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Abstract

Monitoring the progress of construction work and adhering to the schedule is crucial for the timely completion of projects.Integrating data from various sensors (e.g., cameras, laser scanners) mounted on diverse platforms (rovers, drones, satellites)with BIM 4D (Building Information Modelling) enables effective construction control solutions. By leveraging 3D models enrichedwith temporal information, project management can be significantly enhanced. This paper focuses on a comprehensive review ofcurrent literature and state-of-the-art practices to design a framework for integrating satellite remote sensing data with BIM 4D,termed the Sat4BIM4D method. Proposals for this method are developed alongside algorithms for processing satellite-deriveddata to monitor construction progress, particularly for infrastructure projects. The study emphasizes the compatibility andsynergy between satellite data and BIM 4D, providing a structured direction for future research. Advantages, limitations, andpotential challenges of the proposed approach are also critically analyzed to pave the way for further development in this domain.
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1 Introduction

The development of data acquisition methods facilitates the en-hancement of processes within the construction industry. Whencombined with the digitalization of these processes, a notable im-provement in their efficiency is observed (Elghaish et al., 2020).Presently, digitalization is achieved through the implementationand integration of building information modeling (BIM) technology,alongside modern methods of data acquisition (from a technicalperspective) and contemporary approaches to the management ofconstruction investment projects (from a managerial perspective).Based on the BIM methodology, a model consisting of geometricinformation and alphanumeric data is created throughout the lifecycle of an object. When supplemented with the appropriate in-formation, this model can evolve into a digital twin (DT) of theobject (Deng et al., 2021). The term digital twin refers to a digitalrepresentation of the actual state of a real object, an idea originally

widely utilized in the manufacturing industry (Grieves, 2014).Data that can support the concept of digital twin (DT) includevarious types of Internet of Things (IoT) sensors, regularly acquireddata (e.g., using cameras mounted on UAVs — unmanned aerialvehicles), and geographic information system (GIS) data. Duringthe construction phase, the use of DT enables access to up-to-dateinformation about the construction site and the condition of in-dividual components, facilitating analyses, simulations, and thesupport of related processes such as logistics. Among the diversesets of data sources, satellite data are particularly noteworthy, asthey enable the rapid acquisition of data or imagery over large areas.Despite their limitations, such as susceptibility to weather condi-tions in the case of optical sensors, and resolution constraints, theirapplications are expanding. Advances in sensor technology are con-tinually improving the reliability and accuracy of the acquired data(Zhu et al., 2018).On the other hand, the need to advance applied technology in the
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construction industry fosters the development of novel approachesto support decision-making processes. The evolution of BIM to-wards time-based analysis (BIM 4D), cost analysis (BIM 5D), envi-ronmental impact analysis (BIM 6D), and operational phase man-agement (BIM 7D) enhances control over an object or set of objectsduring individual phases or throughout the entire life cycle of aproject (Charef et al., 2018). The concept of digital twin (DT) isprimarily realized through BIM 4D, which focuses on schedulingconstruction activities, conducting simulations, and monitoringthe current state of work. This is achieved by collecting data fromvarious sensors and automatically identifying the progress of con-struction activities.Why is progress monitoring important and what is the businessimpact of progress monitoring on the construction industry? Whyshould there be an aim to automate construction progress moni-toring (ACPM)? The traditional approach, where progress data iscaptured manually, is time-consuming, inaccurate, and expensive(Navon and Sacks, 2007). Furthermore, research shows that theconstruction industry often struggles to complete projects on timeand within budget (Barbosa et al., 2017), partly due to insufficientschedule control (Durdyev and Hosseini, 2019). Hence, there isneed for automation and greater attention to progress monitoring.With more accurate project schedule control, it is possible to imple-ment more elaborate management systems linked to, for example,the supply chain (Babič et al., 2010).This publication focuses on schedule maintenance and controlusing BIM. By integrating various datasets, it becomes feasibleto stage a project, control the progress of work, coordinate andoptimize the planning of a construction site, and coordinate theparties conducting the work. This research has focused primarilyon the possibility of monitoring the progress of work using remotelysensed satellite data. This approach shows promise, particularlywith advancements in satellite-mounted measurement sensors.Linking BIM with remotely sensed geospatial satellite data hasalso been identified as an opportunity for developing BIM and GISintegration (Glinka, 2022). Despite extensive literature analysis, nosolutions combining BIM with satellite-derived data for progressmonitoring have been identified, indicating a significant researchgap. The only related publications found are Behnam et al. (2016)and Tian et al. (2020), and they do not integrate their findings withBIM 4D capabilities.This publication aims to analyze solutions described in the lit-erature and based on these analyses, determine the feasibility ofusing remotely sensed satellite data for monitoring the progressof construction work, primarily in infrastructure projects. Addi-tionally, it seeks to identify the limitations of this technology forsuch tasks and describe methods to integrate this data with build-ing information modeling (BIM) technology. The work comprisesseveral stages:
• Identification of the current state-of-the-art in constructionprogress monitoring. This includes describing the technologiesand systems used, as well as identifying methods for extractingand communicating progress information in relation to BIM.• Analysis of solutions for extracting information on objects andchange detection from satellite-derived data. This stage in-volves assessing existing methods and technologies for extract-ing relevant information from satellite data, with a focus ontheir limitations.• Integration of the above analyses and exploration of the feasi-bility of using satellite data in conjunction with BIM to monitorconstruction progress. This section attempts to answer whethersatellite data can effectively complement BIM in monitoringconstruction progress. It proposes a method for monitoringconstruction progress based on BIM and satellite remote sens-ing, termed Sat4BIM4D.

This study aims to analyze the current state-of-the-art in BIM-based construction progress monitoring and satellite-based change

detection and to propose a framework — Sat4BIM4D — that in-tegrates satellite data with BIM to enhance construction progresstracking.The structure of the article is as follows: Section 2 provides adetailed overview of the background and context, establishing thefoundation for the research problem and highlighting relevant lit-erature. Section 3 outlines the research methodology. In Section 4,the findings are presented, with a comprehensive analysis and in-terpretation of the results. Finally, Section 5 concludes the article,summarizing key insights, addressing the study’s limitations, andoffering practical recommendations and directions for future re-search to build on the findings.

2 Background

2.1 BIM 4D and construction progress monitoring

Currently, various project management approaches such as criticalpath method, s-curve, linear schedule methods, and earned valuemanagement are used in the architecture, engineering, and con-struction (AEC) industry as a basis for scheduling and monitoringprogress (Patel et al., 2021). Until the introduction of BIM tech-nology, time-based analysis activities were carried out using CAD4D (Heesom and Mahdjoubi, 2004), among others. BIM 4D as anextension of CAD (computer-aided design) and the standard BIMapproach allows for giving a time aspect to the model and develop-ing a digital work schedule with a 3D model rather than flat CADdocumentation (Gledson and Greenwood, 2016) (based on the ap-proaches mentioned above). This allows simulations that facilitate,for example, optimization of the construction site and improvingsafety (Sulankivi and Kiviniemi, 2014), ordering components ontime and improving logistic operations, or minimizing materialstorage time (Bortolini et al., 2019; Jupp, 2017; Mirarchi et al., 2018).However, effective tools for monitoring work progress are crucial,as research indicates that inadequate progress monitoring is a sig-nificant challenge in construction projects (Navon and Sacks, 2007).The schedule in itself is important, but the lack of tools to control itcan cause problems during the execution phase.In the literature, the predominant methods for data acquisitionin construction progress monitoring include the use of RFID (radio-frequency identification) sensors or ultra-wideband technology,image acquisition cameras, and laser scanning (ElQasaby et al.,2022). Sensors, depending on their type, are mounted inside or oncomponents (mainly RFID sensors) (Akanmu and Anumba, 2015),and attached to devices that allow the acquisition of large amountsof data in a short time (in particular UAVs (Jacob-Loyola et al., 2021)and ground rovers (Ibrahim et al., 2021)). Additionally, sensorsare used on machines performing construction work (e.g., crane(Masood et al., 2020)) or measurements are performed manually bya human (e.g., using a smartphone, professional camera (Golparvar-Fard et al., 2011b) or a laser scanner (Bosché et al., 2015)). There arealso systems where human operators manually input the currentconstruction status for various components (Park et al., 2017). Asshown in (Duarte-Vidal et al., 2021), it is not unusual for sensorsto be combined to provide better quality information, but at thispoint achieving full interoperability is still limited. The methodsused are most often not autonomous. A drone or camera operatoris needed to acquire data. The further step of data processing andcombining the information with BIM 4D is already increasinglybeing automated (Patel et al., 2021), which will be described inSection 4.The integration of BIM 4D with construction progress mon-itoring facilitates the application of Lean principles (primarilymaximizing value while minimizing waste with continuous im-provement and efficiency enhancement) across various aspectsof construction. This includes addressing logistical challengesthrough just-in-time implementation and employing visual man-
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agement techniques such as kanban boards (Demirdöğen et al.,2021). Equally important is the development of the idea of digitaltwins and linked data, among other things, which makes it possi-ble to build digital versions of real objects with key information fordecision-making (Boje et al., 2020).From an open approach (primarily openBIM approach) perspec-tive, the Industry Foundation Classes (IFC) format plays a crucialrole in building information modeling (BIM) (ISO 16739-1:2018,2018). The schema itself is used globally to unify the exchangeof information between stakeholders in the construction process.Examining the schema structure reveals its capability to incorpo-rate scheduling and cost data into individual tasks, linking themto components for detailed time analysis and cost estimation. Thisfunctionality is facilitated by the IFC schema extension IfcProces-sExtension, which includes subclasses like IfcTask for modelingwork and scheduling activities (Sheik et al., 2023). Moreover, theunification achieved through standardized naming conventionswithin BIM is essential. This consistency enables the automatedgeneration of schedules and other outputs based on the constructedmodel (Jung et al., 2024). These elements collectively enhance in-teroperability, facilitate comprehensive data exchange, and supportefficient project management within the construction industry.
2.2 Satellite remote sensing

The advancement of sensors capable of acquiring precise, very high-resolution (VHR) data from satellites positioned hundreds of kilo-meters above the Earth offers significant potential for monitoringboth large-scale (macro analyses) and small-scale (micro analyses)areas. Remote sensing technology, primarily applied in environ-mental sciences, plays a pivotal role in various domains such asvegetation analysis (Xie et al., 2008), hydrology (Engman, 1999),and land cover analyses (Karra et al., 2021; Phiri et al., 2020). Thesedata also find extensive use in disaster management applications(Joyce et al., 2009). One of the biggest advantages of remote sensingdata from satellites is that apart from imaging in standard electro-magnetic wavelengths — RGB (red, green, and blue), they alsoprovide others. This facilitates the creation of different normalizedindicators to extract specific information. The most used are NDVIor NDMI, which help extract environmental information concern-ing the amount of biomass and moisture. However, other indicatorsare also used that allow, for example, the extraction of roads (Shahiet al., 2015) or soil (Deng et al., 2015).In addition to a different number of spectral channels, remotesensing devices are also characterized by a different spatial reso-lution. Publicly available (free) remote sensing data, e.g., from theSentinel mission, have a spatial resolution that is far from suitablefor the extraction of precise information. On the other hand, com-mercial sensors allow imaging of the Earth’s surface with greateraccuracy, but their drawback is associated costs. A balance musttherefore be kept between the value of the data for a given applica-tion and its economic value.In order to extract information from satellite remote sensingdata, data processing is essential. Various techniques can be ap-plied to the spectral channels to perform feature extraction, therebysupporting algorithms in identifying specific patterns. Presently,machine learning methods such as random forest (RF), support vec-tor machine (SVM) (Saini and Ghosh, 2018), as well as deep learn-ing techniques including convolutional neural networks (CNNs)(Längkvist et al., 2016) and transformers (Xu et al., 2021), are com-monly employed for this purpose.In addition to passive remote sensing devices, active sensors arealso utilized, offering reduced dependence on weather conditions.Radar sensors, notably synthetic aperture radar (SAR), are particu-larly significant in this context as they enable analysis of verticalmovements. From SAR data, various products can be derived, in-cluding digital elevation models (DEMs) and analyses related to

glacier monitoring through InSAR (Interferometric SAR). InSAR isinstrumental in monitoring phenomena such as landslide move-ments, assessing slope stability, observing glacier dynamics, andanalyzing 3D ground motions using differential interferometry (D-InSAR) (Zhu et al., 2018). The application of SAR data, especiallyin infrastructure assessment, is further detailed by Gagliardi et al.(2023).Taking a broader perspective, there has been a notable increasein the deployment of satellite constellations in recent years, present-ing significant opportunities for leveraging satellite remote sensingwithin the Architecture, Engineering, and Construction (AEC) in-dustry. Satellites such as WorldView-3, WorldView-4, Pleiades Neo,or ICEYE offer resolutions starting from several centimeters. Thiscapability facilitates precise recognition of small objects and accu-rate detection of changes over time.Looking from the perspective of infrastructure object analy-sis, satellite remote sensing is primarily used for ongoing analysis(maintenance) to support the detection of various types of deface-ments (e.g., detect structural displacements of bridges (Gagliardiet al., 2020), also in conjunction with BIM (D’Amico et al., 2022)),object condition assessment, traffic monitoring or observationof the terrain around infrastructure to support operations anddecision-making (Gagliardi et al., 2023). However, a notable re-search gap exists in utilizing satellite remote sensing during theearlier phases of an object’s life cycle.When it comes to utilizing satellite remote sensing data for con-struction purposes, there has been limited research conducted inthis area, as briefly outlined in this section. This topic will be furtherelaborated upon in subsequent sections of the article.
3 Methodology

The whole work starts with analyzing what data and informationare most often needed during the construction progress monitoringprocess, what algorithms are currently used to extract informationfor progress tracking, and how the extracted information is com-bined with the BIM model to assess the progress of work. Then, itexamines what information can be extracted from satellite imagery,particularly in relation to the construction industry and progressmonitoring, and explores algorithms for automatic change detec-tion. The conclusion includes combining the previously describedsteps and assessing whether satellite data can be used as a sourcefor construction work progress monitoring by linking with BIMtechnology. A scheme is also proposed that may allow the extrac-tion of information on the progress of work and the combinationwith BIM data, culminating with a discussion of the strengths andlimitations of this solution.As a first step, construction progress monitoring publicationswere analyzed. Table 1 presents the queries executed in the Scopusdatabase along with the number of records obtained. In addition,publications from the author’s own sources library that were miss-ing in the key and are related to the research topic were included inthe work in progress. The publications were then classified accord-ing to their relevance to the research topic. A three-point scale wasadopted, where:
0 – Publications that were not completely related to the topic (e.g.,those about analyses related to agriculture), retracted or un-available.1 – Publications that were not related to progress monitoring butrelated to BIM 4D or presented methods of data acquisition andprocessing relevant to the analyzed subject.2 – Publications strictly related to the issue under study.

The publications were then analyzed in order to classify themaccording to the type of publication, the type of sensor used and itsmedium, the type of algorithm for data processing, as well as theresearch object. In the next step, publications in which image-basedalgorithms were used were analyzed in detail.
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Table 1. Used queries in the Scopus database
Name Query Count

Query 1 TITLE-ABS-KEY (progress AND monitoring AND bim) AND PUBYEAR > 2006 AND(LIMIT-TO (DOCTYPE, "cp") OR LIMIT-TO (DOCTYPE, "ar")) 258

Query 2 TITLE-ABS-KEY ("remote sensing*" AND (4D OR ("progress monitoring*")) AND construction*) ANDPUBYEAR > 2006 AND (LIMIT-TO (DOCTYPE, "cp”) OR LIMIT-TO (DOCTYPE, "ar")) 30

The second step involved an analysis of what information maybe extracted from satellite imagery in terms of the constructionindustry. An attempt was made to create a key that would identifypublications in this field, but the queries were ineffective. Therefore,it was decided to manually browse the Scopus database and, basedon keywords and abstracts, identify publications that might fit therequirements. Then it was analyzed what input data were selected,what information was extracted (including the accuracy level), andwhat the opportunities and limitations of satellite imaging were(especially optical).In the third step, the link between the above-described stepswas made. A workflow showing the work performed is presentedin Figure 1.

4 Results

4.1 Stage 1: BIM and construction progress monitoring
methods

Sensors, objects andmethods overviewAn analysis of the publications reveals considerable diversity in thesensors utilized for acquiring data on work progress (Figure 2). Asignificant number of studies focus on processing images or videosobtained from digital cameras mounted on drones (Tuttas et al.,2017), cranes (Masood et al., 2020; Tuttas et al., 2014), erectedstructures (Arif and Khan, 2021), or carried by a human (Han andGolparvar-Fard, 2014b). The second most frequently used sensor isthe laser scanner, which was employed using traditional methods(Maalek et al., 2015), as well as innovative approaches that involveportable devices for faster data acquisition (Prieto et al., 2020). Theoutput of the laser scanner is a point cloud (PC), and similarly, pho-togrammetry, structure from motion (SfM), and multi-view stereo(MVS) techniques also produce PCs from images captured with dig-ital cameras. Consequently, some algorithms for data processingand integration are based on similar principles. Moreover, severalpublications report the use of cameras or laser scanners in combina-tion with augmented or virtual reality technologies (Lee et al., 2018;Pour Rahimian et al., 2020). Another category of studies involvesthe use of IoT sensors, primarily RFID tags or the combination ofdigital cameras with QR codes (Choi and Seo, 2020). Additionally,the use of total station instruments was proposed, with automatedconnections to web services for real-time display of measurementresults (Arif and Khan, 2020). Furthermore, some publicationsdescribe the application of web-based platforms where workersmanually input the status or state changes of components (Juanet al., 2019).Analyzing the subject of the study, it is evident that the majorityof use cases described in the articles pertain to buildings, with fewerfocusing on infrastructure (Figure 3). Additionally, a small numberof publications were categorized as "other" because they examinedwork progress more from a management perspective or were re-view articles. Figure 3 illustrates the distribution of publicationsbased on their research focus. The notable disproportion betweenpublications concerning the progress of work on buildings versusinfrastructure can be attributed to several factors:
• Restricted implementation of IFC for infrastructure: IFC stan-dard for infrastructure, with the official version IFC4x3 includ-

Figure 1. Scheme of methodology

Figure 2. Identified publications classified by the sensor used

Figure 3. Identified publications classified by research object
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ing infrastructure extensions (proper classes and entities) onlypublished in September 2023 has imposed constraints on theability to write data in open format.• Development of BIM for buildings versus infrastructure: BIMis more developed for buildings than for infrastructure, as evi-denced by the greater number of available publications in thebuilding sector.• Prototypical nature of progress monitoring solutions: Most pro-posed progress monitoring solutions are in the prototypicalstage. It is generally easier to test these solutions on buildingprojects rather than infrastructure projects due to the more con-tained and controlled environment of building sites.• Difficulty in accessing infrastructure: The large scale and lim-ited accessibility of infrastructure projects pose significant chal-lenges for research and data collection. These difficulties makeit harder to implement and test progress monitoring solutionsin infrastructure settings compared to building projects.
The above results are also confirmed by Patel et al. (2021), wherethe recommendations state that future work should focus on cre-ating APCM solutions for infrastructure. Thus, the need to createand provide tools to control the progress of work for infrastruc-ture projects is undeniable. Therefore, it is necessary to considerwhether the transfer of algorithms from building to infrastructureis possible. To this end, remote sensing satellite imagery is pro-posed as a primary information source, given its continuous andautomatic data acquisition capabilities.An analysis of the literature identified three publications thatutilize remote sensing satellite data to monitor the progress of work.Two of these studies employed passive data acquisition methods(Behnam et al., 2016; Tian et al., 2020), while one utilized an activemethod (Yang et al., 2017).Both publications used optical sensors and data from thePleiades satellite, which has a spatial resolution of 0.5 meters. Ad-ditionally, Tian et al. (2020) incorporated data from the Beijing-2satellite, which captures data with a spatial resolution of 0.8 me-ters. Both articles focused on infrastructure projects: transmissionlines and a bridge over a railway. However, the studies primarilyconcentrated on point objects, such as poles, pillars, or piles, ratherthan elongated objects. Behnam et al. (2016) described a case studyconsisting of four stages: site clearing and bored pile platform ac-tivities; pile cap construction; pier work and pier head construction;segmental box girder (SBG) launching and post-tensioning activ-ities. The current state measured with satellite remote sensingwas then combined with a timetable to establish correctness, whileinformation extraction was supported by CAD data. The secondpaper also focused mainly on the extraction of point informationabout the realization of the poles through which the transmissionnetwork passed (Tian et al., 2020). A noteworthy limitation of thesestudies is the frequency of data acquisition, which was at least onemonth between images. This infrequent data collection reducesthe ability to monitor progress without delay, which is crucial foreffective project management and control.The publication that dealt with active sensors used radar imag-ing of the surface, TerraSAR-X (Yang et al., 2017). Using differenttypes of change indicators, areas where demolition or constructionof a building had occurred were extracted, with measurements ap-plied at a higher frequency than in the publications described in theprevious paragraph. The focus was on parts of a business districtrather than individual objects, suggesting that this method is pri-marily suited for urban planning purposes. Further research couldexplore the potential application of this method for monitoring theprogress of infrastructure projects.

Image-based approachSince satellite remote sensing methods primarily provide images,the subsequent analysis of publications and algorithms for data pro-cessing focused mainly on image-based approaches. Publications

involving laser scanning were excluded due to the insufficient reso-lution and accuracy of current satellite laser scanners (Fouladinejadet al., 2019). A total of 62 publications utilizing image-based meth-ods were identified.Analysis of the publications showed that the processing meth-ods currently used are usually photogrammetric, aimed at creatinga point cloud via SfM and MVS or depth and perspective analysis ofthe image (edge or boundary detection of objects) to combine it witha 3D model and obtain information on the progress of work. Theconnection is made by using one of three approaches: BIM2Image,Image2BIM, or multi-temporal linking. In the BIM2Image and Im-age2BIM approaches, similar processing algorithms are employed,focusing on co-registering images with models to facilitate com-parison. The multi-temporal linking approach, on the other hand,involves comparing successive products such as digital surface mod-els (DSMs) over time series. Images are most commonly acquiredfrom ground level or various altitudes using UAVs (unmanned aerialvehicles) and satellites. The identified applications concerned bothindoor and outdoor measurements.One of the first publications addressing the problem of auto-matic progress concerning BIM was Golparvar-Fard et al. (2010),proposing a solution based on D4AR – a 4D model for augmentedreality (Golparvar-Fard et al., 2009). The method consisted in ac-quiring unstructured data – daily photographs and then throughSfM obtaining a sparse 3D model along with computing camerapose and performing Euclidean registration to unify (transform)the as-planned and as-built coordinate system, e.g., using ICP (it-erative closest point) algorithm. The next step is to apply MVS andcreate voxels for classification purposes using SVM (support vectormachine). The end result is an as-built model that is compared withan as-planned model in IFC format using probabilistic methods. Inthe following years, the algorithm developed by Golpavard-Fard etal. was improved. In the works Golparvar-Fard et al. (2011a,b), theauthors presented the following: the idea of D4AR and the decisionsupport capabilities for different tasks on a construction site andthe results obtained for different datasets are compared. A descrip-tion of image matching via RANSAC (random sample consensus)and SIFT (scale-invariant feature transform) algorithm was also in-troduced and a method for progress evaluation based on probabilis-tic progress detection and discriminative learning was improved.Omar et al. (2018) described a method for combining a 3D pointcloud with a model for monitoring the progress of columns usinga fully automatic method in which cameras are always set on thesite (during the construction phase). Progress is calculated throughvolumetric analyses by relating the photogrammetric point cloudto the model. Wang et al. (2023) also proposed using daily photosto measure the progress of construction work by utilizing a deeplearning network to estimate the position and orientation of thephotos taken and extract information about the progress of work.In addition to geometry and for progress analyses, Han et al. (2016)and Han and Golparvar-Fard (2014a, 2015) also focus on materials(a library of materials described in Dimitrov and Golparvar-Fard(2014) was also created) and their classification using SVMs basedon histograms and clustering. Further proposals are to create aback-projection of the BIM model on-site images and to evaluatethe progress of work based on the combined model and image. Incontrast, Golparvar-Fard et al. (2015) focus on the analysis of vox-els and their comparison with the model. Lin et al. (2015) proposethe use of UAVs to acquire additional aerial images and discuss theissues of the advantages of UAVs over close-up images, especiallyconsidering the possibility of occlusions.A very similar approach to that outlined above is used by Braun(2015) and Tuttas et al. (2014, 2015). Slightly different as-planned vsas-built comparison methods are used, which are based on the com-parison of octree cells and raster cells derived from PCs from SfMor triangulation. Braun et al. (2015), additionally propose to use thegraph notation of the relationship between as-built vs as-plannedto improve the evaluation of the object state. Braun et al. (2016) pro-
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pose HSV (hue saturation value) color analysis to extract the layersof a built wall (steel, concrete, wool). In Braun et al. (2018), an imagerendering algorithm is presented by combining a 4D as-plannedBIM model and a photogrammetric point cloud created from theimages taken of the object under study. It is also possible to use neu-ral networks (e.g., Mask R-CNN) to detect individual componentsof the object, e.g., columns, and assess their current state (Braunet al., 2020) or wall (Wei et al., 2022). Also, other comprehensive ap-proaches were presented, with a rough registration of componentsused for condition assessment (Xue and Hou, 2022; Xue et al., 2022).An advanced solution was also presented by Pal et al. (2024), wherethe authors proposed an activity-level progress monitoring system(ALPMS). It is based on analyzing images from the constructionsite to build a photogrammetric point cloud (SfM-MVS), and thenusing the Mask R-CNN architecture to semantically segment theimages and point clouds. This is followed by co-registration of thepoint cloud and the model. Synthetic orthographic views are thengenerated based on projective transformation and NeRF (neuralradiance field). Analysis of the progress of the work is done by com-paring the surface for ground truth (model-based image) and realwork (point cloud-based image) semantically segmented.Kropp et al. (2013) proposed progress monitoring using indoorvideo, through a perspective analysis activity and SVM classifica-tion and detection of heating devices based on HOG (histogram oforiented gradients). The as-built result was then compared withthe schedule based on the BIM model. In addition, the algorithmsusing video were extended to analyze the type of material (Kroppet al., 2015). Yang et al. (2023) proposed a vision method based onarchitecture DeepLabV3+ for video frame image segmentation andconcrete pouring stage identification based on floor plans from BIM.A holistic system proposal for in-build progress monitoring wasdescribed by Kropp et al. (2018). Asadi et al. (2019) proposed a sys-tem to combine measured data with a real-time model. The data isacquired using UGV (unmanned ground vehicle) with Nvidia Jetsonand the algorithm is based on SLAM (simultaneous localization andmapping) with trajectory improvement and vanishing point/linedetection, through which the BIM model is combined with the ac-quired images. A slightly different approach for internal progressmonitoring is presented in another paper where edge or boundarydetection is used as an additional feature to the SVM algorithm tocalculate the tiling area (Deng et al., 2020).Among the identified publications, some capture images notonly in standard RGB colors but other spectra are also recorded.Previously described images acquired from belong to this groupsatellites (Behnam et al., 2016; Tian et al., 2020; Yang et al., 2017).Additionally, Pazhoohesh and Zhang (2015) proposed to use a ther-mal camera as a data source for progress evaluation. The biggestadvantage of such a solution is the possibility to analyze additionalcomponent attributes such as temperature or humidity. On theother hand, these cameras offer a slightly lower resolution thantraditional cameras.A considerable number of publications using the image analy-sis approach are those that use a drone as a sensor medium. Thedata acquisition algorithm by drone for progress monitoring pur-poses is described by Qu et al. (2017). There, a method for com-paring as-built vs as-planned was also proposed by relating a pho-togrammetric point cloud and a model on the example of a chimney.Jacob-Loyola et al. (2021) used a similar approach for a building.Kielhauser et al. (2020) highlighted the economic benefits of usingdrones to track the progress of work and to assess the quality ofthe completed work. It is also possible to estimate the progress ofthe work by analyzing the DTMs (digital terrain models) obtainedin successive measurement sessions and comparing the volume ofcross sections of the road under construction (Lo et al., 2022). Asimilar approach for infrastructure projects (dams, roads) was pre-sented in several papers where BIM data was also used to verify theprogress of work in relation to the obtained DSMs (digital surfacemodels), e.g., through cross-section analysis or volume increment

Figure 4. BIM and image-based construction progress monitoringmethods and algorithms

analysis (Arbad et al., 2023; De Winter et al., 2022; Sentosa et al.,2023). A solution using UAVs was also presented by Wei et al. (2023),where a methodology for analyzing the progress of work for soilfoundations based on a deep learning solution was proposed. TheSOLOv2 architecture was used for detection on soil, strut, shutter-ing, baseplate-on, and baseplate-completed images to evaluate thephase of work and the progress of work in subsequent timelines andmapping to BIM. Somewhat less conventional medium includeda crane (Masood et al., 2020). The images were then combinedto obtain a point cloud and compared with the model. The casestudy described here concerned the recognition of the condition ofbeams using SVMs. Rover is also suggested as a sensor-transferringmedium. For example, Liao et al. (2023) propose a solution basedon Azure Kinect camera and YOLOv5 architecture to verify the in-stallation of components such as fire hydrant and switch. Solutionscombining data from multiple mediums are also proposed with arobotic manipulator, a small drone (Tello), a four-legged robot, anda mobile robot used and compared for monitoring the progress ofinstallation work inside a facility (Zhao et al., 2023b). Barbosa andCosta (2022) propose a concept based on UAVs for measuring theprogress of work outside the facility, while 360-degree cameras aresuggested for analyzing the interior.Braun et al. (2017) presented an important issue, including astudy on the assessment of the progress state based on images anderrors that can occur in the progress assessment by algorithms.It also outlined the potential causes of interference with the algo-rithms. In particular, occlusions or insufficient acquisition capabil-ities were singled out. The developed classification can be used forproper visualization and progress assessment. Han and Golparvar-Fard (2017) pointed out the potential of solutions based on visualdata for progress monitoring, as well as the need for large disk andcomputational space and the problems associated with these data.Data acquisition procedures are also important for obtaining pho-togrammetric products of sufficient quality (Tuttas et al., 2017).Therefore, it is important to properly operate metrics to evaluatethe acquired data and confirm its reliability (Ibrahim et al., 2021).Based on the above analyses, a schema was created to describewhat actions are taken to analyze the progress of construction workbased on image analysis (Figure 4).
4.2 Stage 2: Satellite remote sensing for construction —

assessment

Clearly, the quality of input data significantly influences the per-formance of data processing algorithms. Therefore, in this stage,research focuses on the possibility of extracting information fromremotely sensed images of the Earth’s surface characterized by re-markably high spatial resolution. Articles in this field were analyzed
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to identify data sources, processing methods, and accuracy of finalproducts so that in the next stage a data fusion scheme could bedeveloped. The limitations of this technology were also outlined.As presented in the description of the methodology, it was notpossible to create a key allowing the identification of publicationswith the above-defined characteristics. Therefore, it was decidedto search for them by analyzing bibliographies of publications inthis field and based on keywords and free searches of the Scopusdatabase.At present, commercially available satellites with optical sen-sors enable imaging of the Earth with a spatial resolution of about0.3 meters for the panchromatic channel and about 1.2 meters forthe other channels on a single satellite (Panagiotakis et al., 2018). Inmany research centers, work is underway to improve spectral imag-ing to the pixel size of panchromatic images by means of so-calledpansharpening and super-resolution (Rahmani et al., 2010). Inaddition, systems are being developed to have the ability to revisitspots over the same location 15 times a day, as 6 Worldview-Legionsatellites are planned to be launched in 2024 as part of the MaxarWorldview Legion system (Maxar, 2022). From the perspectiveof active sensors, commercial solutions also offer products withsubmeter resolution, e.g., TerrasSAR-X or ICEYE, allowing preciseanalysis of changes occurring in various types of areas including,for example, the detection and classification of vessels in quasi-realtime (Zhao et al., 2023a). The penetration capabilities of SAR tech-nology should also be kept in mind here, including the penetrationof vegetation when using longer electromagnetic wavelengths.In the analysis of detection or segmentation possibilities basedon very high-resolution optical satellite imagery, a diverse range ofresearch topics emerges. Identified publications primarily focus onextracting smaller objects such as cars and conducting land coveranalysis. Behnam et al. (2016) used Pleiades imaging with a spatialresolution of 0.5, with detection accuracies amounting to 72.7 forpile cap and 76.9 for pier construction, respectively. A significantchallenge lies in preparing suitable training datasets and employ-ing effective detection algorithms. Researchers explore variousapproaches including the use of generative adversarial networks(GANs), edge-enhancement techniques, and other methods forgenerating super-resolution images. Thus, it is possible to increasethe image detection accuracy of, e.g., cars to more than 90% (Rabbiet al., 2020). Similar results were obtained for the above task byMansour et al. (2019).From the perspective of land cover analysis, very high resolu-tion (VHR) satellites with spatial resolutions below 1 meter typicallyrecord reflection in a smaller number of spectral channels (4 – 8).This limitation restricts the range of standardized indices that canbe used as additional features in the land cover segmentation pro-cess. The four most popular datasets for land cover purposes derivedfrom VHR satellites were identified: LoveDA (Wang et al., 2021),DeepGlobe (Demir et al., 2018), ZurichSummer (Li et al., 2018),and SpaceNet (Van Etten et al., 2018). The problem with the abovedatasets is the small number of classes (from 2 to 8) representingonly the main land cover elements without, e.g., the detection ofdetailed type of development.The approach (James et al., 2020) using Pleiades imagery fo-cuses on a slightly more detailed detection using RF and SVM forthe detection of 9 classes (including sand, soil, mud, grass, or trees,among others). The accuracy ranges from 80% to 100% for eachclass. It is also possible to identify tree species using the satelliteVHR (Jombo et al., 2021). Also, the detection of construction sitesand elevated objects is proposed by researchers for the WorldViewsatellite, and the accuracy achieved for this one approach reaches90% (Juergens and Meyer-Heß, 2021).Progress monitoring can also be seen as analyzing changes inthe time series. Deep learning methods for this purpose are cur-rently proposed, with a modified version of the UNET architectureused for the segmentation of change detection and the accuracyobtained exceeding 96% (Peng et al., 2019). Algorithms combin-

ing image processing (SLIC method), CNN (convolutional neuralnetwork), SVM, and Bayesian optimization are also proposed (Jinget al., 2020). A detailed description of algorithms and methods forchange detection is presented by Shafique et al. (2022).Another area of research involves the identification of publica-tions focused on creating 3D models of terrain surfaces using re-motely sensed imagery. The application of multi-view stereo (MVS)and structure from motion (SfM) at satellite levels faces limitationsdue to challenges in obtaining suitable imagery with adequate il-lumination and satellite azimuth or elevation angles. Additionally,there is the issue of the small depth-to-distance ratio from thecamera to the scene for accurate image alignment, precise informa-tion about satellite orientation and rational polynomial coefficients(RPC) calculation is crucial. Ongoing research aims to enhance al-gorithms to improve the quality of digital surface models (DSM).Currently, the accuracy of such products may not be sufficient formonitoring progress effectively. A comprehensive approach de-scribed by Zhang and Gruen (2006) outlines the generation of DSMand digital terrain model (DTM) directly from IKONOS satellite im-agery using multi-image matching. The DSM achieved an accuracyof less than a meter with a 5-meter grid for bare soils, although theaverage accuracy across the analyzed area was 2-3 meters. Slightlybetter results were obtained using WorldView-2 imagery with a0.5-meter pixel resolution, producing a DSM and DTM with a 1-meter grid and slightly improved accuracy (Nemmaoui et al., 2019).Other techniques for three-dimensional analysis of optical imaginginclude shadow analysis in images to assess the height of an object(Glinka et al., 2023).The main limitation of passive remote sensing data is depen-dence on atmospheric conditions, in particular clouds, which re-duces the analysis possibilities. With the average annual globalcloud cover estimated at 66% (Jeppesen et al., 2019; Zhang et al.,2004), this poses a significant problem for tracking the dailyprogress of construction work.The different resolutions describing remote sensing data: spa-tial, radiometric, and spectral are dependent on each other (Al-Wassai and Kalyankar, 2013). There is a noticeable trend towardcreating increasingly accurate images, coupled with the develop-ment of algorithms aimed at mitigating imaging imperfections andenhancing georeferencing accuracy. However, achieving usableproducts from these images requires computationally intensiveand costly data processing.Considering the challenges associated with optical satellite im-agery outlined above, radar (SAR) data emerges as a valuable com-plement. SAR applications include monitoring deformations aroundconstruction projects (Gheorghe et al., 2019), detecting and classify-ing ship-type objects (Zhao et al., 2023a), and identifying structuralchanges (Gagliardi et al., 2023). SAR data are mostly independentof weather conditions but are susceptible to significant noise, ne-cessitating robust processing methods and additional contextualdata to generate meaningful products.
4.3 Stage 3: Results — analysis conjunction and

Sat4BIM4D method description

The aforementioned analyses highlight the existence of algorithmsfor integrating imagery with building information modeling (BIM)models to evaluate construction progress. However, it is importantto note that much of the research focuses on assessing individ-ual components rather than the entire construction site. Satellite-derived data can be especially advantageous for infrastructureprojects, where many structures are exposed. Nonetheless, it iscrucial to consider the limitations associated with these technolo-gies, as outlined in Section 4.2.Given the practical side and the existing algorithms describedin 4.1 and 4.2, methods that recognize land cover and larger ele-ments (several meters), as well as the use of edge detection for the
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purpose of linking to a model of, e.g., a road, can be particularlyuseful when utilizing satellite remote sensing imagery. However, asignificant limitation lies in the creation of 3D models from satellitedata. While workflows incorporating SfM and MVS are proposed,current satellite data often restrict the effective application of thesealgorithms or result in products with insufficient accuracy.Detection of objects several meters in size remains feasible.Therefore, the current approach to monitoring progress using satel-lite imagery predominantly relies on 2D analysis with limited ter-rain detail. It seems that the only way to create 3D images is tocombine optical and radar imaging, but the currently used sensorsand algorithms also require further development. An additionalbenefit lies in the potential to enhance monitoring accuracy andreliability by increasing the frequency of satellite image acquisi-tion. SAR data offer advantages including reduced dependence onweather conditions. Conversely, optical sensors capable of register-ing across various spectral channels provide richer data comparedto standard RGB imaging. These attributes highlight the diversestrengths and ongoing development needs within satellite remotesensing technologies.Therefore, it seems that monitoring the progress of work fromthe satellite level should be based on the recognition of materialsor surface coverage and analysis of its changes. Radar data couldbe complementary when large embankments or excavations arecreated. A geometry-based approach, primarily using a 2D anal-ysis, is feasible. In summary, optical data can provide qualitativeinformation, e.g., describe the type of land cover or material type,while SAR data can provide quantitative information – what alti-tude change occurred over a defined period through, e.g., InSARanalysis.For the coverage classification, efficient algorithms based ontraditional machine learning approaches (e.g., SVM or RF) as wellas deep machine learning are implemented. For segmentation ormaterial/cover detection, such algorithms should be considered.However, it should be kept in mind that the machine learning algo-rithms used require appropriate input data sets for training. Hence,there are increasing proposals to create learning datasets using la-beling based on 3D models (Braun and Borrmann, 2019) or openspatial data (Glinka et al., 2022). Apparently, the creation of ap-propriate datasets is the key element necessary for accurate iden-tification of land cover and building automated solutions for themonitoring of construction progress using satellite imagery.Limitations arising from, e.g., atmospheric conditions and pos-sible occlusions in the form of clouds or objects reduce the pos-sibility of creating a fully reliable system capable of tracking theprogress of construction work in quasi-real time, despite the es-tablishment of new systems that can revisit a spot even severaltimes a day. In addition, at the moment acquiring high-resolutionimages is expensive, so it is necessary to maintain the economicbalance. Consequently, at this moment monitoring progress shouldbe limited to weekly or even monthly intervals, e.g., based on theforeseen milestones of the project.The perspective of using satellite data to track progress was de-scribed above. However, the BIM perspective should also be keptin mind. The use of an IFC file to verify the progress of work onan ongoing basis requires the inclusion of relevant information,which should be agreed upon at the information requirements build-ing stage. First, compared to the methods described in 4.1, where,in most cases, the data had a local coordinate system or was co-registered for the use of satellite data, a very accurate georeferenc-ing is required, which is not always a common practice today. Byindicating the appropriate coordinate systems and precise spatialreferencing (horizontal and elevation), it is possible to realize thisconcept. Another element is to record information on the scheduleand assign it to the appropriate elements. However, the specificinformation to be included should be agreed upon in the require-ments for information exchange. Another prominent issue is theappropriate modeling of information. In September 2023, the offi-

Figure 5. Scheme of the Sat4BIM4D workflow with proposed algorithms

cial 4x3 version of the IFC schema was published, including classesrelevant to infrastructure. However, at this point, it is not yet fullysupported and probably requires time for software providers to fullyadapt their software.Based on the above analyses, a scheme of combining satellitedata with BIM — Sat4BIM4D — together with proposed algorithmsis suggested (Figure 5).

5 Discussion

During the research, publications in the field of constructionprogress tracking in conjunction with BIM, and satellite remotesensing were analyzed to identify the cases currently used in theAEC industry. Then, based on the implications, the capabilities andconcept of the Sat4BIM4D system were analyzed.The following recommendations should be considered to facili-tate the implementation of the Sat4BIM4D concept proposed above:
• The development of algorithms to process both optical and radarsatellite data and extract specific information about, for exam-ple, land cover (instance segmentation, semantic segmentation,change detection) or objects (object detection) on the construc-tion site for progress analyses. The current development ofartificial intelligence algorithms points precisely to the use ofdeep machine learning algorithms.• Relatedly, to extract specific information and be able to applymachine learning, appropriate datasets must be built. Someof the reviewed publications also emphasized this area. How-ever, they focused mainly on material-type detection for objectslike buildings. Detection of land cover or varied materials fromsatellite images could undoubtedly support the assessment ofconstruction progress and the construction of automatic algo-rithms used for this purpose. Looking from the perspective ofsatellite imagery, one should also keep in mind the possibilityof using multiple spectral channels to record waves in a widespectrum.• As indicated, solutions for automatic tracking of constructionprogress based on satellite imagery should be based on synergybetween passive and active acquisition methods. Complemen-tarity of vision and radar techniques allows us to obtain moreinformation and independence from weather conditions. Hencea need to develop algorithms that combine these data.• Another area that requires work is algorithms that combine in-formation from the model with post-processing informationfrom satellite data. In the case of infrastructure facilities, analy-ses show that work progress is primarily assessed using volumeincrement analyses and as-built (data mostly from UAVs) vs.as-planned (data from BIM) comparisons. For satellite data,this could be one of the selected approaches. Another would be
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to consider algorithms to generate synthetic images based onthe model and then compare them with the real one. However,these images should have the characteristics of orthoimages.• Another important aspect, in the case of infrastructure data, isthe spread of the use of the 4x3 version of the IFC schema, whichhas implemented classes that allow the modeling of infrastruc-ture information.• Determining the frequency of reporting and performing aprogress review is also a critical issue. In the identified publica-tions using satellite remote sensing, work progress was assessedat monthly intervals approximately. It would be necessary toconsider whether it is possible to create daily work progress andwhether such an approach makes economic sense.• As related to the above-mentioned, higher data frequency leadsto increased costs. Thus, a study on the financial aspect of usingthe aforementioned concept should be conducted, taking intoaccount profit ratios.
Analyzing the concept above, it is currently not possible to fullyuse satellite-recorded remote sensing data to track daily progress.Optical satellite data can be considered as a support to the UAV-based system as it is strongly dependent on weather conditions (inparticular cloud cover).The proposed workflow is primarily applicable to infrastructurefacilities; however, it can also be used for cubic objects, with restric-tions on the ability to extract precise information for resolution andcomponent coverage.The limitations of this article include the lack of a practical casestudy, which is planned for future work. Before starting the practi-cal work, it was decided to verify the current solutions and assessthe feasibility of using satellite data for progress monitoring. Theconclusion: partial use of these data is possible, but accuracy re-quirements are crucial.Holistically, most proposed algorithms are prototypical and fo-cus on monitoring individual model components. In the image-based approach used so far, a huge portion of work focuses on ge-ometry analysis. For satellite imagery, it is proposed to base themonitoring system mainly on appearance-based (qualitative) sup-ported by single quantitative examples from MVS or SAR data.

6 Conclusions

The purpose of the article was to assess the possibility of combiningsatellite remote sensing with BIM data, in particular with BIM 4Dto build automatic solutions to track the progress of constructionwork.The developed scheme of the Sat4BIM4D concept based on theidentified publications and recommendations can be treated as aroadmap for the construction of a solution enabling automatic track-ing of the progress of construction work, especially infrastructurework. The creation of such a solution can be an element that in-creases the profitability of the investment and greater control overthe schedule or resources.The obtained results suggest that developing solutions enablingthe implementation of the above concept is recommended, as it mayoffer several benefits including shorter execution times, trimmedcosts, and indirectly reduced impact on the environment.Looking from the perspective of integrating BIM and GIS tech-nologies, the concept described in this publication can be consideredas another case of use.Considering the application, especially in terms of infrastruc-ture projects, the potential of using these data is undeniable, but itrequires further development both on the side of BIM and satelliteremote sensing. The recording of the information in the modelshould be easy and computer-readable for effective comparisonwith the created as-built study (e.g., by recording in ontologicalform - IfcOWL for BIM and the use of data-linked solutions). Withreference to infrastructure projects, one should keep in mind the

deficiencies in the ability to effectively write infrastructure data inIFC format and the general state of maturity of BIM implementationin these types of projects. However, this issue is still developing(adoption of the IFC format and BIM implementation).The potential of the solution described in this article is unques-tionable and, along with the development of sensors and algorithms,it can be a fully complementary solution to measurements madewith traditional measurement methods. One of the biggest advan-tages of the proposed system is its automation. Data acquisitionand processing for the final report can be done without humanintervention.
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