
geographically, the quaternion and dual quaternion were applied
and tested in geodetic reference systems found within the West-
ern continents (e.g., Europe, Asia, etc.). No such studies exist in
Sub-Saharan Africa where the national mapping reference systems
are mostly dominated by non-geocentric datums. In general, the
quaternion and dual quaternion methods are yet to be embraced
wholeheartedly within Sub-Saharan Africa. Hence, there is the
need to apply, test, and evaluate for the first time the capability of
the dual quaternion algorithm to unify a highly heterogeneous clas-
sical geodetic system and satellite-based system in Sub-Saharan
Africa (due toits establishment). This study selected and applied the
dual quaternion approach over the quaternion. Unlike the quater-
nion, which considers only the rotation, the dual quaternion creates
the opportunity to represent both the translation and rotation of
the reference system (Ioannidou and Pantazis, 2022). It is impor-
tant to mention that this study did not test other quaternion and
dual quaternion algorithms because they were extensively investi-
gated and compared in the literature (Zeng et al., 2018, 2019, 2020,
2022a,b, 2024; Uygur et al., 2022; Bektas, 2022, 2024; Ioannidou
and Pantazis, 2020; Shen et al., 2006), where it was found that
both methods produced identical coordinate transformation re-
sults. However, a significant difference lies in their computational
procedures where they can be categorized as iterative (if initial ap-
proximation values for the unknown transformation parameters
are needed) and noniterative.

Consequently, this study applied and tested the recently pro-
posed non-iterative dual quaternion approach by Bektas (2022) in
Ghana, a country located in the Western part of Africa where a non-
geocentric datum called the Accra 1929 referenced on the War Office
1926 ellipsoid is used for its surveying and mapping activities. As is
known from the literature, classical geodetic networks are highly
heterogeneous due to the applied surveying methods and adjust-
ment techniques, and employed personnel, among others (Varga
et al., 2017; Poku-Gyamfi, 2009). Hence, it is an excellent opportu-
nity to explore the computing performance of the dual quaternion
algorithm for coordinate transformation from WGS84 to the War
Office 1926 ellipsoid. To this end, the contribution of this study is
to explore the practicality of dual quaternions as a convenient and
reliable alternative 3D coordinate transformation technique in a
classical geodetic datum located in a Sub-Saharan African coun-
try. This study will further raise awareness of the Surveying and
Mapping Agencies in Africa necessary to grasp the potential and ad-
vantages offered by the dual quaternion approach for 3D coordinate
transformation.
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Figure 1. Distribution of common points across the regions in Ghana

2 Study area and data utilized

Ghana is the study area where this research was conducted. Located
in West Africa, it lies between latitudes 4° 30’ N and 11° N, and be-
tween longitudes 3° Wand 1° E, covering aland area of 238,540 km?.
The Accra 1929 datum was officially established using the War Of-
fice 1926 as the reference ellipsoid. This non-geocentric system of
reference is the official reference datum for surveying and mapping
activities in Ghana. The War Office 1926 ellipsoid properties in-
clude a semi-major axis (6378299.99899832 m), semi-minor axis
(6356751.68824042 m), and flattening (1/296). The grid coordinate
system utilized in Ghana for cadastral and engineering applica-
tions is based on the Transverse Mercator projection. Globally, with
modernization and advancement in technology, the geodetic frater-
nity adopted the use of Global Navigation Satellite System (GNSS)
such as Global Positioning System (GPS) for surveying and map-
ping related works. The GPS is a geocentric system referenced to
the World Geodetic System (WGS) 1984. Since Ghana’s geodetic
reference system is non-geocentric, there is a need to determine
transformation parameters for the localization of the GPS-acquired
data. To achieve that, this study applied a total of 31 common points
distributed across the country for the coordinate transformation.
The common points utilized are geodetic coordinates based on the
War Office 1926 ellipsoid and WGS84. Figure 1 presents the distri-
bution of the common points across 16 regions of Ghana.

3 Methods

3.1 Dual quaternion method applied

This study adopted the dual quaternion approach proposed by Bek-
tas (2022). This approach was chosen and applied because of its
simplicity in application, fast convergence rate, and unrequired use

of initial approximate quaternion values for solution. The quater-
nion can be represented mathematically as:

q = (11 + X2j + x3k) + wo, (1)



Table 1. Related work
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Authors

Methods applied

Summary

Zeng et al. (2024)

Quaternion, dual quaternion, weighted total
least squares

The study expressed the unit dual quaternion of the 3D simi-
larity transformation in the form of errors-in-variables. The
study revealed that the precision of the determined transfor-
mation parameters by the dual quaternion was better than
the quaternion.

Zhao et al. (2024)

Generalized errors-in-variables (EIV), dual
quaternion

The study identified the limitation of representing the rota-
tion matrices using Euler angles and the impact of outliers
on the parameters determined from distorted geodetic data.
The EIV was proposed to solve the challenges, using dual
quaternion to represent the rotations.

Bektas (2024)

Expanded dual quaternion algorithm, dual
quaternion, Helmert 3D

The author proposed a novel dual quaternion algorithm that
simultaneously transforms 3D coordinates and computes the
related variance-covariance matrix of the transformation
parameters.

Bektas (2022)

Dual quaternion, quaternion, Helmert 3D

The study pointed out that although Helmert 3D was the most
widely used, it was limited because the rotational angles be-
tween reference systems were defined by Euler angles. The
author concluded that no numerical superiority was observed
between the dual quaternions and Helmert 3D. However, the
dual quaternions exhibited faster convergence because the
approach does not need initial starting values of the parame-
ters to be determined.

Zeng et al. (2022a)

Orthonormal matrix algorithm, modified Pro-
crustes algorithm, analytical dual quaternion
algorithm

The results confirmed that all the methods employed were
valid for performing point-wise transformations.

Ioannidou and Pantazis (2022)

Euler angles method, quaternion, dual quater-
nion

The results of the study revealed that the dual quaternion
approach satisfactorily estimated the rotation parameters
with the Euler angles, producing sizable variations. However,
the study was inconclusive regarding the optimum way to
estimate the translation and scale parameters.

Uygur et al. (2022)

Quaternion approach

The study presented how to apply the quaternion approach to
retrieve Euler rotation angles in both symmetric and asym-
metric 3D similarity transformations. The study went further
to show how the covariance matrix could be retrieved for the
derived transformation parameters. It was concluded that
using the quaternion provided numerical stability and faster
convergence to the solution.

Uygur et al. (2021)

Nine-parameter three-dimensional affine
transformation model, quaternion approach

The study considered the (a)symmetric 3D nine-parameter
affine transformation model using the quaternion-based ap-
proach to derive the transformation parameters and their
associated covariance matrix. The effectiveness and consis-
tency of the proposed approach were tested on five different
case studies.

Ioannidou and Pantazis (2020)

Euler angles, quaternion, dual quaternion

This study investigated the reverse solution problem of the
Helmert 3D transformation model by using Euler angles,
quaternion, and dual quaternion algebra. The study con-
cluded that the dual quaternion was better for estimating the
rotation angles than the other methods investigated.

Zeng et al. (2018)

Unit dual quaternion, classical Procrustes algo-
rithm, orthonormal matrix algorithm, Wang
etal. (2014) approach

The study proposed an iterative solution and representation
of the rotation and translation parameters of the Helmert
3D model using unit dual quaternion. The proposed ap-
proach can handle any rotation size. Comparable results were
achieved with other methods considered.

Mercan et al. (2018)

Iterative solution for the Gauss-Helmert model,
EIV, and quaternions

The study proposed an iterative solution for weighted sym-
metric 2D and 3D similarity transformation problems. The
proposed algorithm does not need prior least squares esti-
mation and can adequately handle issues regarding small
rotation angles or small-scale factors between the source
and the target datums.
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where x3, X, X3 and wy are the numerical values. The i, j, and k are
the imaginary components (basic quaternion units) that satisfy the
following conditions (Kenwright, 2012; Zeng et al., 2024):

==k =1,

ij = —ji = k,

jk=kj =i, @)
ki = ik = j,

ijk = —1.

In quaternions, the rotation matrix (R) can be evaluated using
Equation (3):

R=(ws—q" xq) I3 +2 (axq") +wo xC@, G

where I3, 3 is the unit matrix, q = [x; X5 X3] T
in Equation (4):

,and C(q) is expressed

(o] X3 X3
—X3 0 X1 . (4)
X> X1 (o]

C(q) =

Equation (5) establishes the relationship between R and the
quaternions:

X1 ®X1a X3
R= X1 X33 X33
X31 (X33 (X33
Wo X3 — X5 = X3
= 2(X1X5 + WoX3)
2(X1X3 — WoX3)

2(X1X2 + qoq3)

2 032 42 g2
WG+ X7+ X5 — X3

2(X2X3 + WoXq)

2(X1X3 + WoX3)

2(X3X3 — WoXq)

2 22 a2 42
W5 —X{ — X5 +X3
(5)

where:
_1

Wo = i (1+ xqq + xpp + x33)
_1

X1 = 4 (1+ o1 — opp — x33)

‘ (6)
X3 = 7 (1= o+ &gy — az3)

S

X3:Z(1—O(11—O(22+0C33).

From the quaternions, the rotation angles can be expressed in
Equation (7):

e = atan2 (—2(WoX; +X2X3), (W3 + X3 — x5 — x3)),
P = asin (2(-woxa + X3X1)), (7)

w = atan2 (—2(WoX3 + X2X1), (W + X7 — x5 — x3)).

Asarepresentation for both translation and rotation parameters,
the dual quaternion is utilized because the unit quaternion can only
handle rotation. The dual quaternion is made up of eight elements
or two quaternion elements (real and dual parts). In a single model,
the dual quaternion can be expressed in compact form as shown in
Equation (8):

q=qr+qq x n, (8)

where qr and q,; are the real and dual parts of the quaternions with
n representing the additional dual number. To determine a new
coordinate position, the dual quaternion defines the translation and
rotation properties as follows:

Qr:(X»
9
Qg =t x «, ©
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where t = [ty ty t; 0], 44 = (44, 44, 44, qd3]T and o = [og oy oz 3] 7.
The approach proposed in Bektas (2022) determines the scale factor
and rotation parameters using the « quaternions while the « and
q4 quaternions are used to determine the translation parameters.
Hence, the matrix R is determined based on the dual quaternion
theory from Equation (10):

R=(cx%—ochcx>13><3+2<oc><ocT)+cx0><C(cx), (10)
10

« = [ocloczocﬁT

Equation (11) presents the functional model for the 3D transfor-
mation in dual quaternion where A is the scale parameter. Since
there are more observations than unknowns, the transformation
parameters are determined based on the least squares. However,
Equation (11) is non-linear and therefore requires initial approxi-
mate values to solve for the unknown transformation parameters.
Here, only oo issettoland oy o = otz 0 = 30 = Qdoo = ddy =
A, = d; = O A detailed explanation of how the linearization is
done is presented in Bektas (2022).

Xp = 2W(To() X qq+ }\W(TCX) X Q(a)Xs)

X X (1)
Y —owT T y n
7 _ZW(o()qu+}\W(oc) X Q) 2 )
0 Ip 0 Ip
where:
X0 —X3 [2%) X1
ool + C(x o o o —x o
Q(CX) - [ (0] T( ) :| - 3 0 1 2 ,
- o) — Xy X1 [0 %)) X3
—X7 5] X3 X0
(12)
X0 X3 — X3 X1
ol —C(x o3 - o o o
W((X) - |: 0 ( ) :| - 3 (0] 1 2 ,
- xo oy~ xg o3
—X7 y%5) X3 X0
(13)
?\:oc(2)+cx%+cx§+tx§. (14)

3.2 Transformation model performance indicators

To ascertain the validity of the transformation results, statistical
measures such as root mean square (RMSE), horizontal error (HE),
root mean square HE (RMSEy ), standard deviation of HE (SDyg),
and maximum and minimum HE were applied. These statistical
measures are in line with scholarly practice in coordinate transfor-
mation studies (Varga et al., 2017). To carry out the quantitative
assessment, the statistical measures (Equations (15—20)) were ap-
plied to the estimated error components of the plane coordinates
(Easting and Northing).

n (E —E [sn (N, - R,
Zi:l(Er'l El)z,,RMSEN: 721:1(1\[’; N’)Z, (15)

RMSE;, =

HE = \/(E,-—E,-)2+ (N,-—N,-)Z =VAE2+AN2,  (16)

RMSEyg = |/(RMSE)? + (RMSEy )2, a7)
—\ 2

SD = M’ (18)

n
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Figure 2. Reference and check points distribution

Max = maximum (HE), (19)
Min = minimum (HE), (20)

where (E;, N;) and (E;, N;) are the observed and transformed coor-
dinates for Easting and Northing. The RMSEg and RMSEy are the
RMSE in Easting and Northing, and n is the total observed points.

4 Results and discussion

4.1 Derived dual quaternion transformation parameters
for Ghana’s geodetic reference network

This study applied a total of 31 common points found in the WGS84
and War Office 1926 for the transformation exercise. Out of the 31
common points, 24 representing 79% served as reference points
and were used to derive the transformation parameters. The re-
maining 7 common points representing 21% were used as check
points to evaluate the precision and accuracy of the derived trans-
formation parameters. The distribution of the selected reference
and check points is presented in Figure 2. It is important to note
that the reference points must be carefully selected. One rule of
thumb states that the initial selected reference points must cover
the greater extent of the study area. As soon as this is achieved, ad-
ditional reference points can be added by ensuring that the selected
points are distributed evenly across the study area. Hence, in this
study, RP11, RP 12, RP15, RP19, RP16, RP21, RP22, RP 24, RP17, RP14,
RP10, RP6, RP5, RP7, and RP1 were first selected based on their loca-
tions (see Figure 2) because they cover the far extent of the country
(Ghana). Additional points (RP2, RP3, RP4, RP8, RP9, RP13, RP18,
RP20, and RP23) were then selected and added to the initial refer-
ence points by making sure they were homogenously distributed
across the country. As seen in Figure 2, the determined transfor-
mation parameters will not be extrapolated to produce results since
new points to be transformed are found within the reference points
utilized to establish those parameters (Bektas, 2022).

Table 2 presents the estimated transformation parameters us-
ing the dual quaternion algorithm. The algorithm outputs (Table 2)
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Figure 3. Least squares residual results for 24 control points

include three translation parameters (Tx, Ty, Tz), three rotation
parameters (Rx, Ry, Rz), scale factor (L), unit dual quaternion ele-
ments («0, a1, «2, &3, 4o, 41, 4dz» dq3) and the respective preci-
sions (standard deviation) of the parameters.

The least squares residuals (Vx, Vy, Vz) matrix for the (X, Y, Z)
cartesian coordinates of the reference points are shown in Table 3.
The residual information is further illustrated in Figure 3. In Fig-
ure 3, Vx is seen to be very close to the zero residual which was
closely followed by Vy and Vz, respectively. The level of heterogene-
ity in the classical geodetic reference network may have contributed
to the departing extent and the level of volatility experienced with
the residuals from the ideal zero value.

4.2 Dual quaternion transformation results

To assess the performance of the dual quaternion algorithm, the
derived transformation parameters were applied to transform the
WGS84 coordinates into the War Office 1926 system. This trans-
formation was made because the War Office 1926 is the official
mapping reference for survey activities in Ghana. Tables 4 and
5 present the coordinate differences for the reference and check
points between the transformed cartesian (X, Y, Z) coordinates and
the measured points in War Office 1929.

Since the projected grid coordinates are used for all surveying
and mapping activities in Ghana, map projection was conducted on
the transformed coordinates. Tables 6 and 7 present the resultant
differences between the transformed and measured grid coordi-
nates for 24 reference and 7 check points. At a glance, it is noted
in Table 6 that the reference points RP4, RP9, RP10, and RP12 had
a discrepancy above 1 metre in the Northing component with the
Easting having a discrepancy below 1 metre. Similar differences
above 1 metre were also associated with the check points for the
Easting (C2) and Northing (C1, C3, and C5) components (Table 7).
The size of the error may be due to possible distortions that are
usually associated with classical geodetic networks due to how it
was established. For instance, the Ghana geodetic network was
established based on two separate surveys where triangulation was
used to fix the controls in the Southing part of the country and
traversing was used in the Northing part. Historical accounts also
indicate that the triangulation and traverse surveys were adjusted
separately (Poku-Gyamfi, 2009). Hence, the discrepancy observed
could be the consequence of how the classical geodetic network was
established and adjusted in Ghana.

To provide a comprehensive assessment of the results presented
in Tables 6 and 7, summary statistics of the discrepancies for both
reference and check points are presented in Table 8. It can be
inferred from the error estimations (Table 8) that the distortion
ranges of the reference points were 0.1112—1.4173 m, and the check
points were 0.1351-1.4971m in the minimum and maximum. This
implies that in the worst-case scenario, the determined transforma-
tion parameters can transform a single point that would not deviate
more than 1.4971 m from its measured coordinate. Similarly, it can
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Table 2. Computed dual quaternion algorithm transformation parameters

Parameter Value Unit Description
Tx 143.68728309+4.392876233211001 m Translation in X
Ty -30.97180602+9.090202365889539 m Translation in Y
Tz -329.27294604+5.378363851725634 m Translation in Z
Rx 0.0004235948034+0.000000711958960 degree Rotation in X
Ry -0.0000034240300+0.000000845173900 degree RotationinY
Rz 0.00006029176074-0.000001413450798 degree Rotation in Z
L 1.0000083014+0.00000068599752/ - Scale Factor
«x0 0.999999999993 -
ol -0.000003696562 -
2 0.000000029882 -
o3 -0.000000526145 - Unit Dual
Qdo 71.843654612490 - Quaternion Elements
qa: -15.485256620946 -
Qd -164.636528118377 -
Qa3 0.000179414611 -
Table 4. Error margin between the transformed and mea-
sured War Office 1929 coordinates for the refer-
Table 3. Least squares residual matrix for the reference ence point (RP) (unit: metres)
point (RP) used to derive the transformation pa- -
rameters Point ID AX AY AZ
Point ID Vx (m) Vy (m) Vz (m) RP1 -0.0223 0.4817 0.0879
RP2 0.0498 -0.7145 -0.5457
RP1 -0.0224 0.4818 0.0879 RP3 -0.0750 0.1912 0.5122
RP2 0.0498 -0.7145 -0.5457 RP/ 0.1107 -0.4722 -1.0477
RP3 -0.0749 0.1912 0.5122 RP5 -0.0150 -0.6546 -0.1410
RP4 0.1107 -0.4722 -1.0477 RP6 -0.0048 -0.4588 -0.1082
RP5 -0.0150 -0.6546 -0.1410 RP7 -0.0811 -0.4372 0.4768
RP6 -0.0048 -0.4587 -0.1082 RPS -0.0803 -0.4122 0.4779
RP7 -0.0811 -0.4372 0.4768 RP9 -0.1546 0.4656 13331
RP8 -0.0803 -0.4122 0.4779 RP10 0.1553 0.6347 -1.1342
RP9 -0.1545 0.4656 13331 RP11 0.1053 0.0930 -1.2870
RP10 0.1553 0.6348 -1.1342 RP12 -0.1153 -0.329/ 0.9022
RP11 0.1053 0.0930 -1.2870 RP13 -0.1214 -0.8655 0.9560
RP12 -0.1152 -0.3294 0.9022 RP14 0.0678 0.1590 -0.3895
RP13 -0.1213 -0.8655 0.9559 RP15 -0.0274 -0.3564 0.2187
RP14 0.0677 0.1590 -0.3894 RP16 -0.0077 0.0952 0.0462
RP15 -0.0274 -0.3564 0.2187 RP17 0.0781 -0.2261 -0.5181
RP16 -0.0077 0.0951 0.0462 RP18 0.0428 0.1422 -0.0591
RP17 0.0782 -0.2260 -0.5181 RP19 0.0176 0.4194 0.0438
RP18 0.0428 0.1422 -0.0591 RP20 0.0512 0.5075 -0.1426
RP19 0.0177 0.4194 0.0437 RP21 -0.0145 -0.2026 -0.0383
RP20 0.0512 0.5075 -0.1426 RP22 -0.0364  -0.5008 0.0018
RP21 -0.0145 -0.2026 -0.0383 RP23 0.0233 1.1606 0.0701
RP22 -0.0364 -0.5008 0.0018 RP24 -0.0270 -0.3486 0.0240
RP23 0.0233 1.1606 0.0700
RP24 -0.0269 -0.3486 0.0240 Maximum 0.1553 1.1606 1.3331
Minimum -0.1546 -0.8655 -1.2870

SD 0.0867 0.5636 0.7081




Table 5. Error margin between transformed WGS84 and
existing War Office 1929 for the check points (C)

(unit: metres)

Point ID AX AY AZ
C1 0.0896 -0.2755 -1.1477

C2 -0.0502 -1.4575 -0.1055

C3 0.1040 -0.4012 -1.1086

Cs4 -0.0017 0.0772 0.1511

C5 -0.1748 -0.5909 1.3435

Ccé6 -0.0089 -0.3198 0.2146

Cc7 0.0410 0.3191 -0.0610
Maximum 0.1040 0.3191 1.3435
Minimum -0.1748 -1.4575 -1.1477
SD 0.0946 0.5654 0.8527

Table 6. Differences in projected grid coordinates based
on the reference points (unit: metres)

Point ID AN AE HE
RP1 0.0885 0.4810 0.4890
RP2 -0.5541 -0.7133 0.9033
RP3 0.5160 0.1742 0.5446
RP4 -1.0560 -0.4796 1.1598
RP5 -0.1066 -0.6164 0.6256
RP6 -0.0686 -0.4915 0.4962
RP7 0.4886 -0.4270 0.6489
RP8 0.4857 -0.4170 0.6401
RP9 1.3410 0.4588 1.4173
RP10 -1.1155 0.6187 1.2756
RP11 -0.9615 0.0703 0.9640
RP12 1.0375 -0.3445 1.0932
RP13 0.9561 -0.8676 1.2911
RP14 -0.3995 0.1595 0.4302
RP15 0.2299 -0.3567 0.4244,
RP16 0.0578 0.0950 0.1112
RP17 -0.5331 -0.2249 0.5786
RP18 -0.0727 0.1430 0.1604
RP19 0.0475 0.4190 0.4217

RP20 -0.1557 0.5082 0.5315
RP21 -0.0242 -0.2032 0.2047
RP22 0.0042 -0.5023 0.5023
RP23 0.0625 1.1605 1.1622
RP24 0.0178 -0.3490 0.3495

Table 7. Differences in projected grid coordinates based
on the reference points (unit: metres)

Point ID AN AE HE
C1 -1.1479 -0.2601 1.1770
C2 -0.0634 -1.4498 1.4512
C3 -1.1140 -0.4135 1.1882
Cs4 0.1207 0.0608 0.1351
Cs5 13434 -0.6608 1.4971
Cé6 0.2058 -0.3197 0.3802
C7 -0.0740 0.3198 0.3282
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Table 8. Summary statistics of the transformation results for
both reference and check points (unit: metres)

Statistical Indicator Reference Point Check Point
RMSE East 0.4948 0.6531
RMSE North 0.6014 0.7955
RMSE HE 0.7788 1.0292
Average HE 0.6844, 0.8796
Maximum HE 1.4173 1.4971
Minimum HE 0.1112 0.1351
SD 0.3797 0.5773

transform a single point that would deviate from the measured
coordinate only by 0.1351m in the classical geodetic network of
Ghana. Averagely, the horizontal positional accuracy between the
transformed and measured coordinates varies between 0.6844—
0.8796 m when one considers the reference and check points. In
the Easting and Northing components, the RMSE values indicate
achieved reasonable degree of dispersion between transformed and
measured coordinates. Based on the RMSE HE results, it can be
stated that a transformation accuracy between 0.7788—1.0292m
can be achieved in unifying the WGS84 and War Office 1929 sys-
tems. Considering the reference and check points, it is observed
that a transformation precision ranging from 0.3797—0.5773 m is
attainable.

4.3 Comparing dual quaternion algorithm and Bursa-
Wolf model

In Ghana, the Bursa-Wolf transformation model is the most widely
accepted coordinate approach to perform 3D coordinate transfor-
mation. It is also the technique used to determine the official trans-
formation parameters utilized in the country. Considering this, it is
prudent to make a comparison between the proposed dual quater-
nion algorithm and the Bursa-Wolf transformation model. This
comparison was to confirm the reliability of the dual quaternion as
an alternative transformation approach to the Bursa-Wolf model.
The estimated parameters and standard deviation of the Bursa-Wolf
model are listed in Table 9. The computed horizontal residuals for
the reference and check points showed identical results (Figs. 4
and 5). The same summary statistics (Table 10) were obtained in
all methods. Thus, no significant difference exists between the dif-
ferent transformation method solutions. Accordingly, the proposed
dual quaternion algorithm is valid for 3D coordinate transformation
in Ghana.

These results (Table 10) prove that both methods achieved a
meter-level transformation accuracy, which meets the demands of
some surveying and mapping activities in Ghana such as cadastral
surveying, geographic information works, reconnaissance, land
information system works, and small-scale topographic surveys
(Yakubu and Kumi-Boateng, 2015). Although the methods achieved
a meter-level accuracy, cognitive analysis of the results indicates
that the derived parameters can also produce a centimetre-level ac-
curacy when transforming new coordinates. This can be seen from
the reported minimum HE produced by both methods. Therefore,
the inference here is that the estimated transformation parameters
between WGS84 and War Office 1929 are restricted to the region
where the common points are located.

4.4, Limitations of the study

The dual quaternion algorithm and Bursa-Wolf model in its origi-
nal formulation do not consider the distortions that are exhibited
by coordinates that are related to the classical geodetic network.
Hence, the transformation results achieved in this study are valid
only for its intended purposes. However, for high-precision sur-
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Table 9. Computed Bursa-Wolf transformation parameters

Parameter Value Unit
Tx -144.4,04369432623+2.71644169249343 m
Ty 30.8392251366517+5.77913539479517 m
Tz 328.969752734147+3.31299131230516 m
Rx -1.54225613813615+4.41022399239605 x 10~ %7 rad
Ry 0.0194187287742367+5.20304861273006 x 10~%7 rad
Rz -0.226456753173654+8.98852336716549 X107 rad
S -8.182912801433343+4.24566775106515 x 107 ppm

Table 10. Summary statistics of the horizontal residuals for both methods (unit: metres)

Statistical Indicator

Bursa-Wolf
Reference Point

Dual Quaternion

Check Point Reference Point Check Point

RMSE East
RMSE North

SD

RMSE HE
Maximum HE
Minimum HE

0.4948
0.6014
0.3797
0.7788
14173
0.1112

0.6531 0.4948 0.6531
0.7955 0.6014 0.7955
0.5773 03797 0.5773
1.0292 0.7788 1.0292
1.4971 1.4173 1.4971
0.1351 0.1112 0.1351

mBursa-Wolf m Dual Quaterion

123 456 7 8 9 101112131415 16 17 18 19 20 21 22 23 24

® Bursa-Wolf  ® Dual Quaternion

Reference Point

Check Point

veys, it is recommended that the distortion must be considered
during the transformation parameters derivation. This is in line
with the assertion made by Shen et al. (2006) that the distortions
are integrated into the derived transformation parameters if not
adequately handled during the transformation process.

5 Conclusions

In the current conditions of most Sub-Saharan African countries
such as Ghana, the geodetic infrastructure lacks geocentric datum
as its official mapping reference system. This makes the deter-
mination of parameters for coordinate transformation relevant.
Therefore, it is justified to assess the capability of other transfor-
mation techniques. The dual quaternion algorithm was applied and
evaluated to transform coordinates between WGS84 and Ghana War
Office 1929 classical geodetic system. The results revealed a trans-
formation accuracy and precision ranging from 0.7788-1.0292m
and 0.3797—-0.5773 m for the reference and check points. These
results confirmed that the transformed coordinates by the dual
quaternion algorithm are in average agreement with the measured
coordinates at the level of about 0.5773 m. Similar residual differ-
ences were obtained when the dual quaternion was compared with
the Bursa-Wolf model, with the former confirming its suitability
to serve as an alternative transformation technique in Ghana. To
improve the statistical residual differences obtained between the
transformed and measured coordinates, the systematic distortions
in the data related to the local datum must be considered in the
transformation process.
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