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Abstract
Modern surveying practice has embraced the use of Global Navigation Satellite System (GNSS) technology due to its attainableprecision and uncomplicated functionality. The adoption of this technology has therefore necessitated the transformation ofcoordinates between satellite-based and classical geodetic reference datums. It is known that the 3D similarity-basedtransformation models are the most widely used in the literature. However, one major limitation of such models is therepresentation of point rotations in space using Euler angles connected to X, Y, and Z-axes, which often leads to matrixsingularities. To overcome this mathematical inconvenience, the dual quaternion is proposed. This paper implements the dualquaternion algorithm to transform coordinates between the World Geodetic System 1984 (WGS84) and Ghana War Office 1926. Toperform the transformation, 31 common points were divided into two parts: reference and check points. The reference points,consisting of 24 common points that are evenly distributed across Ghana, were used to derive the transformation parameters. Theremaining 7 points were used to evaluate the derived transformation parameters. The results confirmed that the coordinatestransformed by the dual quaternion algorithm are in average agreement with the measured coordinates, with precision andaccuracy levels of about 0.580 m and 1.023 m. The obtained results follow the Bursa-Wolf model that is already used by the GhanaSurvey and Mapping Division to perform 3D transformations. Hence, the results satisfy cadastral applications, geographicinformation works, reconnaissance, land information system works and small-scale topographic surveys in Ghana.
Key words: coordinate transformation, dual quaternions, Global Navigation Satellite System, Bursa-Wolf model

1 Introduction

Performing three-dimensional (3D) coordinate transformationsinvolves the use of translation, rotation, and scale parameters thatunify and connect a non-geocentric system to a geocentric systemand vice versa. Such a practice requires the use of 3D transforma-tion models and their associated transformation parameters, whichare determined using the traditional least squares approach. Al-though a plethora of transformation models are available in theliterature, 3D similarity-based models such as Helmert, Bursa-

Wolf, Molodensky-Badekas, and Veis are the most widely used andadopted for coordinate transformation by governmental mappingagencies, private sector, and field practitioners (Kheloufi and Dehni,2023; Prasad and Prasanna, 2022; Hussain, 2022; Kalu et al., 2022;Ruffhead, 2021; Ansari et al., 2017, 2019; Elshambaky et al., 2018;Okiemute et al., 2018; Mihajlović and Cvijetinović, 2017; Doukaset al., 2017; Soler et al., 2016). The reason for wider applicationcan be attributed to the attainable precision and uncomplicatedfunctionality.However, scholars (Zeng et al., 2018, 2019, 2020, 2022a,b, 2024;
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Uygur et al., 2022; Bektas, 2022, 2024; Ioannidou and Pantazis,2020, 2022; Shen et al., 2006) identify some mathematical incon-veniences of the similarity-based models. One major limitationis the use of the Euler angle to represent the rotation between thereference axes of the geocentric and non-geocentric systems. Thus,Euler angle representation in trigonometric functions of sine andcosine can lead to dual solutions. In cases where the reference axesangles are smaller, there is a rapid change in the sine function. Be-sides, Euler angles exhibit interdependency between the referenceaxes when the rotational angle is ±90◦ about the Y-axis (Bektas,2022, 2024). Since the Euler angles lack mathematical attractive-ness, the rotation, translation, and scale parameters are estimatedin dual quaternions to overcome those enumerated challenges. Theintroduction of the quaternion eliminates the issue of matrix sin-gularities. Table 1 gives a summary of recent quaternion-basedcoordinate transformation studies. These previous studies (Table 1)do conclude that all the variants of quaternion methods offer themathematical attractiveness of less computational power, fasterconvergence, numerical stability, and no initial boundary condi-tions to implement the algorithm.A comprehensive overview of the literature (Zeng et al., 2018,2019, 2020, 2022a,b, 2024; Uygur et al., 2022; Bektas, 2022, 2024;Ioannidou and Pantazis, 2020; Shen et al., 2006) indicates thatgeographically, the quaternion and dual quaternion were appliedand tested in geodetic reference systems found within the West-ern continents (e.g., Europe, Asia, etc.). No such studies exist inSub-Saharan Africa where the national mapping reference systemsare mostly dominated by non-geocentric datums. In general, thequaternion and dual quaternion methods are yet to be embracedwholeheartedly within Sub-Saharan Africa. Hence, there is theneed to apply, test, and evaluate for the first time the capability ofthe dual quaternion algorithm to unify a highly heterogeneous clas-sical geodetic system and satellite-based system in Sub-SaharanAfrica (due to its establishment). This study selected and applied thedual quaternion approach over the quaternion. Unlike the quater-nion, which considers only the rotation, the dual quaternion createsthe opportunity to represent both the translation and rotation ofthe reference system (Ioannidou and Pantazis, 2022). It is impor-tant to mention that this study did not test other quaternion anddual quaternion algorithms because they were extensively investi-gated and compared in the literature (Zeng et al., 2018, 2019, 2020,2022a,b, 2024; Uygur et al., 2022; Bektas, 2022, 2024; Ioannidouand Pantazis, 2020; Shen et al., 2006), where it was found thatboth methods produced identical coordinate transformation re-sults. However, a significant difference lies in their computationalprocedures where they can be categorized as iterative (if initial ap-proximation values for the unknown transformation parametersare needed) and noniterative.Consequently, this study applied and tested the recently pro-posed non-iterative dual quaternion approach by Bektas (2022) inGhana, a country located in the Western part of Africa where a non-geocentric datum called the Accra 1929 referenced on the War Office1926 ellipsoid is used for its surveying and mapping activities. As isknown from the literature, classical geodetic networks are highlyheterogeneous due to the applied surveying methods and adjust-ment techniques, and employed personnel, among others (Vargaet al., 2017; Poku-Gyamfi, 2009). Hence, it is an excellent opportu-nity to explore the computing performance of the dual quaternionalgorithm for coordinate transformation from WGS84 to the WarOffice 1926 ellipsoid. To this end, the contribution of this study isto explore the practicality of dual quaternions as a convenient andreliable alternative 3D coordinate transformation technique in aclassical geodetic datum located in a Sub-Saharan African coun-try. This study will further raise awareness of the Surveying andMapping Agencies in Africa necessary to grasp the potential and ad-vantages offered by the dual quaternion approach for 3D coordinatetransformation.

Figure 1. Distribution of common points across the regions in Ghana

2 Study area and data utilized

Ghana is the study area where this research was conducted. Locatedin West Africa, it lies between latitudes 4◦ 30’ N and 11◦ N, and be-tween longitudes 3◦ W and 1◦ E, covering a land area of 238,540 km2.The Accra 1929 datum was officially established using the War Of-fice 1926 as the reference ellipsoid. This non-geocentric system ofreference is the official reference datum for surveying and mappingactivities in Ghana. The War Office 1926 ellipsoid properties in-clude a semi-major axis (6378299.99899832 m), semi-minor axis(6356751.68824042 m), and flattening (1/296). The grid coordinatesystem utilized in Ghana for cadastral and engineering applica-tions is based on the Transverse Mercator projection. Globally, withmodernization and advancement in technology, the geodetic frater-nity adopted the use of Global Navigation Satellite System (GNSS)such as Global Positioning System (GPS) for surveying and map-ping related works. The GPS is a geocentric system referenced tothe World Geodetic System (WGS) 1984. Since Ghana’s geodeticreference system is non-geocentric, there is a need to determinetransformation parameters for the localization of the GPS-acquireddata. To achieve that, this study applied a total of 31 common pointsdistributed across the country for the coordinate transformation.The common points utilized are geodetic coordinates based on theWar Office 1926 ellipsoid and WGS84. Figure 1 presents the distri-bution of the common points across 16 regions of Ghana.

3 Methods

3.1 Dual quaternionmethod applied

This study adopted the dual quaternion approach proposed by Bek-tas (2022). This approach was chosen and applied because of itssimplicity in application, fast convergence rate, and unrequired useof initial approximate quaternion values for solution. The quater-nion can be represented mathematically as:
q = (x1i + x2j + x3k) + w0, (1)
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Table 1. Related work
Authors Methods applied Summary

Zeng et al. (2024) Quaternion, dual quaternion, weighted totalleast squares The study expressed the unit dual quaternion of the 3D simi-larity transformation in the form of errors-in-variables. Thestudy revealed that the precision of the determined transfor-mation parameters by the dual quaternion was better thanthe quaternion.
Zhao et al. (2024) Generalized errors-in-variables (EIV), dualquaternion The study identified the limitation of representing the rota-tion matrices using Euler angles and the impact of outlierson the parameters determined from distorted geodetic data.The EIV was proposed to solve the challenges, using dualquaternion to represent the rotations.
Bektas (2024) Expanded dual quaternion algorithm, dualquaternion, Helmert 3D The author proposed a novel dual quaternion algorithm thatsimultaneously transforms 3D coordinates and computes therelated variance-covariance matrix of the transformationparameters.
Bektas (2022) Dual quaternion, quaternion, Helmert 3D The study pointed out that although Helmert 3D was the mostwidely used, it was limited because the rotational angles be-tween reference systems were defined by Euler angles. Theauthor concluded that no numerical superiority was observedbetween the dual quaternions and Helmert 3D. However, thedual quaternions exhibited faster convergence because theapproach does not need initial starting values of the parame-ters to be determined.
Zeng et al. (2022a) Orthonormal matrix algorithm, modified Pro-crustes algorithm, analytical dual quaternionalgorithm

The results confirmed that all the methods employed werevalid for performing point-wise transformations.

Ioannidou and Pantazis (2022) Euler angles method, quaternion, dual quater-nion The results of the study revealed that the dual quaternionapproach satisfactorily estimated the rotation parameterswith the Euler angles, producing sizable variations. However,the study was inconclusive regarding the optimum way toestimate the translation and scale parameters.
Uygur et al. (2022) Quaternion approach The study presented how to apply the quaternion approach toretrieve Euler rotation angles in both symmetric and asym-metric 3D similarity transformations. The study went furtherto show how the covariance matrix could be retrieved for thederived transformation parameters. It was concluded thatusing the quaternion provided numerical stability and fasterconvergence to the solution.
Uygur et al. (2021) Nine-parameter three-dimensional affinetransformation model, quaternion approach The study considered the (a)symmetric 3D nine-parameteraffine transformation model using the quaternion-based ap-proach to derive the transformation parameters and theirassociated covariance matrix. The effectiveness and consis-tency of the proposed approach were tested on five differentcase studies.
Ioannidou and Pantazis (2020) Euler angles, quaternion, dual quaternion This study investigated the reverse solution problem of theHelmert 3D transformation model by using Euler angles,quaternion, and dual quaternion algebra. The study con-cluded that the dual quaternion was better for estimating therotation angles than the other methods investigated.
Zeng et al. (2018) Unit dual quaternion, classical Procrustes algo-rithm, orthonormal matrix algorithm, Wanget al. (2014) approach

The study proposed an iterative solution and representationof the rotation and translation parameters of the Helmert3D model using unit dual quaternion. The proposed ap-proach can handle any rotation size. Comparable results wereachieved with other methods considered.
Mercan et al. (2018) Iterative solution for the Gauss-Helmert model,EIV, and quaternions The study proposed an iterative solution for weighted sym-metric 2D and 3D similarity transformation problems. Theproposed algorithm does not need prior least squares esti-mation and can adequately handle issues regarding smallrotation angles or small-scale factors between the sourceand the target datums.
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where x1, x2, x3 and w0 are the numerical values. The i, j, and k arethe imaginary components (basic quaternion units) that satisfy thefollowing conditions (Kenwright, 2012; Zeng et al., 2024):

i2 = j2 = k2 = –1,
ij = –ji = k,
jk = kj = i,
ki = ik = j,
ijk = –1.

(2)

In quaternions, the rotation matrix (R) can be evaluated usingEquation (3):
R = (

w20 – qT × q
)

I3×3 + 2(
q × qT) + w0 × C (q) , (3)

where I3×3 is the unit matrix, q = [
x1 x2 x3]T, and C(q) is expressedin Equation (4):

C(q) =
 0 x3 –x2–x3 0 x1

x2 –x1 0
 . (4)

Equation (5) establishes the relationship between R and thequaternions:

R =
 α11 α12 α13
α21 α22 α23
α31 α32 α33



=
 w20 + x21 – x22 – x23 2(x1x2 + q0q3) 2(x1x3 + w0x2)2(x1x2 + w0x3) w20 + x21 + x22 – x23 2(x2x3 – w0x1)2(x1x3 – w0x2) 2(x2x3 + w0x1) w20 – x21 – x22 + x23

 ,
(5)where:

w20 = 14 (1 + α11 + α22 + α33) ,
x21 = 14 (1 + α11 – α22 – α33) ,
x22 = 14 (1 – α11 + α22 – α33) ,
x23 = 14 (1 – α11 – α22 + α33) .

(6)

From the quaternions, the rotation angles can be expressed inEquation (7):
ε = atan2 (–2(w0x1 + x2x3), (w20 + x21 – x22 – x23 )),
ψ = asin (2(–w0x2 + x3x1)),
ω = atan2 (–2(w0x3 + x2x1), (w20 + x21 – x22 – x23 )).

(7)

As a representation for both translation and rotation parameters,the dual quaternion is utilized because the unit quaternion can onlyhandle rotation. The dual quaternion is made up of eight elementsor two quaternion elements (real and dual parts). In a single model,the dual quaternion can be expressed in compact form as shown inEquation (8):
q = qr + qd × µ, (8)

where qr and qd are the real and dual parts of the quaternions with
µ representing the additional dual number. To determine a newcoordinate position, the dual quaternion defines the translation androtation properties as follows:

qr = α,
qd = t × α, (9)

where t = [tX tY tZ 0], qd = [qd0 qd1 qd2 qd3 ]T andα= [α0 α1 α2 α3]T .
The approach proposed in Bektas (2022) determines the scale factorand rotation parameters using theα quaternions while theα and
qd quaternions are used to determine the translation parameters.Hence, the matrix R is determined based on the dual quaterniontheory from Equation (10):

R = (
α20 – αT × α

)
I3×3 + 2(

α× αT) + α0 × C (α) ,
α = [

α1α2α3]T . (10)

Equation (11) presents the functional model for the 3D transfor-mation in dual quaternion where λ is the scale parameter. Sincethere are more observations than unknowns, the transformationparameters are determined based on the least squares. However,Equation (11) is non-linear and therefore requires initial approxi-mate values to solve for the unknown transformation parameters.Here, onlyα0,0 is set to 1 and α1,0 = α2,0 = α3,0 = qd0,0 = qd1,0 =
qd2,0 = qd3,0 = 0. A detailed explanation of how the linearization is
done is presented in Bektas (2022).

XT = 2W T(α) × qd + λW T(α) × Q(α)xS,
X
Y
Z0


Pi

= 2W T(α) × qd + λW T(α) × Q(α)


x
y
z0


Pi

, (11)

where:

Q(α) =
[
α0I + C (α) α–αT α0

]
=


α0 –α3 α2 α1
α3 α0 –α1 α2–α2 α1 α0 α3–α1 –α2 –α3 α0

 ,
(12)

W(α) =
[
α0I – C (α) α–αT α0

]
=


α0 α3 –α2 α1–α3 α0 α1 α2
α2 –α1 α0 α3–α1 –α2 –α3 α0

 ,
(13)

λ = α20 + α21 + α22 + α23 . (14)
3.2 Transformationmodel performance indicators

To ascertain the validity of the transformation results, statisticalmeasures such as root mean square (RMSE), horizontal error (HE),root mean square HE (RMSEHE), standard deviation of HE (SDHE),and maximum and minimum HE were applied. These statisticalmeasures are in line with scholarly practice in coordinate transfor-mation studies (Varga et al., 2017). To carry out the quantitativeassessment, the statistical measures (Equations (15–20)) were ap-plied to the estimated error components of the plane coordinates(Easting and Northing).

RMSEE =
√∑n

i=1(Ei – Êi)2
n , RMSEN =

√∑n
i=1(Ni – N̂i)2

n , (15)
HE =

√(
Ei – Êi

)2 + (
Ni – N̂i

)2 = √
∆E2 +∆N2, (16)

RMSEHE = √(RMSEE)2 + (RMSEN)2, (17)

SD =
√√√√∑n

i=1
(HE – HE)2

n , (18)
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Figure 2. Reference and check points distribution

Max = maximum (HE), (19)
Min = minimum (HE), (20)

where (Ei, Ni) and (Êi, N̂i) are the observed and transformed coor-dinates for Easting and Northing. The RMSEE and RMSEN are theRMSE in Easting and Northing, and n is the total observed points.

4 Results and discussion

4.1 Derived dual quaternion transformation parameters
for Ghana’s geodetic reference network

This study applied a total of 31 common points found in the WGS84and War Office 1926 for the transformation exercise. Out of the 31common points, 24 representing 79% served as reference pointsand were used to derive the transformation parameters. The re-maining 7 common points representing 21% were used as checkpoints to evaluate the precision and accuracy of the derived trans-formation parameters. The distribution of the selected referenceand check points is presented in Figure 2. It is important to notethat the reference points must be carefully selected. One rule ofthumb states that the initial selected reference points must coverthe greater extent of the study area. As soon as this is achieved, ad-ditional reference points can be added by ensuring that the selectedpoints are distributed evenly across the study area. Hence, in thisstudy, RP11, RP 12, RP15, RP19, RP16, RP21, RP22, RP 24, RP17, RP14,RP10, RP6, RP5, RP7, and RP1 were first selected based on their loca-tions (see Figure 2) because they cover the far extent of the country(Ghana). Additional points (RP2, RP3, RP4, RP8, RP9, RP13, RP18,RP20, and RP23) were then selected and added to the initial refer-ence points by making sure they were homogenously distributedacross the country. As seen in Figure 2, the determined transfor-mation parameters will not be extrapolated to produce results sincenew points to be transformed are found within the reference pointsutilized to establish those parameters (Bektas, 2022).Table 2 presents the estimated transformation parameters us-ing the dual quaternion algorithm. The algorithm outputs (Table 2)

Figure 3. Least squares residual results for 24 control points

include three translation parameters (Tx, Ty, Tz), three rotationparameters (Rx, Ry, Rz), scale factor (L), unit dual quaternion ele-ments (α0,α1,α2,α3, qd0, qd1, qd2, qd3) and the respective preci-sions (standard deviation) of the parameters.The least squares residuals (Vx, Vy, Vz) matrix for the (X, Y, Z)cartesian coordinates of the reference points are shown in Table 3.The residual information is further illustrated in Figure 3. In Fig-ure 3, Vx is seen to be very close to the zero residual which wasclosely followed by Vy and Vz, respectively. The level of heterogene-ity in the classical geodetic reference network may have contributedto the departing extent and the level of volatility experienced withthe residuals from the ideal zero value.
4.2 Dual quaternion transformation results

To assess the performance of the dual quaternion algorithm, thederived transformation parameters were applied to transform theWGS84 coordinates into the War Office 1926 system. This trans-formation was made because the War Office 1926 is the officialmapping reference for survey activities in Ghana. Tables 4 and5 present the coordinate differences for the reference and checkpoints between the transformed cartesian (X, Y, Z) coordinates andthe measured points in War Office 1929.Since the projected grid coordinates are used for all surveyingand mapping activities in Ghana, map projection was conducted onthe transformed coordinates. Tables 6 and 7 present the resultantdifferences between the transformed and measured grid coordi-nates for 24 reference and 7 check points. At a glance, it is notedin Table 6 that the reference points RP4, RP9, RP10, and RP12 hada discrepancy above 1 metre in the Northing component with theEasting having a discrepancy below 1 metre. Similar differencesabove 1 metre were also associated with the check points for theEasting (C2) and Northing (C1, C3, and C5) components (Table 7).The size of the error may be due to possible distortions that areusually associated with classical geodetic networks due to how itwas established. For instance, the Ghana geodetic network wasestablished based on two separate surveys where triangulation wasused to fix the controls in the Southing part of the country andtraversing was used in the Northing part. Historical accounts alsoindicate that the triangulation and traverse surveys were adjustedseparately (Poku-Gyamfi, 2009). Hence, the discrepancy observedcould be the consequence of how the classical geodetic network wasestablished and adjusted in Ghana.To provide a comprehensive assessment of the results presentedin Tables 6 and 7, summary statistics of the discrepancies for bothreference and check points are presented in Table 8. It can beinferred from the error estimations (Table 8) that the distortionranges of the reference points were 0.1112–1.4173 m, and the checkpoints were 0.1351–1.4971 m in the minimum and maximum. Thisimplies that in the worst-case scenario, the determined transforma-tion parameters can transform a single point that would not deviatemore than 1.4971 m from its measured coordinate. Similarly, it can
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Table 2. Computed dual quaternion algorithm transformation parameters
Parameter Value Unit Description

Tx 143.68728309±4.392876233211001 m Translation in X
Ty -30.97180602±9.090202365889539 m Translation in Y
Tz -329.27294604±5.378363851725634 m Translation in Z
Rx 0.0004235948034±0.000000711958960 degree Rotation in X
Ry -0.0000034240300±0.000000845173900 degree Rotation in Y
Rz 0.0000602917607±0.000001413450798 degree Rotation in Z
L 1.000008301±0.000000685997524 - Scale Factor
α0 0.999999999993 -
α1 -0.000003696562 -
α2 0.000000029882 -
α3 -0.000000526145 - Unit Dual
qd0 71.843654612490 - Quaternion Elements
qd1 -15.485256620946 -
qd2 -164.636528118377 -
qd3 0.000179414611 -

Table 3. Least squares residual matrix for the referencepoint (RP) used to derive the transformation pa-rameters
Point ID Vx (m) Vy (m) Vz (m)

RP1 -0.0224 0.4818 0.0879RP2 0.0498 -0.7145 -0.5457RP3 -0.0749 0.1912 0.5122RP4 0.1107 -0.4722 -1.0477RP5 -0.0150 -0.6546 -0.1410RP6 -0.0048 -0.4587 -0.1082RP7 -0.0811 -0.4372 0.4768RP8 -0.0803 -0.4122 0.4779RP9 -0.1545 0.4656 1.3331RP10 0.1553 0.6348 -1.1342RP11 0.1053 0.0930 -1.2870RP12 -0.1152 -0.3294 0.9022RP13 -0.1213 -0.8655 0.9559RP14 0.0677 0.1590 -0.3894RP15 -0.0274 -0.3564 0.2187RP16 -0.0077 0.0951 0.0462RP17 0.0782 -0.2260 -0.5181RP18 0.0428 0.1422 -0.0591RP19 0.0177 0.4194 0.0437RP20 0.0512 0.5075 -0.1426RP21 -0.0145 -0.2026 -0.0383RP22 -0.0364 -0.5008 0.0018RP23 0.0233 1.1606 0.0700RP24 -0.0269 -0.3486 0.0240

Table 4. Error margin between the transformed and mea-sured War Office 1929 coordinates for the refer-ence point (RP) (unit: metres)
Point ID ∆X ∆Y ∆Z

RP1 -0.0223 0.4817 0.0879RP2 0.0498 -0.7145 -0.5457RP3 -0.0750 0.1912 0.5122RP4 0.1107 -0.4722 -1.0477RP5 -0.0150 -0.6546 -0.1410RP6 -0.0048 -0.4588 -0.1082RP7 -0.0811 -0.4372 0.4768RP8 -0.0803 -0.4122 0.4779RP9 -0.1546 0.4656 1.3331RP10 0.1553 0.6347 -1.1342RP11 0.1053 0.0930 -1.2870RP12 -0.1153 -0.3294 0.9022RP13 -0.1214 -0.8655 0.9560RP14 0.0678 0.1590 -0.3895RP15 -0.0274 -0.3564 0.2187RP16 -0.0077 0.0952 0.0462RP17 0.0781 -0.2261 -0.5181RP18 0.0428 0.1422 -0.0591RP19 0.0176 0.4194 0.0438RP20 0.0512 0.5075 -0.1426RP21 -0.0145 -0.2026 -0.0383RP22 -0.0364 -0.5008 0.0018RP23 0.0233 1.1606 0.0701RP24 -0.0270 -0.3486 0.0240
Maximum 0.1553 1.1606 1.3331Minimum -0.1546 -0.8655 -1.2870SD 0.0867 0.5636 0.7081
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Table 5. Error margin between transformed WGS84 andexisting War Office 1929 for the check points (C)(unit: metres)
Point ID ∆X ∆Y ∆Z

C1 0.0896 -0.2755 -1.1477C2 -0.0502 -1.4575 -0.1055C3 0.1040 -0.4012 -1.1086C4 -0.0017 0.0772 0.1511C5 -0.1748 -0.5909 1.3435C6 -0.0089 -0.3198 0.2146C7 0.0410 0.3191 -0.0610
Maximum 0.1040 0.3191 1.3435Minimum -0.1748 -1.4575 -1.1477SD 0.0946 0.5654 0.8527

Table 6. Differences in projected grid coordinates basedon the reference points (unit: metres)
Point ID ∆N ∆E HE

RP1 0.0885 0.4810 0.4890RP2 -0.5541 -0.7133 0.9033RP3 0.5160 0.1742 0.5446RP4 -1.0560 -0.4796 1.1598RP5 -0.1066 -0.6164 0.6256RP6 -0.0686 -0.4915 0.4962RP7 0.4886 -0.4270 0.6489RP8 0.4857 -0.4170 0.6401RP9 1.3410 0.4588 1.4173RP10 -1.1155 0.6187 1.2756RP11 -0.9615 0.0703 0.9640RP12 1.0375 -0.3445 1.0932RP13 0.9561 -0.8676 1.2911RP14 -0.3995 0.1595 0.4302RP15 0.2299 -0.3567 0.4244RP16 0.0578 0.0950 0.1112RP17 -0.5331 -0.2249 0.5786RP18 -0.0727 0.1430 0.1604RP19 0.0475 0.4190 0.4217RP20 -0.1557 0.5082 0.5315RP21 -0.0242 -0.2032 0.2047RP22 0.0042 -0.5023 0.5023RP23 0.0625 1.1605 1.1622RP24 0.0178 -0.3490 0.3495

Table 7. Differences in projected grid coordinates basedon the reference points (unit: metres)
Point ID ∆N ∆E HE

C1 -1.1479 -0.2601 1.1770C2 -0.0634 -1.4498 1.4512C3 -1.1140 -0.4135 1.1882C4 0.1207 0.0608 0.1351C5 1.3434 -0.6608 1.4971C6 0.2058 -0.3197 0.3802C7 -0.0740 0.3198 0.3282

Table 8. Summary statistics of the transformation results forboth reference and check points (unit: metres)
Statistical Indicator Reference Point Check Point

RMSE East 0.4948 0.6531RMSE North 0.6014 0.7955RMSE HE 0.7788 1.0292Average HE 0.6844 0.8796Maximum HE 1.4173 1.4971Minimum HE 0.1112 0.1351SD 0.3797 0.5773

transform a single point that would deviate from the measuredcoordinate only by 0.1351 m in the classical geodetic network ofGhana. Averagely, the horizontal positional accuracy between thetransformed and measured coordinates varies between 0.6844–0.8796 m when one considers the reference and check points. Inthe Easting and Northing components, the RMSE values indicateachieved reasonable degree of dispersion between transformed andmeasured coordinates. Based on the RMSE HE results, it can bestated that a transformation accuracy between 0.7788–1.0292 mcan be achieved in unifying the WGS84 and War Office 1929 sys-tems. Considering the reference and check points, it is observedthat a transformation precision ranging from 0.3797–0.5773 m isattainable.
4.3 Comparing dual quaternion algorithm and Bursa-

Wolf model

In Ghana, the Bursa-Wolf transformation model is the most widelyaccepted coordinate approach to perform 3D coordinate transfor-mation. It is also the technique used to determine the official trans-formation parameters utilized in the country. Considering this, it isprudent to make a comparison between the proposed dual quater-nion algorithm and the Bursa-Wolf transformation model. Thiscomparison was to confirm the reliability of the dual quaternion asan alternative transformation approach to the Bursa-Wolf model.The estimated parameters and standard deviation of the Bursa-Wolfmodel are listed in Table 9. The computed horizontal residuals forthe reference and check points showed identical results (Figs. 4and 5). The same summary statistics (Table 10) were obtained inall methods. Thus, no significant difference exists between the dif-ferent transformation method solutions. Accordingly, the proposeddual quaternion algorithm is valid for 3D coordinate transformationin Ghana.These results (Table 10) prove that both methods achieved ameter-level transformation accuracy, which meets the demands ofsome surveying and mapping activities in Ghana such as cadastralsurveying, geographic information works, reconnaissance, landinformation system works, and small-scale topographic surveys(Yakubu and Kumi-Boateng, 2015). Although the methods achieveda meter-level accuracy, cognitive analysis of the results indicatesthat the derived parameters can also produce a centimetre-level ac-curacy when transforming new coordinates. This can be seen fromthe reported minimum HE produced by both methods. Therefore,the inference here is that the estimated transformation parametersbetween WGS84 and War Office 1929 are restricted to the regionwhere the common points are located.
4.4 Limitations of the study

The dual quaternion algorithm and Bursa-Wolf model in its origi-nal formulation do not consider the distortions that are exhibitedby coordinates that are related to the classical geodetic network.Hence, the transformation results achieved in this study are validonly for its intended purposes. However, for high-precision sur-
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Table 9. Computed Bursa-Wolf transformation parameters
Parameter Value Unit

Tx -144.404369432623±2.71644169249343 m
Ty 30.8392251366517±5.77913539479517 m
Tz 328.969752734147±3.31299131230516 m
Rx -1.54225613813615±4.41022399239605×10–07 rad
Ry 0.0194187287742367±5.20304861273006×10–07 rad
Rz -0.226456753173654±8.98852336716549×10–07 rad
S -8.182912801433343±4.24566775106515×10–07 ppm

Table 10. Summary statistics of the horizontal residuals for both methods (unit: metres)
Statistical Indicator Bursa-Wolf Dual Quaternion

Reference Point Check Point Reference Point Check Point

RMSE East 0.4948 0.6531 0.4948 0.6531RMSE North 0.6014 0.7955 0.6014 0.7955SD 0.3797 0.5773 0.3797 0.5773RMSE HE 0.7788 1.0292 0.7788 1.0292Maximum HE 1.4173 1.4971 1.4173 1.4971Minimum HE 0.1112 0.1351 0.1112 0.1351

Figure 4. Reference points horizontal residuals

Figure 5. Check points horizontal residuals

veys, it is recommended that the distortion must be consideredduring the transformation parameters derivation. This is in linewith the assertion made by Shen et al. (2006) that the distortionsare integrated into the derived transformation parameters if notadequately handled during the transformation process.

5 Conclusions

In the current conditions of most Sub-Saharan African countriessuch as Ghana, the geodetic infrastructure lacks geocentric datumas its official mapping reference system. This makes the deter-mination of parameters for coordinate transformation relevant.Therefore, it is justified to assess the capability of other transfor-mation techniques. The dual quaternion algorithm was applied andevaluated to transform coordinates between WGS84 and Ghana WarOffice 1929 classical geodetic system. The results revealed a trans-formation accuracy and precision ranging from 0.7788–1.0292 mand 0.3797–0.5773 m for the reference and check points. Theseresults confirmed that the transformed coordinates by the dualquaternion algorithm are in average agreement with the measuredcoordinates at the level of about 0.5773 m. Similar residual differ-ences were obtained when the dual quaternion was compared withthe Bursa-Wolf model, with the former confirming its suitabilityto serve as an alternative transformation technique in Ghana. Toimprove the statistical residual differences obtained between thetransformed and measured coordinates, the systematic distortionsin the data related to the local datum must be considered in thetransformation process.
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