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Abstract

Advanced measurement techniques, such as Terrestrial Laser Scanning (TLS), play a vital role in documenting cultural heritage
and civil engineering structures. A key aspect of these applications is the accurate registration of point clouds. Conventional TLS
methods often rely on manual or semi-automated correspondence detection, which can be inefficient for large or complex objects.
Structure-from-Motion Terrestrial Laser Scanning (SfM-TLS) offers an alternative methodology, comprising two primary phases:
correspondence search and incremental reconstruction. Descriptor matching in SfM-TLS typically employs the L, norm to
measure Euclidean distances between features, valued for its simplicity and compatibility with algorithms like SIFT. This study
investigates the influence of various distance metrics on descriptor matching during the correspondence search stage of SEM-TLS.
Eight metrics were analysed: Bray-Curtis, Canberra, Correlation, Cosine, L1, L, Squared Euclidean, and Standardised Euclidean.
Synthetic data experiments highlighted challenges in keypoint detection and matching due to measurement angles, material
characteristics, and 3D-to-2D transformations. Simulations incorporating Gaussian noise demonstrated that image rotation and
skew significantly affected tie-point accuracy, more so than variations in intensity. In field applications involving cultural heritage
sites and building interiors, the L; and Squared Euclidean metrics yielded higher accuracy, while the Canberra metric
underperformed. Metric selection was found to have a greater impact on complex geometries, such as historical structures,
compared to simpler forms. Consequently, this study recommends the L; and Squared Euclidean metrics for pairwise SfM-TLS
registration, as they exhibit robustness in maintaining high accuracy and completeness across a variety of architectural scenarios.

Key words: distance metrics, descriptor matching, pairwise TLS registration, cultural heritage, public utilities

1 Introduction Stylianidis, 2016; Tobiasz et al., 2019). The process of generating
measurement documentation based on TLS data is a multi-stage
process, which includes: (1) planning scanner positions concerning
the measured object, (2) data acquisition, (3) point cloud registra-
tion, and (4) generating the final documentation in the form of

3D models, orthoimages, or vector drawings (Berenyi et al., 2010;

Nowadays, one of the most important measurement techniques
used in the inventory and measurement of architecture (Abbate
etal., 2019; Arif and Essa, 2017; Gizynska et al., 2022; Kuzyk, 2023),
civil engineering, or industrial objects and sites (Kowalska and

Kowalczyk, 2024; Mukupa et al., 2016; Rashidi et al., 2020) is Ter-
restrial Laser Scanning (TLS). It is widely applied in generating
measurement documentation, primarily due to its main advantages,
which include, among others, accuracy in data acquisition, data
density, automation of point measurement, and non-destructive
way of data acquisition (Grussenmeyer et al., 2012; Remondino and

Cipriani et al., 2019; Markiewicz et al., 2015; Mukupa et al., 2016;
Piermattei et al., 2019; Tobiasz et al., 2019). However, one of the
critical stages determining the accuracy of the final measurement
documentation is the point cloud registration process (Cheng et al.,
2018).
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Figure 1. The Incremental SfM procedure (Bianco et al., 2018)

In general, the registration method is based on determining the
mathematical relationship between the registered point cloud and
the reference system corresponding to it. The number of different
TLS point cloud registration methods can be found in the litera-
ture (Dong et al., 2018; Kowalska and Kowalczyk, 2024; Rashidi
etal., 2020) but is generally divided into two groups, i.e. pairwise
and multi-view registration. Recent research focuses on methods
for automatic detection and matching feature points detected on
point clouds, mainly based on the modified Structure-from-Motion
(SfM) approaches (Alba et al., 2012; Han et al., 2018; Janf3en et al.,
2023; Kang et al., 2009; Markiewicz, 2024; Markiewicz et al., 2023;
Moussa et al., 2012; Urban and Weinmann, 2015). The SfM method
allows the determination of the relative orientation parameters be-
tween an unordered group of images and three-dimensional shape
reconstruction based on these images. The SfM approach is a com-
plex computational process consisting of multiple stages, which
can be generally divided into two main components: (1) correspon-
dence search and (2) incremental reconstruction (Figure 1).

The main idea of the Corresponding search part is to find robust
and stable tie points according to the Tuytelaars and Mikolajczyk
theory (Tuytelaars and Mikolajczyk, 2007). In the Feature Extraction
phase, characteristic features, also named keypoints, are detected
separately for each processing image, and the local characteristic
of the image intensity gradients around each keypoint is described.
Feature matching refers to finding corresponding features from two
similar images based on similarity between descriptors. It should be
emphasised that the feature matching accuracy depends on image
similarity, complexity, and quality. The outcome of this step is a col-
lection of images with a minimum of pairwise overlap, along with a
corresponding set of feature matches. At this stage, points are iden-
tified and subjected to Geometric Verification and further processing
in the SfM method. Geometric Verification is needed to eliminate
outliers and improve the quality of tie points and, consequently,
the quality of the final image orientation. Additionally, the relative
image orientation parameters (using the homography method) and
the 3D coordinates of tie points are determined and utilised in the
final step — the incremental reconstruction. Incremental reconstruc-
tion allows the determination of image orientation parameters with
camera calibration parameters (Karwel and Markiewicz, 2022). The
Reconstruction Initialization is the crucial part because it leads to 3D
model quality and final accuracy of data orientation. This process
begins by selecting a pair of geometrically verified images with
the densest matches (the highest number of tie points). These im-
ages provide the initial camera poses and common points, which
serve as the foundation for the reconstruction. Image registration is
used to calculate the pose (position and orientation) of newly added
images using 2D-3D correspondences and solves the Perspective-n-
Point (PnP) problem, often robustly optimized with RANSAC or its
variants. Triangulation determines the 3D coordinates of additional
points by leveraging epipolar constraints and solving reprojection
errors, adding density to the point cloud. Finally, Bundle Adjust-
ment (BA) refines both camera parameters and 3D points using the
Levenberg-Marquardt algorithm, reducing accumulated errors.

The feature-based methods used for point cloud alignment from
terrestrial laser scanning are based on a modified SfM method
known in the literature as TLS-SfM. The main differences in the

Tand estimated camera pose

data processing workflow are related to the type of input data and
the Geometric Verification stage. Since 2D detectors search for
points on images, it is necessary to convert point clouds into the
raster form. This is typically done by applying cartographic pro-
jections, for example, to create spherical images, where grayscale
values of pixels are interpolated based on the intensity of laser beam
reflection or the colour assigned to the point cloud. A depth map or
X, Y, and Z coordinate maps are assigned for these spherical images,
enabling the calculation of corresponding 3D coordinates in the
point cloud based on detected 2D coordinates in the image. Another
difference compared to the classical SfM method is the choice of the
relative orientation model used during the geometrical verification
stage. This method uses the 2D coordinates of point pairs detected
during the descriptor-matching stage and the homography model.
For the TLS-SfM method, a 6-parameter 3D transformation and
the 3D coordinates of point pairs detected during the descriptor
matching stage are used. Articles Markiewicz (2024); Markiewicz
et al. (2023) detailed the TLS-SfM method and the individual data
processing stages.

This article is a continuation of previous work (Markiewicz,
2024; Markiewicz et al., 2023), in which the TLS-SfM method was
presented, and studies were conducted on the impact of detector
selection on the accuracy and completeness of TLS point cloud
registration. Most studies related to TLS point cloud registration
based on a modified SfM method typically utilised the L, norm
(Alba et al., 2012; Markiewicz, 2024; Moussa et al., 2012; Urban
and Weinmann, 2015) or metrics similar to the L, norm during the
descriptor-matching stage (Janf3en et al., 2023). The choice of this
norm is associated with the fundamental algorithm for keypoint de-
tection and matching, which is based on the SIFT algorithm (Lowe,
2004). In this article, different strategies for similarity computa-
tion (Barycurtis, Canberra, Correlation, Coine, Ly, L,, Seuclidean,
Sqeuclidean) in the descriptor matching were presented, as well as
assets’ influence on the final registration accuracy.

As Test Sites, point clouds of interiors of buildings with histori-
cal surfaces of a decorative structure and interiors of public utilities
(an office and an empty shop in a shopping mall) were chosen. The
commonly used target-based registration method was compared
with the proposed method.

This paper is divided into five main sections. Section 2 describes
the descriptor matching methods. Section 3 describes the test sites,
approach, and data analysis method. In Section 4, the results of the
descriptor-matching assessments are summarised. In the conclu-
sion (Section 5), future work is proposed, and the possibilities and
limitations of matching approaches are summarised.

2 Feature matching

Feature matching, or generally image matching, is fundamental
in many computer vision applications, namely image orientation,
camera calibration, object recognition or tracking. The main idea of
this approach is to establish correspondence between two images or
features of the same scene. Acommon approach to feature matching
(a part of the SfM’s corresponding search phase) consists of a set
of features, also named keypoints and the assignment of the local



characteristic of the image intensity (description part). The feature-
extraction part is performed on each image separately and based
on the algorithms and methods which detect features invariant
to image translation, scaling, and rotation, partially invariant to
illumination changes, and robust to local geometric distortion such
as SIFT (Bay et al., 2006; Harris and Stephens, 1988; Moussa et al.,
2012; Tuytelaars and Mikolajczyk, 2007). Each detected feature
is analysed for gradient change based on its nearest neighbour to
assign unique features. In literature, many descriptors exist, such
as SIFT, SURF or DAISY (Bay et al., 2006; Lowe, 2004; Tola et al.,
2010). The SIFT (used in this investigation) descriptor’s main idea
is to calculate local image gradients at a selected scale around the
region’s key point under study. The descriptor’s work is based
on analysing histograms of 4 x 4 pixel neighbourhood orientations
with 8 bins each. The histograms are derived from magnitudes and
orientations sampled in a 16 x16 region around the keypoint so that
for each histogram, a 4 x4 subregion of the original neighbourhood
region is sampled. The magnitude and orientations of the image
gradient are probed around the location of the keypoint, using the
scale of the keypoint to select the image. To obtain orientation
invariance, the descriptor coordinates and gradient orientations are
rotated relative to the keypoint orientation (Karwel and Markiewicz,
2022).

Once the feature vector is obtained, the next stage of determin-
ing tie points on image pairs is the relative matching of keypoints.
This is typically performed using a similarity measure for feature
vectors. One of the simplest methods is based on the Brute-Force
Matching algorithm. In this approach, a descriptor from one fea-
ture in the first set is compared to all features in the second set
using distance calculations. The closest feature is then returned.
This expansive solution guarantees getting the solution, but it
does not guarantee that it will be optimal. Another more sophis-
ticated approach is a FLAN-based matcher (Fast Library for Ap-
proximate Nearest Neighbours) that utilises a k-dimensional tree,
a space-partitioning data structure used in computer science to
organise points in a k-dimensional space. This method is based
on the t-nearest neighbour search in large datasets and for high-
dimensional features (OpenCV, 2018).

In data science, especially in Machine Learning, the similarity
measure determines how data samples are related or close to each
other. The similarity measure is usually expressed as a numerical
value that allows it to assess whether it is correlated. Generally, for
similarity function value analysis, it can be assumed that larger
values indicate more significant similarity, while in distance func-
tions, smaller values indicate more significant similarity (Aggarwal
et al., 2015). Choosing a distance metric significantly influences
the quality and correctness of description matching and tie point
quality. Therefore, selecting the correct metric distance affects the
final quality of image matching and TLS point cloud registration.

2.1 Lp norm — Minkowski distance

One of the most commonly used distance methods for quantita-
tive data matching is the L, norm between two vectors of data,
respectively. X = (x1,Xa,...,Xs)andY = (Y1, V5, . .., Vs), which is
determined by the following equation:

Distance (Y, ?) = (i |x; —yi|p)%. (1)

i=1

One commonly used Ly norm is L, also called the Euclidean dis-
tance method. This particular case derives its intuition from spatial
application, where it has a physical interpretation. The main prop-
erty of the Euclidean distance is the invitation of rotation, which is
crucial, especially in the description matching case. The Manhat-
tan distance, also known as Taxicab, Block Distance and L; norm,
calculates the distance between two real-valued vectors and the
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sum of the absolute differences between two vectors.

The L, norm distance offers advantages such as robustness
against outliers, encouragement of sparse solutions, geometric in-
terpretability, and support for feature selection. However, it also
comes with drawbacks, including a lack of smoothness, potential
multiple solutions in the presence of correlated data, sensitivity
to scaling, inefficiency for non-sparse data, and limited insight
into relationships among non-zero coefficients. The L, norm dis-
tance has several advantages, including being differentiable at all
points, making optimisation smoother; showing less sensitivity
to outliers compared to the L; norm,; yielding a unique solution
in most cases, even with correlated data; being more efficient for
non-sparse data; and capturing relationships between non-zero
coefficients. However, it also has disadvantages, such as potentially
weaker promotion of sparsity compared to the L, norm, sensitivity
to feature scaling, a less intuitive geometric interpretation, and
potential performance issues with datasets containing outliers.

In some cases, when the weight of some features is more impor-
tant than others, it is possible to apply the weight of the features
differently if domain-specific knowledge about the relative impor-
tance of different features is available. The generalised Minkowski
distance (Eq. 1) is extended with the weight:

S 1
Distance (Y, ?) =3 q- [x—yiP)p. )

i=1

2.2 Normalized L, and L, norms

The normalised versions of the L, and L, norms are the fundamental
metrics in the least square problems, linear algebra and Machine
Learning applications. Applying normalised L; norm is also called
Mean-Squared Error (MSE) (Eq. 3). The MSE is sensitive to the
large outliers and allows for assets the quality of matching.

N
Distance (Y, Y) = % S Ixi— vl G)
i=1

Another weighted method applied for L, is Bray-Cutris (also
known as Braycurtis) distance (Eq. 4). It is often used for data
scattered around an origin, as it is biased for measures around
the origin and very sensitive for values close to zero (math.net,
2024). Compared to the L; norm, it is more robust regarding outlier
influence.

Distance (Y Y) = i M )
’ i=1 }Xl' +yi|

The Braycurtis distance measure is advantageous for capturing
relative abundances and handling sparse data effectively, but it can
be sensitive to dominant species’ influence and scaling differences.

The standardised Euclidean distance, also known as the “Seu-
clidean” distance, can measure the dissimilarity between data
points while accounting for feature scaling:

Distance (Y, Y) = (5)

where s is a 1-D array of component variances, it is usually com-
puted among a larger collection of vectors.

This distance metric is advantageous as it normalises the data
by dividing the squared differences between coordinates by the vari-
ances of each dimension. This normalisation process allows fairer
comparisons among features with different scales, preventing fea-
tures with larger ranges from dominating the distance calculation.
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However, while addressing scaling issues, the seuclidean distance
may still be sensitive to outliers or skewed distributions. It is advan-
tageous when working with data where feature scales vary widely,
helping to provide a more accurate representation of dissimilarity
while considering the characteristics of individual features.

The squared Euclidean distance, often abbreviated as “sqeu-
clidean” distance, is a distance metric used to quantify the dis-
similarity between two points in a multi-dimensional space. It is
calculated by taking the sum of the squared differences between
the corresponding coordinates of the two points:

S
Distance <Y, 17) = SZ |x; = Yi|2 ) (6)
i=1

where s is the weight for each value in u and v. Default is None,
which gives each value a weight of 1.0.

This distance metric is advantageous for various applications
due to its simplicity and computational efficiency. However, it can
be sensitive to differences in the magnitudes of features, potentially
leading to biased results when dealing with data with varying scales.
Despite this limitation, the squared Euclidean distance remains a
popular choice in various fields for its ease of calculation and ability
to capture differences between points based on their coordinates.

2.3 Canberra distance

The Canberra distance is a quantitative measure to gauge dissimi-
larity between two sets of numerical attributes. It calculates diver-
gence by summing the absolute differences between corresponding
attributes in both sets and then normalising by summating their
absolute magnitudes:

Distance( ) Z ||X’ Vil 7

x|+ |yl

This property makes it particularly suitable for data with vary-
ing scales. An advantage lies in its ability to capture both attribute
magnitude and direction. Yet, this sensitivity can lead to undue
influence from attributes with higher magnitudes, potentially dis-
torting outcomes.

2.4 Cosine distance

The cosine similarity is defined as a cosine of angles between vectors
of data, respectively X = (x1,Xa,...,Xs)and¥Y = (y1,V,...,Vs),
which is the dot product of the vector divided by its length:

Cosine similarity (X, Y) = cos(0) = m
=[]
L XXtV (8)

2 /55 2
VEiz X Zi VX

Distance (Y, ?) = 1 — Cosine similarity (Y ,17)

The cosine similarity value is always ranges between [-1, 1]. If the
value is equal to 1, two analysed vectors are similar; if the value is
equal to 0, those vectors are orthogonal, and if it is -1, the vectors
are negative. However, cosine similarity is mainly used in positive
spaces, where outcomes are between [0,1]. Cosine distance (and
similarity) is generally used as a metric for measuring distance
when the magnitude of the vector does not play a key role. The main
advantage of the cosine similarity is the low complexity, especially
for sparse vectors.
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2.5 Pearson Correlation distance

Another commonly used distance metric is based on the correlation
coefficient. In principle, it allows determination of the strength of
the relationship between two sets of numerical attributes. The co-
variance value is used to calculate the value of this distance metric:

Covariance(X,Y)

\/ Variance(X) \/ Variance(Y)

Correlation similarity (X, Y) =

- Szl(xi - %le 1X')(yi - %Z[S 1yi)
\/Z?:l(xiz - X )\/Z (yZ 1 1yl)
Distance (Y, ?) = 1 — Cosine similarity (X , Y)
(9)

The correlation similarity value always is between [-1, 1]. Sim-
ilarly to the cosine similarity, it is assumed that values close to 1
indicate that the vectors are similar, values of 0 indicate no similar-
ity, and values of -1 represent negative correlation. For this reason
(as in the case of cosine similarity), the similarity values from the
range [0,1] are used. The main advantages of cosine similarity are
the straightforward interpretation of results, ease of calculation,
and the ability to indicate whether there is a relationship between
vectors and assess the quality of that relationship. Despite these
advantages, the primary limitation of this similarity measure is its
sensitivity to outliers.

3 Materials and methods
3.1 The overview of the approach

This research examined the impact of selecting distance metrics
during the feature-matching stage for automatic TLS point cloud
registration. For this purpose, the TLS-SfM method (Markiewicz
etal., 2023), a multi-stage solution applied for point cloud regis-
tration, was used. It is based on the original software that utilised
the OpenCV (OpenCV, 2018), NumPy (NumPy, 2024), SciPy (SciPy,
2024) libraries, and the Author’s algorithms and methods. It con-
sists of (1) data conversion from RAW point clouds into the raster
form in the spherical projection with depth map (Markiewicz et al.,
2023), (2) detection features by SIFT algorithm (Lowe, 2004), (3)
descript detected keypoints by SIFT descriptor (Lowe, 2004), de-
scriptor matching with Brute-Force Matching with the following
distance measures: Barycurtis, Canberra, Correlation, Coine, L;,
L,, Seuclidean, Sqeuclidean, (4) TLS pair co-registration with geo-
metrical verification, (5) multiple-pair matching and (6) bundle
adjustment (Figure 2).

The simulated data (Section 4.1) and real-world data (Section
4.2) were used to evaluate the selection of distance metrics dur-
ing the feature-matching stage. To perform a complete analysis
of the applying the strategy for feature matching, the following
parameters were assets:

1. Data registration’s completeness determines the distance
metrics’ robustness in the feature matching step. It is understood
as the ability to register all pair scans with each other and deter-
mine the robustness and effectiveness of using specific metric
distance in feature matching.

2. The number of correctly matched keypoints for a pair of TLS
point clouds directly impacts the robustness, accuracy, and com-
pleteness of the TLS point cloud registration process (TP). At the
same time, it also defines the effectiveness of distance metrics
during the feature registration stage.

3. The number of incorrectly matched keypoints for a pair of
point clouds that have correspondence to the second dataset (FP).
4. The number of correctly defined keypoints for which no
matching points were found in the second dataset (TN).

5. The number of keypoints for which the correspondence on
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the second point cloud was found, but this prediction is incorrect
(FN).

6. The accuracy parameter is used to measure how well data are
matched. The accuracy is the proportion of correct predictions
(both true positives and true negatives) among the total number
of cases examined:

TP + TN

TP + TN + FP + EN (10)

Accuracy =

where TP is true positive, TN is true negative, FP is false positive,
and FN is false negative.
7. The precision determines how close the measurements are to
each other. It is also defined as the proportion of true positives to
all positive predictions, including false positives and true positives
(also known as positive predictive value):

TP

Precision = TP+ TP

(11)
8. The sensitivity (also known as Recall) determines the ability
to identify points correctly. A high sensitivity means that more
points are correctly detected, while a low sensitivity means that a
lot of possible pairs of points are missing:

TP

TP + FN (12)

Sensitivity =
9. The F1 score is an overall measure of accuracy that combines
precision and recall. If the F1 score is good (the high values), it
seems that after the matching descriptor step, a low false positive
and a low false negative exist:

Precision - Recall

Fl=2 ———————
Precision + Recall

(13)

10. The Jaccard score (also known as the Intersection and Union)
is used for evaluating the similarity and diversity of correct de-
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tected pairs of keypoints:

TP

TP+ FN + FP (14)

Jaccard score =
11. The Root Mean Square Error (RMSE) and Sigma Median Ab-
solute Deviation (SMAD) on signalised check points were used to
assess the quality of point cloud registration and comparison of
the results obtained from different distance measurements:

(= w)?)
RMSE = # (15)
SMAD = 1.4826 - median(|x; — §/) (16)

where x; is a value in the data set; u is the mean, N is the number
of data points, and 6 is the median.

3.2 Test Sites Description

In order to verify the impact of the selection of distance measure-
ments, two types of test fields were used: (1) simulated data, for
which:

- Gaussian noise and radial distortion,
- rotations and tilt were introduced,

and (2) real data (Figure 3):

- two decorated historical chambers at the Museum of King Jan
III’s Palace at Wilan6w (Test Site I and II),

- anarrow office (Test Site III) located in the main hall of Warsaw
University of Technology and

- ashopping mall, “Serenada”, located in Krakow, Poland (Test
Site IV), were selected.

The terrestrial laser scanning (TLS) data utilised in this inves-
tigation were acquired with use of the two phase-shift scanning
instruments: the Z+F 5003 scanner with an angular scanning res-
olution 3.2 mm/10 m (deployed at Test Site I) and the Z+F 5006h
scanner with resolution respectively 3.2 mm/10 m for Test Site II,
6.2 mm/10 m for Test Site III and 12 mm/10 m for Test Site IV. Those
were acquired from different positions and heights (Figure 3). For
the independent quality assessment, marked check points (not
used for orientation parameters determination) were utilised. Ta-
ble 1 provides summary information on the point clouds used in
this investigation.

The selection of cultural heritage and public utility objects was
caused by the characteristics of the acquired data, which exhibit
heterogeneous structural attributes and surface geometries, allow-
ing for the assessment of the efficacy and quality of determining
tie points in the feature-matching steps using various distance
metrics.

Test Site I is a complex geometric room with numerous orna-
ments, bas-reliefs, and facets. Alongside these, lavish gold-framed
mirrors, an ornamental fireplace, and suspended fabrics grace the
walls (refer to Figure 3a). In contrast to Test Site I, Test Site II does
not contain ornaments and bas-reliefs, facets, or wall fabrics. Nev-
ertheless, the walls still imitate the spatial effect due to the presence
of wall paintings, as shown in Figure 3b. Test Site III comprises an
office space featuring a slender lobby, sleek texture-free walls, and
suspended lamps and power wires on the ceiling. Moreover, the
floor is adorned with a dark carpet (Figure 3c). Test Site IV repre-
sents a standard empty retail space with untextured smooth walls.
The concrete ceiling is decorated with lamps, electrical wires and a
suspended air conditioner (Figure 3d).
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Table 1. The list of the point clouds with parameters (Markiewicz, 2024)

. Scanner Angular resolution Point scan Avg. number of

Test Site name . . . No. scans N
type Horizontal Vertical resolution points per scan

I - “The Queen’s Bedroom,” in the Z+F 5003 1scan -360°  1scan -320° 3.2 mm/10 m 6 1scan — 42,308,262
Museum of King Jan III's Palace at 5scan -90° 1scan -180° 5 scan — 126,913,021
Wilanéw
II - “The Chamber with a Parrot,” in Z+F 5006 360° 320° 6.3 mm/10 m 4 40,320,455
the Museum of King Jan III’s Palace
at Wilanéw
III — “The office room” in the main Z+F 5006 360° 320° 6.3 mm/10 m 8 28,722,210
hall of Warsaw University of
Technology
IV - “Empty Shopping Mall” Z+F 5006 360° 320° 12.1 mm/10 m 7 13,677,292

A-A-8-2
SEEE

(b)

S Ess
SO NN

LDlowin e

=

(d)

Figure 3. The point cloud in the spherical projection of: (a) Test Site I, (b) Test Site II, (c) Test Site Il and (d) Test Site IV with marked points (red
circles) (Markiewicz, 2024.)
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4 Results and Discussion
4.1 Synthetic data analysis

To assess the impact of the (1) variance of greyscale, (2) rotations
and tilt, and (3) changes in image distortion on the quality of de-
scriptor matching, synthetic data (a virtual test field) was prepared.
The analysis of this abovementioned factor is a crucial step in key-
point matching because changes in the intensity of the laser beam
reflection depend on scanning distances and beam incidence angles,
which is unusual in images.

Gaussian noise influence

The initial investigations focused on assessing the effect of grey
variance on descriptor-matching accuracy. The 128-parameter de-
scriptor (equivalent to the size of the SIFT descriptor) was prepared
for 2550 points consisting of random numbers between 0 and 1. To
simulate the effect of grey variance, adding a Gaussian noise with a
sigma value between 0 and 1.09 with a step of 0.01 was decided. This
made it possible to asset descriptor matching accuracy between the
output descriptor and the descriptor affected by Gaussian noise.
Figure 4 shows the relationship between the percentage of correctly
detected points and the sigma value for all the methods.

The results presented in Figure 4 for all distance measures indi-
cate that the graphs will take on an inverted distribution function
due to the representation of the value of correctly matched points
on the graph rather than the result of incorrectly matched descrip-
tors. This shows that the distance measures used for descriptors
laden only with the variance of grey degree changes in the keypoint
environment are robust to the occurrence of the image mentioned
above’s distortions. In contrast, differences are noticeable for sigma
values, for which the fitted accuracy decreases (Figure 4).

Figure 4 shows that the measure least susceptible to mismatch-
ing descriptors is the correlation distance and the largest Canberra.
Another distance measure to determine the tie points correctly is
the Cosine measure. For the remaining distances, i.e. Ly, L, Seu-
clidean and Sqeuclidean, similar confounding effects of the sigma
value on the correctness of the descriptor matching can be consid-
ered, as this is related to the specificity of the calculation of these
measures.

To perform statistical evaluation (based on the measures de-
scribed in Section 3.1), the F1-score, Jaccard index, and accuracy
values were assessed (Figure 5).

Analysing the F1-score (Figure 5a) and Jaccard (Figure 5b) val-
ues, it can be seen that the shape of the approximation curves is
similar to the curves shown in Figure 4. The only difference occurs
for sigma values (the value on the x-axis shifted to the left rela-
tive to the original data), for which there is a significant decrease
in the percentage correctness of the descriptor matching. When
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analysing the F1-score values for Canberra, it can be observed that
a significant impact of variance intensity (Gaussian noise distor-
tion) leads to a rapid decline in value. This indicates that using this
matching metric results in low sensitivity (a high number of false
negatives) and low precision (false positives). The highest inde-
pendence of variance intensity (for the highest value of the sigma
parameter) was obtained for correlation. The other values have
similar magnitudes and comparable distributions. When evaluat-
ing Jaccard values, which do not account for True Negative values
(unlike the F1-score), a similar trend can be observed as with the
F1-score. This confirms that the number of false positives and
false negatives is relatively low. The accuracy values (Figure 5c¢)
approximately follow a Gaussian distribution, but differences can
be seen in the peak height of the graph (y-axis) and the sigma
values (x-axis). For the Barycurtis and L, measures, the lowest
accuracy values were less than 10 per cent, and for sigma values,
they were around 0.4. For the second group of distances, i.e. Cosine,
L1, Seuclidean and Sqeculidean, the accuracy values were around
15 per cent for sigma values between 0.45 and 0.5. For the Canberra
measure, the lowest accuracy of 20% was the highest of the lowest
accuracies obtained from all the measures. Still, it should be noted
that descriptor matching using this measure is the least robust to
the occurrence of Gaussian noise in the descriptors. The correlation
measure had the second-highest accuracy, with the highest degree
of noise robustness.

Distortion effect influence

One of the most common distortions of spherical images results
from the conversion of point clouds to the raster form, based on
the cartographic transformation that converts data from 3D to 2D.
For this reason, it is essential to know how this distortion affects
the choice of descriptor distance measurement. This translates into
the correctness of detection and matching and the number and
distribution of tie points. For this purpose, a simulation of radial
distortion for both the “barrel” and the “pincushion” distortion
cases was performed. Figures 6a and 6¢ show examples of the
distorted images used in the analyses.

The distribution of the percentage of correctly matched points
(Figure 6d) is symmetrical to 0 (the original image), which indi-
cates that the effect of the “barrel” and the “pincushion” distortion
on the accuracy of descriptor matching is the same, and the dis-
tribution resembles the graph of a homographic function. These
distributions show that the highest percentage of correctly matched
points was achieved with the Canberra distance measure. The val-
ues of the other measures are similar but, on average, about 10%
lower than those of the Canberra distance measure.

Analysing the effect of distortion on descriptor-matching ac-
curacy reveals that all the methods are susceptible to its impact.
This is shown in the low F1-score and Jaccard values, which for
Cosine distance (the best-performing method) are 65% and 50%,
respectively. Analysing the individual values for distance metrics
reveals two distinct groups: those associated with the L, L, norms,
Sececlidean, and Sqeuclidean, and those associated with Braycurtis,
Canberra, Correlation, and Cosine (Figure 7a and 7b). Evaluating
the results obtained for the first group of distance metrics indicates
that they have similar values, differing by an average of about 1%
and from Canberra by around 5%. Assessing the second group of
distances reveals that they are higher, averaging around 5%. The
best results were obtained with the Cosine method (directly related
to the calculation method of this metric), while the worst results
were observed for Canberra.

It should be noted, however, that all the metrics show low re-
silience to the significant impact of distortion (Figure 7c). At low
distortion levels, they match tie points accurately. As image distor-
tions increase, this accuracy rises due to the correct prediction and
not due to determining of tie points. Evaluating the values obtained
for each distance metric separately, it can be concluded that the
most minor differences (and thus the best accuracy) were achieved
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Figure 8. Geometric interpretation of affine decomposition (Yu and
Morel, 2011)

with Cosine, Braycurtis, and Correlation. For the other measures,
these values depend more on the impact of distortion, with the
poorest results obtained for Sqeuclidean.

Skew (tilt) and rotations effect influence

The influence of the image’s tilt and rotations on the correctness
and accuracy was also checked using different distance metrics.
For this purpose, we used a decomposition of the parameters men-
tioned above based on the method presented in the article ASIFT: An
Algorithm for Fully Affine Invariant Comparison (Yu and Morel, 2011)
and used in Affine-detectors for point detection and matching. In
the ASIFT algorithm, each image is transformed by simulating all
possible affine distortions caused by the change of the initial cam-
era positions. For this purpose, affine decomposition is utilised to
describe the transformation using the angle of rotation around the
optical axis (spin, angle ¥), the skew angle 6 (understood as the
camera tilt angle), and ¢, which defines the rotation around the
Z-axis (Figure 8). To perform this, Equations 17 and 18 are utilised
(Yu and Morel, 2011):

u(x,y) — u(ax +by +e,cx +dy + f) (a7)

A= { (CI Z } = HxRy (W) TiRz ()
—sin(y) t o cos
cosyp 0 1 sin(¢)

where A > 0 is the determinant of A (affine transformation matrix),
R; are the rotations, ¢ € [0, 7r) and Ty is the tilt, namely a diagonal
matrix with first eigenvalue t > 1and the second one equal to 1. It
is possible to prepare the decomposition of the camera motion pa-
rameters into the viewing point angles (longitude (¢ ) and latitude
(6 = arccos( % ))), spin of the camera (1) and zoom factor (A). In
the ASIFT algorithm, images undergo rotation with angle 6, which
is represented by tilt parameter t = 1.

From the results shown in Figure 9a, it can be observed that
the image skew significantly decreases the accuracy of descriptor
matching for distance measures. For a skew of 50 degrees, there is
a noticeable trend of a rapid decrease in the accuracy of descriptor
matching. Despite this, it should be noted that the least susceptible
measure to incorrect descriptor matching for skew images is the
Canberra distance, and the results for the other distance measures
are similar.

Assessing the effect of the rotation of the image around the Z-
axis on the correctness of descriptor matching (Figure 9b), it might
be stated (similar to the skew effect) that the highest percentage
of correctly matched descriptors was obtained for the Canberra
measure. For other distance metrics, the matching accuracies are
very close. Figure 9b shows that between 0 and +22.5°, the decrease
in accuracy of descriptor matching using all accuracy measures is

—sin(¢)

cos
cosd

sin(1)
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marginal and does not exceed 5%. Above this value, a significant
decline in accuracy is noticeable from a value of +80°.

Rotation of the image around the optical axis (depth direction)
has no negative impact on the accuracy of the descriptors as much
as the influence of tilt and rotation around the Z-axis. The highest
percentage of correctly matched tie points were obtained using the
Canberra measure and successively for L; norm, Seuclidean, L,
norm, Cosine, Sqeuclidean and Correlation. As the rotation of the
image concerning the optical axis increases, a successive decrease
in the percentage of correctly matched tie points can be observed.
In the range from 0 to 45 degrees, these values do not exceed 90%;
in the range from 45 to 90 degrees, 80%; in the range from 90 to
180 degrees, 60%;and in the range from 180 to 359 degrees, 40%.

A classical approach using SIFT was used in this investigation
to detect tie points. As shown in Figures 10a—10c, the most sig-
nificant decrease in F1-score and Jaccard values is observed when
the image skew exceeds 5 degrees. As previously described, this
reduces the number of tie points and results in the missed detection
of points with counterparts on the matched image. Assessing the
Accuracy value (Figure 10c) reveals that, between 5 and 60 degrees,
the Accuracy values remain stable at an average of 50% across all
distance metrics, indicating considerable difficulty in accurate de-
scriptor matching. From around 40 degrees onward, an increase in
Accuracy is noticeable — tie points are correctly not matched.

A similar relationship was observed for the values obtained for
rotation about the Z axis (Figure 10d and 10e). Evaluating the distri-
bution of the F1-score and Jaccard values, it can be seen that there
is a significant decrease in these values for about 15 degrees of rota-
tion to the left and right. From about 30 degrees onwards, there is
avalue of approximately 0%, which indicates, at the very least, a
lack of correct detection of the vantage points. Assessing the Accu-
racy values (Figure 10f), it can be seen that from around 5 degrees,
there is a significant decrease in accuracy (no points detected) and
from around 15 degrees, accuracy increases correct “mismatching”
of tie points and a decline in the number of tie points detected. It
should be noted that these values are similar for all distance metrics.
It is impossible to divide them into groups, as was possible when
analysing the impact of distortion.

The final assessment focused on the F1-score and Jaccard values
obtained for rotation around the optical axis. The results indicate
that this rotation has the most significant impact on descriptor
matching accuracy. The data in Figure 10g show that all distance
metrics, except for Canberra, exhibit low coefficients within the
range of 0 to 12% for rotation angles between 10 and 360 degrees.
Only for Canberra do these values remain stable until the rotation
angle exceeds 80 degrees. Evaluating the Accuracy values (Fig-
ure 10i) reveals a linear increase in errors as the rotation angle
grows, which, as with previous cases, is due to the correct “non-
detection” of tie points.

The summary of analyses on synthetic data

In detecting and matching keypoints on point clouds converted to
the raster form, several issues may arise related to input data qual-
ity and cartographic transformations’ effects on data conversion
from the 3D to the 2D form — particularly noticeable in the TLS-SfM
process. Problems associated with converting point clouds to the
raster form have been detailed in Markiewicz and Zawieska (2019).
These issues are related to (1) raw intensity deviations caused by
the angle relative to the normal of the measured surface and the
scanning distance and properties of the measured material; (2) de-
formations of a generated image, such as the effect of “distortion”
and large deformations, which occur for large values of angles, i.e.,
in the upper and lower parts of the raster. These geometric failures
considerably influence the number and the distribution of tie points
detected by algorithms applied in image processing (Markiewicz
and Zawieska, 2019). For this reason, it was decided to simulate the
impact of intensity changes by introducing Gaussian noise into the
reference descriptor and geometric distortion changes by generat-
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Test Site I — “The Queen’s Bedroom” in the Museum of King Jan III's Palace at Wilanow
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Figure 11. The accuracy of the TLS registration for Test Site I

ing virtual images with the influence of radial distortion and image
rotations and tilt.

When evaluating the impact of individual factors on the accuracy
and reliability of tie-point matching, it can be observed that image
rotation angles and skew have the most significant influence. In
contrast, deviations in intensity values have the most negligible
impact. Considering the effect of scanning surfaces at large angles
and/or close distances, it must be concluded that distortion can
occur on raster fragments (Figure 9a), and fragments can be rotated
relative to each other in the Z-axis (Figure 9b). For this reason,
the effect of distortion and rotation should be analysed together.
When performing TLS measurements, it is assumed that the unit
should be level and that the use of compensators will allow this
condition to be met. An analysis of the rotation of the raster around
the “optical axis” showed that the accuracy of descriptor matching
when using the Canberra measure was close to 100%, and for the
other measures was above 95%. For this reason, it can be assumed
that the influence of this rotation can be considered negligible when
selecting a descriptor-matching measure.

The effect of distortion is noticeable when processing point
clouds are obtained from scanner positions close to walls, where the
part of the objects are scanned with acute scan angles to the surface
normal vector. With this in mind, it can be expected that fewer
feature tie points will be detected and matched in such sections of
point clouds. Therefore, it is advisable to consider the placement
of TLS stations in a way that ensures not only accurate shape rep-
resentation but also effective tie-point detection in the TLS-SfM
process.

4.2 Real data analysis

The next investigation involved analysing the distance metrics se-
lection on real data characterised by different geometric complex-
ity and texture. For this purpose, the following parameters were
checked: (1) the correctness of the pairwise point cloud registra-
tion (with the analysis used in Machine Learning), (2) the accuracy
of the pairwise point cloud registration, and (3) the number and
distribution of points used in the combined bundle adjustment.

Evaluation of the Accuracy of Automatic Matching of Pairs of Scans
Figures 11—-14 present the results obtained for all distance metrics
(Test Sites I-1IV). To categorise the obtained results, the following
colours were used: (1) full registration (green), where the RMSE
for X, Y, and Z coordinates < 0.005 m (for Test Sites I-III)/< 0.01
m (for Test Site IV), and points are evenly distributed within the
analysed area, (2) preliminary orientation parameters that should
be used in the ICP (orange), and (3) no registration (red). The
symbol “x” indicates that pairs of scans could not be registered due
to the insufficient overlap.

From the results presented in Figure 11 for Test Site I, it appears

that it is only possible to register all scans using the Barycurtis mea-
sure for all pairs of scans acquired from different distances, heights
and angles. The worst results were obtained for the Seuclidean
method, for which only 2 pairs out of 9 could be registered. The
other methods allowed only 7 out of 9 pairs of scans to be registered.
It was problematic to correctly register the point clouds for which
the spherical images had significantly different “distortion” (scans
1, 3and 19) for the corresponding fragments due to the impact of
point cloud conversion to the spherical image form. It should be
noted that for Test Site I, only scan 19 depicted the entire site, with
the others only depicting individual walls.

The results obtained for Test Site II (Figure 12) show that it is
possible to register all point clouds regardless of metricise distances.
Compared to Test Site I, this is because all point clouds were ac-
quired over the full angular range — all room walls, ceiling and floor
were mapped. In addition, it should be mentioned that it is possi-
ble to use all measures for objects characterised by complex good
and unambiguous textures and spherical images characterised by
similar “distortions”. A decisive aspect for selecting a specific solu-
tion is the number of points, their distribution and the achievable
accuracies described in the following subsection.

Based on the results presented for Test Site III (Figure 13), the
worst outcomes were observed for the Barycurtis, Correlation and
Seuclidean distance metrics. In contrast, the best results were
achieved using the L1 norm. It should be noted that in cases where
the point clouds were acquired over the full angular range, the base-
line between the point cloud pairs was small, and the distribution of
the scanner position affected the significant effects of “distortion”
on the spherical images, not all the methods allowed pair scans to
be registered and only the Canberra method allowed the correct ori-
entation of pairs 1—7. Despite this, all the methods allowed full final
registration of all point clouds, as indicated by the number of pairs
with pre-orientation (orange) and those without orientation (red)
in all distance metrics. Similar to Test Site II, the choice of method
depends on the number, distribution, and expected registration
accuracy.

Significant differences in the selection of distance metrics when
matching keypoints used to register point clouds can be seen for
Test Site IV (Figure 14), for which point cloud pairs are acquired
from a wide-range base, and the object is characterised by homo-
geneous texture or textureless areas. In this case, the best results
(guaranteeing the best determination of tie points on point clouds)
were obtained for the L, norm, Sqeuclidean, L, norm and Cosine
method, respectively. It should be noted, however, that a more sig-
nificant number of pre-preliminary registered pairs (orange colour)
may contribute to fewer tie points for the final bundle adjustment
of all TLS pairs and it may also affect the final accuracy of registra-
tion. These aspects are evaluated and discussed in the following
subsections.
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Test Site II — “The Chamber with a Parrot” in the Museum of King Jan [II's Palace at Wilanéw
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Figure 12. The accuracy of the TLS registration for Test Site II

Test Site IIT — The office room
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Figure 13. The accuracy of the TLS registration for Test Site III

Test Site IV — Empty shop (shopping mall)
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Figure 14. The accuracy of the TLS registration for Test Site IV
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Figure 15. The plots of linear error values for RMSE and SMAD for: (a) Test Site I, (b) Test Site II, (c) Test Site IIl and (d) Test Site IV

Accuracy Analysis of Signalised Check Points

To assess the accuracy of the point cloud orientation process, values
of deviations (from the full registration) of signalised (Test Site I,
III and IV) and natural (Test Site II) check points were used; those
points were used for independent quality assessment. To assess the
accuracy of TLS point cloud registration, linear values of RMSE and
SMAD deviations were used (Figure 15), along with the distribution
of error values presented as boxplots (Figure 16).

Comparing the RMSE and SMAD values for Test Site I (Fig-
ure 15a), it can be concluded that the differences between them
do not exceed (a) 0.5 mm for Canberra, Sqeuclidean, and Target-
based; (b) 0.8 mm for Correlation, Cosine, L, and L,; (c) 1.5 mm
for Braycurtis; and (d) 2 mm for Seuclidean, indicating the absence
of outliers in the tie points. The RMSE values for all the methods,
except Braycurtis, fall within the range of 4.5 mm to 5 mm, with
the RMSE for Braycurtis reaching 8.5 mm. Comparing these results
with the RMSE values obtained for the Target-based method, the
most negligible difference was found for Seuclidean (1.5 mm), while
the largest was for Braycurtis (5.4 mm). It can be concluded that, for
all the methods except Braycurtis, the results are similar to those
of the Target-based method.

The RMSE values obtained for Test Site II (Figure 15b) show
an improvement in point cloud registration accuracy compared
to Test Site L. Although both sites are characterised by good tex-
ture (significant changes in grayscale gradients), two key factors
contributed to the improved registration accuracy: the acquisition
of point clouds at full angular resolution and smaller differences
in the height of the registered scanner positions. However, like
Test Site I, the worst results were obtained with Braycurtis. The
differences between RMSE and SMAD do not exceed (a) 1 mm for
Correlation, Cosine, and Target-based; (b) 1.2 mm for Canberra, L1,
L2, Seculidean, and Sqeuclidean; and (c) 1.3 mm for Target-based
method (with differences not exceeding 1.2 mm). Therefore, it can
be concluded that they enable TLS point cloud registration that is
comparable to the commonly used state-of-the-art methods.

For Test Site III (Figure 15c), similar trends can be observed
as for Test Site II, except for the method with the highest RMSE

value — Barycurtis for Test Site IT and Canberra for Test Site III.
Additionally, there are no significant differences between RMSE
and SMAD; they do not exceed 0.8 mm for Barycurtis and Canberra,
while for the other distance metrics, they remain below 0.5 mm.
Comparing the obtained RMSE values with those from the Target-
based method, it can also be concluded (as with Test Site IT) that the
TLS registration results are comparable to those of state-of-the-art
approaches, with 1.5.mm differences being negligible.

The worst results were obtained for Test Site IV (Figure 15d).
Comparing the RMSE and SMAD results, it is noticeable that (a)
the RMSE error for Cosine, L,, and Sqeuclidean is approximately
twice as high, (b) about three times as high for Braycurtis, L;, and
Seuclidean, and (c) seven times fas high or Canberra. The high-
est RMSE values were achieved with Braycurtis, Canberra, and L,
while the best results were obtained for L, , Cosine, and Sqeuclidean.
Although the errors for these distance metrics differ by approxi-
mately 5 mm from the Target-based method, these results should
be considered acceptable, as they are lower than the scanning reso-
lution of 12.1 mm at 10 m.

Due to the minor differences between the RMSE values for the
various distance metrics, it is also essential to analyse the distribu-
tion of deviations presented in the boxplots (Figure 16).

When analysing the values presented in Figure 16a, variability in
maximum and minimum values, as well as different sizes of IQR for
the various distance metrics, were observed. The most significant
spread of values was noted for Braycurtis, while the smallest was
for Seuclidean (X, Y and Z-coordinates). However, considering
that the Seuclidean method has the least number of registered scan
pairs, this value should not be considered further, and the values for
Correlation should be regarded as the smallest. For the Braycurtis
and Correlation methods (across all axes), Canberra (for the Y and
Z axes), and Cosine (for the Z axis), the median value exceeds 1
mm, indicating the presence of systematic errors. For the other
methods, these values also do not equal 0, but the deviations do not
exceed 1 mm. Evaluating the first quartile (Q1), the third quartile
(Q@3), and the interquartile range (IQR), it can be concluded that for
the X axis, there are disparities in the distribution (uneven relative
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Figure 16. Box plots for the distribution of the deviations on signalised check points for all pairs of point clouds fully registered scans for: (a) Test Site
I, (b) Test Site II, (c) Test Site Il and (d) Test Site IV



to the median). Smaller disparities are noticeable for the Y and
Z coordinates. Uniform distributions of values were obtained for
the Ly, L,, Sqeuclidean, and Target-based methods, with the most
similar distribution achieved for the L1 method. On average (across
all axes), the highest number of outliers (marked as circles) was
obtained for Braycurtis (20 outliers), while the fewest were obtained
for Canberra and Cosine, each with one outlier. For the remaining
methods, there were two outliers each.

In contrast to Test Site I, for Test Site II (Figure 16b), the dis-
tribution of deviation values is uniform relative to the median for
all the methods. For all distance metrics for the X, Y, and Z compo-
nents, the median value does not exceed 0.3 mm, which allows us
to conclude that there are no systematic errors in the data set. The
smallest Q1 and Q3 values were obtained for Seuclidean, while the
largest were for L2. The boxplot analysis shows that when register-
ing point clouds over a full scanning range (360°) and processing
objects with good texture, the choice of distance metric is less sig-
nificant, as all the methods enable registration with high accuracy.

A similar uniform distribution of deviations as observed for Test
Site II was achieved for Test Site III (Figure 16c). Although the
scanned room is not characterised by the good texture and had flat
white walls, and the scans were taken at close range to the walls,
high registration accuracy comparable to the Target-based method
was achieved. However, the near distance to the walls, while advan-
tageous for achieving significant point cloud density, resulted in
substantial distortions in the spherical images. This is evident from
the large number of outliers marked as circles. Analysing all com-
ponents (X, Y, Z), it can be seen that Canberra recorded the highest
number of outliers. Assessing the remaining distance metrics, it
can be clearly stated that the best results were achieved for L, and
L2 .

The results presented for Test Site IV (an empty shop in a shop-
ping mall) indicate the presence of systematic errors in the orienta-
tion of the data for the X coordinate, with all average values being
approximately -1.5 mm. The boxplots show that the best results
were obtained for L,, Sqeuclidean, and Correlation. The distribu-
tions are uniform relative to the median, and the IQR values are
similar. Similarly to Test Site III, there are many outliers in the data
sets. The obtained maximum and minimum values range from +15
mm, while 50% of the error values for the best distance metrics fall
within the +5 mm range. This, concerning the scanning resolution,
indicates the correctness of the data registration process.

Point distributions

To assess the density and distribution of the identified tie points,
the datasets were divided into an Octree with dimensions of 2 x 2 x 2
meters (Figure 17) and the number of points in individual cubes
was presented using bar charts (Figs. 18—21).

When assessing the number and distribution of points obtained
for Test Site I (Figure 18), which features numerous architectural
details, bas-reliefs, and facets, as well as the point clouds acquired,
an uneven distribution of points within specific cubes can be ob-
served, along with significant variation in the results obtained for
different distance metrics,. This relationship might be caused by
the utilisation of point clouds acquired from significantly differ-
ent heights and capturing the same wall sections at substantially
varying angles — an effect similar to the impact of distortion and
rotation around the Z-axis, as discussed in section 4.1.

Evaluating the distribution (the filling of individual cubes with
points; Figure 18), it can be observed that the best results were
obtained for the Braycurtis metric. At the same time, the worst
ones were obtained for the Squared Euclidean (Seuclidean) metric.
Comparing the results for the remaining methods, it is noticeable
that they are similar for all the methods except Canberra, for which
no points were detected in cubes where tie points should have been
located.

In the assessment of the results for Test Site II (Figure 19), which
is characterised by simple geometry but featuring wall paintings
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that imitate a 3D effect, only the points obtained from point clouds
acquired at different angles and distances relative to the measured
walls were evaluated (without the first pair of scans). However, it
should be emphasised that these differences in the scanning angle
relative to the normal of the wall surfaces are not as significant as in
the case of the point clouds acquired for Test Site I. Evaluating the
distributions and the number of points in individual cubes, it can
be observed that the results for all the methods are similar. Only for
Canberra, in octree cube 85, a slightly higher number of points was
observed.

The results presented in Figure 20 indicate (similarly to the pre-
vious Test Sites) that, for all the methods, the distribution of points
within individual cubes is similar. Significant differences are no-
ticeable for cubes from 35 to 40 and cube 55. It should be noted that
all the methods enabled the detection of multiple points due to the
small distance between the scanner position and the measured wall.
The best results were obtained with Barycurtis and Canberra, re-
spectively. However, when comparing these results to those for Test
Site II, the number of points is significantly lower. This is because,
unlike Test Site III, Test Site II features better texture, resulting in
significant changes in grayscale gradients. These changes impact
both the number of detected keypoints and the number of correctly
matched descriptors.

Evaluating the distribution and number of matching points ob-
tained for Test Site IV (Figure 21), it can be observed that the worst
results (fewest points) were achieved with Barycurtis. In contrast,
the best results were obtained with Cosine. It is also noticeable that
all modifications of the Euclidean measure, i.e., Ly, L,, Seculidean,
and Sqeuclidean, exhibit similar distributions and point counts.
Similar to Test Site III, there is a lower number of matching points
for textureless objects compared to Test Sites I and II. This trend is
associated with changes in grayscale gradients and the significant
distance between the scanner positions and the measured wall seg-
ments, which results in a lower point cloud density and quality of
the utilised spherical images.

The statistical analysis of the performance of utilised metricises

To evaluate the accuracy of pairwise point cloud registration, com-
monly used metrics in machine learning literature, such as ac-
curacy, precision, recall, and F1-score, were selected for analysis.
These metrics were applied, allowing a comprehensive assessment
of the matched key points and the effectiveness of eliminating the
impact of incorrect descriptor matching. Given that multiple pairs
of point clouds were analysed, the results include the median values
of these metrics and their minimum and maximum values. The
results are presented in Table 2.

Evaluating the obtained Accuracy, Precision, Recall, and F1-
score values, it can be unequivocally stated that regardless of the
distance metrics used, the model has difficulties in correctly match-
ing all possible tie points. This is evident in the F1-score, recall,
and precision values. Therefore, it is essential to analyse these val-
ues for individual test fields separately, characterised by varying
geometrical complexity and TLS scanner positions.

Evaluating the values obtained for Test Site I, characterised by
geometrical complexity and a large number of architectural deco-
rations acquired from significantly different heights and capturing
the same wall sections at substantially varying angles, it can be
stated that:

- High Accuracy values indicate many correctly unmatched key-
points (True Negatives), which is the dominant class — averag-
ing 98.8% across all the methods. The average spread (under-
stood as the difference between the maximum and minimum
value) was approximately 1.2%, with the most significant spread
for Correlation (1.5%) and the smallest for Seuclidean (0.2%).
It should be noted that for Seuclidean, only 2 out of 9 point
clouds could be relatively registered (preliminary orientation;
Figure 11).
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Figure 17. Point clouds with defined Octree for: (a) Test Site I, (b) Test Site II, (c) Test Sit IIl and (d) Test Site IV
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Figure 18. The bar chart of the points number in individual octree cubes for: (a) Barycurtis, (b) Canberra, (c) Correlation, (d) Cosine, (e) L1, (f) L», (g)
Seuclidean and (h) Sqeuclidean — Test Site I
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Figure 19. The bar chart of the points number in individual octree cubes for: (a) Barycurtis, (b) Canberra, (c) Correlation, (d) Cosine, (e) Ly, (f) L, (g)
Seuclidean and (h) Sqeuclidean — Test Site II
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Figure 20. The bar chart of the points number in individual octree cubes for: (a) Barycurtis, (b) Canberra, (c) Correlation, (d) Cosine, (e) Li, (f) L, (g)
Seuclidean and (h) Sqeuclidean — Test Site III
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Figure 21. The bar chart of the points number in individual octree cubes for: (a) Barycurtis, (b) Canberra, (c) Correlation, (d) Cosine, (e) Ly, (f) L, (g)
Seuclidean and (h) Sqeuclidean — Test Site IV

Table 2. The statistical analysis of pairwise TLS point cloud registration for all the Test Sites

Test Method Accuracy [%] Precision [%] Recall [%] F1[%]

Site Min Median Max Min Median Max Min Median Max Min Median Max
Braycurtis 98.5 99.3 99.7 35.9 67.9 95.4 38.2 65.2 89.4 38.9 62.5 83.8
Canberra 98.5 98.9 99.8 55.3 68.4 94.6 37.8 67.7 83.3 54.0 62.5 83.3
Correlation 98.2 98.2 99.7 36.0 60.0 85.8 34.3 59.0 75.4 39.6 56.6 74.6

I Cosine 98.2 98.9 99.7 35.9 63.0 88.8 34.3 58.9 76.8 39.6 56.2 76.8
L, 98.5 98.9 99.7 46.5 62.8 91.7 81.1 64.6 81.2 51.2 61.9 81.2

L, 98.2 98.9 99.7 36.0 62.8 88.8 35.5 59.0 76.3 39.6 56.2 76.3
Seuclidean 983 98.4 98,5 61.4 64.3 67.2 67.2 70.9 74.5 67.2 67.2 673
Sqeuclidean 98.2 98.9 99.7 35.9 62.8 88.8 35.5 58.7 76.3 39.6 56.2 76.3
Braycurtis 84.7 89.9 98.8 56.2 61.7 71.6 49.8 747 82.7 52.8 67.6 74.5
Canberra 85.2 89.5 941 56.6 60.2 72.6 52.1 72/9 82.0 55.2 65.9 75.4
Correlation 82.5 88.8 93.4 52.8 57.9 67.3 46.8 70.0 79.6 49.6 63.5 69.9

I Cosine 82.9 89.1 93.4 52.9 58.9 68.1 46.9 71.0 80.9 49.7 64.6 70.8
L, 83.9 89.6 93.8 55.6 60.7 70.1 49.9 73.2 81.4 52.9 66.5 72.9

Ly 82.9 89.1 93.4 52.9 59.0 68.1 46.9 71.0 80.9 497 64.6 70.9
Seuclidean 83.6 89.2 93.5 53.4 59.2 69.5 47.4 71.8 80.4 50.2 64.9 72.3
Sqeuclidean 82.9 89.1 93.4 52.9 59.0 68.1 46.9 71.0 80.9 49.7 64.6 70.8
Braycurtis 80.5 96.5 97.9 3.6 17.4 56.7 4.0 30.2 91.2 3.8 20.2 69.9
Canberra 81.6 96.5 97.9 41 19.6 57.9 45 31.6 93.0 43 20.1 71.3
Correlation 79.4 96.5 97.9 3.0 15.7 49.8 3.4 25.3 95.2 3.2 17.9 61.4

I Cosine 79.7 96.5 97.9 3.6 15.7 51.4 4.0 25.8 92.6 3.8 18.3 63.4
Ly 80.0 96.5 97.9 3.6 16.7 54.6 4.0 29.0 88.6 3.8 19.9 67.3

L, 79.7 96.5 97.9 3.6 15.5 51.3 4.0 26.0 92.1 3.8 18.4 63.3
Seuclidean 79.6 96.5 97.9 2.5 15.2 51.0 2.9 26.7 93.1 2.7 18.9 62.9
Sqeuclidean 79.7 96.5 97.9 3.6 15.5 51.3 4.0 26.0 92.1 3.8 18.4 63.3
Braycurtis 95.6 98.5 99.3 16.3 46.4 85.7 5.7 17.7 62.2 9.9 26.2 67.6
Canberra 95.8 985 99.3 11.6 479 81.8 5.1 17.6 61.1 7.1 24.3 64.9
Correlation 95.3 97.9 99.3 22.5 38.0 100.0 6.6 16.5 53.6 12.2 12.2 59.2

v Cosine 953 98.0 99.3 21.1 40.0 100.0 6.6 173 58.4 12.4 25.3 64.5
Ly 95.5 983 99.3 16.3 433 100.0 6.6 16.4 59.5 9.9 24.6 65.7

L, 953 98.0 99.3 21.1 40.0 100.0 6.6 173 58.4 12.4 25.0 64.5
Seuclidean 95.4 98.2 99.3 11.6 4.4 T1.4 47 16.3 56.7 7.1 22.9 62.6

Sqgeuclidean 95.3 98.0 99.3 211 40.0 100.0 6.6 17.3 58.4 12.4 25.0 64.5




- Relatively low Precision values (averaging around 64%) suggest
that using the Brute-Force Matching method and the tested
similarity metrics contributes to the incorrect matching of tie
points, classifying them as False Positives. The spread values
differ significantly, with the worst case being 59.5% for Braycur-
tisand the best at 5.8% for Seuclidean. The second-best distance
metric is Canberra, with a Precision value of 39.3%.

- The median Recall values, averaging around 64%, indicate that
approximately 36% of all positive cases were not recognised,
with about 36% omitted as False Negatives. The spread values
are significantly lower than those for Precision, ranging from
£40.8% (L2) to 49.5% (Braycurtis), not considering the results
obtained for Seuclidean (7.4%).

- Evaluating the F1-score values (the harmonic mean of Precision
and Recall), the spread of these values ranged from 29.3% for
Canberra to 44.9% for Braycurtis. The highest median value
was obtained for Seuclidean at 67.2%, while the lowest was for
L2 at 56.2%.

Evaluating the values obtained for Test Site II (characterised by
simple geometry but featuring wall paintings that create a three-
dimensional effect), it can be observed that there is an average
decrease of 8% in the median Accuracy values, similar median val-
ues for Precision, and an increase in Recall and F1-score compared
to the results for Test Site I. Analysing the individual values, it can
be stated that:

+ The highest median Accuracy value was obtained for Braycurtis
(89.9%), while the lowest was for Correlation (88.8%) — these
are insignificant differences. The average spread values were
9.9%, with a minimum of 8.8% for Canberra and a maximum
of 10.8% for Correlation.

- Similar to the Precision values obtained for Test Site I, the aver-
age median values were around 60% (approximately 64% for
Test Site I). The spread between the maximum and minimum
values was smaller than that for Test Site I, ranging from 14.4%
t0 16.0% for Correlation and Seuclidean, respectively.

- Similar to the precision values, the average median Recall value
was also 8% higher than that of Test Site I, which stood at 72%.
This indicates that for point clouds acquired from greater dis-
tances than those for Test Site  and with more minor changes in
the heights of the scanner positions, it was possible to detect a
more significant number of positive cases, including False Neg-
atives (FN). Analysing the spread values, it can be observed that
they range from 29.9% for Canberra to 34.0% for Cosine. The
maximum value of 74.5% was obtained for Braycurtis, while
the lowest was for Correlation at 70.0%. This is a 12% increase
compared to the values obtained for Test Site I.

- For F1-score values, compared to Test Site I, the difference
between the minimum (63.5% — Correlation) and maximum
(65.3% — Bray-Curtis) values, as well as the spread values
(19.9% — L, and 22.0% — Seuclidean), is relatively small but
still observable. This indicates better effectiveness in determin-
ing tie points for point clouds acquired over a full angular range.
It applies particularly to scanner positions that measure from
greater distances and at smaller angles relative to the surface
normal, reducing the impact of distortions in spherical images
caused by converting point clouds into raster form.

In the case of Test Site III (office room), with scanner positions
placed near walls, significantly lower Precision, Recall, and F1-
score values were observed compared to Test Sites I and II:

- The average Accuracy values were 96.5%, with the spread rang-
ing from 16.3% for Canberra to 18.5% for Correlation.

- Incontrast to the previous Test Sites, the average median values
are about four times lower, averaging only 16.4%. The differ-
ences between the maximum and minimum values are similar
to those obtained for Test Site I, amounting to 46.8% for Corre-
lation and 53.8% for Canberra, respectively.
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- Evaluating the Recall results, it should be noted that for point
clouds acquired close to walls and for which sections were
scanned at acute angles, potential tie points were incorrectly
detected during descriptor matching using various distance
metrics. This resulted in instability, as seen in significant dif-
ferences between the minimum and maximum values (84.6—
91.7%) and the average median value (27.6%) across all the
metrics. This instability may also have been influenced by the
low texture quality of the object, which made the descriptors
repetitive and thus impacted the accuracy of descriptor match-
ing.

- Evaluating the F1-score values reveals an average threefold de-
crease compared to Test Sites I and I and reduced stability in
point detection (values ranging from 58.2% to 67.1%). This is
due to the placement of scanner positions relative to the walls
and the characteristics of the Test Field itself, which contributes
to the distortion effect on spherical images. This relationship
was demonstrated in analyses of synthetic data. The best re-
sults (highest median F1-score) were obtained for Braycurtis at
20.2%, while the worst ones were for Correlation at 17.9%.

Test Site IV (an empty shop in a shopping mall) was charac-
terised by the flat, textureless surfaces of the measured site and had
characteristics similar to those of Test Site III. The difference lies in
the scanner position and the chosen scanning resolution. In the case
of Test Site III (as mentioned earlier), the scanner positions were
placed close to the walls. Due to Test Site IV’s dimensions, deter-
mining the positions farther from the walls was possible, resulting
in less significant distortion in the spherical images compared to
Test Site III. This is seen in the values presented in Table 2:

- The average median Accuracy values are 1.7% higher than for
Test Site I1I, with 98.5% for Braycurtis and 97.9% for Correlation.
The spread values are approximately 4.7 times as small, ranging
from 3.5% (Canberra) to 4.0% (Cosine).

- For Precision values, the average median values are approxi-
mately 2.5 times as high as for Test Site III, with minimum
and maximum values of 38.0% for Correlation and 47.9% for
Canberra, respectively. The spread for Test Site IV is more signif-
icant than for Test Site III's, ranging from 59.8% for Seuclidean
to 83.7% for L.

- Assessing the Recall values shows lower values than for Test
Site I11. This indicates that many points are incorrectly matched
as False Negatives. The average median value is 17.1% across
all the distance metrics, with individual methods ranging from
16.3% for Seuclidean to 17.5% for Braycurtis. Evaluating the
spread from minimum to maximum values reveals that it is, on
average, about 36% smaller, amounting to 47.0% and 56.5% for
Correlation and Braycurtis, respectively.

- For F1-score values, a slight improvement of around 8% is
observed compared to the results obtained for Test Site III.
Analysing the individual values shows that the minimum and
maximum median F1-score values were obtained for Seuclidean
(22.8%) and Braycurtis (26.1%). However, it should be empha-
sised that these values are low and indicate ineffective detection
and accurate matching of tie points. There are many points for
which counterparts in the registered point cloud were not found,
or these values were incorrectly matched. This is also evident in
the spread values between the maximum and minimum values,
which are 47.0% for Correlation and 57.8% for Canberra.

In summary, when selecting the best distance metric based on
the values of Accuracy, Precision, Recall, and F1-score (without
considering the number of points, their distribution, or the correct-
ness of pairwise registration), two cases of point clouds should be
considered separately: (1) point clouds of objects with good texture
(significant differences in grayscale gradient values) and numerous
architectural details (Test Sites I and II), and (2) point clouds of
objects characterised by simple geometry and textureless surfaces
(Test Sites III and IV).
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- Comparing both cases, it can be observed that F1-score values
are significantly higher for case 1 than case 2, although they still
remain low. Assessing the Accuracy, Recall, and Precision val-
ues for case 1, it can be concluded that most points are classified
as negative cases (a high percentage of True Negatives), which
increases Accuracy but does not reflect the effectiveness in de-
tecting all possible tie points. Precision and Recall indicators are
not high due to False Positives and False Negatives, indicating
that there may be difficulties in recognising the positive class
during descriptor matching. Using spherical images at full scan-
ning resolution (360° — Test Site II) increases the values of all
the statistical metrics. After analysing the results presented for
case 1, it is recommended that the L;-norm be used.

- Evaluating the values for case 2, it should be emphasised that
all indicator values are low. This is due to minimal changes in
grayscale gradient values and incorrect descriptor matching
when using various distance metrics. Another factor contribut-
ing to the lower Precision values is the distance between TLS
positions and measured object sections and the acute angles
relative to scanning to the normal vectors of measured surfaces,
leading to significant spherical image distortion (Test Site III).
For this reason, when using this method for tie point detection,
one should bear in mind that many points may not be correctly
matched. For the alignment of point clouds with poor texture
and few architectural details, it is recommended to use the Bray-
curtis distance metric.

5 Discussion and summary

The research focused on examining the influence of selecting dis-
tance metrics during the descriptor matching stage in the TLS-SfM
method on the accuracy of point cloud registration. For the analysis,
commonly used distance metrics were selected, namely Barycurtis,
Canberra, Correlation, Coine, L, L,, Seuclidean and Sqgeuclidean,
which are utilised in machine learning.

Initial tests on synthetic data revealed challenges in detecting
and matching keypoints on point clouds converted to the raster
form, with major issues emerging from input data quality and ef-
fects of 3D-to-2D transformations, particularly in the TLS-SfM
process. These issues include intensity deviations caused by mea-
surement angles relative to the surface normal vector, scanning
distance, material properties, and substantial geometric distortions
at high angles, significantly affecting the upper and lower sections
of rasters. These distortions impact the number and spatial distri-
bution of detected tie points, necessitating simulations that apply
Gaussian noise to represent intensity variation and virtual images to
replicate radial distortion, rotation, and tilt. The analysis indicated
that image rotation angles and skew greatly influenced tie-point
accuracy, whereas intensity deviations had minimal effect. Further
examination showed that raster fragments scanned at high angles
or close distances could exhibit distortions and rotations, under-
scoring the need for joint consideration of these factors. Using the
Canberra measure resulted in nearly perfect descriptor matching
accuracy, suggesting that minor rotations are negligible when em-
ploying this measure, with other measures also achieving over 95%
accuracy. These results highlight the importance of countering geo-
metric distortion and rotation to ensure reliable keypoint detection,
especially when scanning at close range or acute angles.

The experiments on real data were conducted at two types of
test sites located in cultural heritage buildings and public utility
facilities, allowing an independent analysis of data characterised
by various architectural details, colours, and complex geometric
features. Using these two types of test fields enabled an indepen-
dent study of the impact of distance measurement selection on the
accuracy of point cloud registration and the completeness of the
entire process. For this reason, each type of test site was evalu-
ated separately, and Table 3 presents a summary of the usefulness
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evaluation criteria, rated on a scale from 1 to 8. The individual ob-
servations were weighted to assess and differentiate the impact of
individual components on the final evaluation and selection of the
best distance metrics. The experiments resulted in the following
conclusions:

- Research indicates that, despite the low values obtained for
F1-score, Accuracy, Precision, and Recall, using the TLS-SfM
method enables the correct orientation of point clouds. The
achieved registration accuracy (comparable to the commonly
used Target-based method), point distribution (lower impact),
and pairwise registration allow complete TLS data registration.

- Atwo-stage approach could solve the issue of low F1-score, accu-
racy, precision, and recall. In the first stage, it is recommended
to use the pairwise registration method to obtain the orientation
parameters of the point clouds. In the next stage, using the k-
NN method, the remaining tie points with correspondences in
both datasets should be identified, and a final bundle adjustment
should be performed based on them.

- Acomprehensive analysis of the results (without considering the
division into specific types of test fields characterised by varying
geometric complexity, different textures, and scanner position
distributions) indicates that the best results were obtained with
the L; and Sqeuclidean methods. At the same time, the worst
result was achieved with the Canberra method.

- Evaluating the differences in the total sum of points, it can be
observed that more minor differences are noticeable for test
fields with short baselines between TLS positions (Test Sites
II and IIT) compared to those with larger baselines (Test Sites I
and IV).

« Test SiteI(theinterior of a historical building) was characterised
by complex geometry, many gilded elements, and architectural
details, which contributed to a well-defined texture in the gen-
erated spherical images. The registered point clouds were cap-
tured at significantly different heights (with height differences
between pairs of point clouds ranging from 0.1 m to 2.8 m), and
the same sections were scanned at notably different, acute an-
gles relative to the surface normal, resulting in various image
distortions (not in full 360° resolution). For this scanner setup
and test field type, the overall best results were obtained using
the L, -norm and Sgeuclidean methods, while the worst were
achieved with Sececlidean. It should be noted, however, that
only the Braycurtis method enabled full registration of all point
clouds. However, with this method, the registration error was
approximately three times as high as with the state-of-the-art
Target-based approach using signalised check points. When
evaluating the error values for the other approaches, it can be
stated that the RMSE values were approximately twice as high
as those for the target-based approach. However, they did not
exceed 5 mm, which makes this solution acceptable.

- Test Site II, like Test Site I, is the interior of a cultural heritage
object; however, unlike Test Site [, it features simple geometry.
The walls were decorated with paintings that imitate a spatial
illusion effect, and the point clouds were captured at similar
heights. The point clouds were acquired in full angular resolu-
tion, resulting in only selected sections being scanned from close
distances (with acute angles relative to the wall’s normal plane
vector). In contrast, the remaining areas were scanned from sig-
nificantly longer distances. This setup led to notable distortions
only in certain sections of the generated spherical images. This
relationship results in only slight differences in the outcomes
of point cloud alignment when using different distance metrics.
All the methods allowed the process to be conducted accurately
for pairwise and full registration. The differences are noticeable
only in the RMSE values. For all the methods except Braycurtis,
RMSE values did not exceed 2.5 mm, while for Braycurtis, RMSE
was approximately 3.0 mm, compared to about 1.5 mm for the
Target-based approach. When processing such interiors, one
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Table 3. Summary of the evaluation criteria for point detection algorithms across all the Test Sites, rated on a scale from 1 to 8
Test Evaluation Criteria Final
Site Method Completeness Completeness RMSE Deviations Deviations Deviations Point ML sta- Total Ranking
of pairwise ~ of fullregis-  onsig- on on on distri- tistical
registra- tration nalised marked marked marked bution analy-
tion check check check check sis
points points — points —  points —
X-axis Y-axis Z-axis
Weight 3 5 4 3 3 3 3 1 25
Cultural Heritage Interiors
Braycurtis 3 6 5 3 3 3 8 2 4.5 VI
Canberra 4 4 8 5 7 7 5 4 5.6 111
Correlation 3 3 7 7 7 7 5 2 53 v
I Cosine 2 3 7 6 5 5 5 2 4.6 A%
Ly 5 5 7 7 8 8 5 4 6.2 I
L, 2 3 7 6 7 7 5 2 5.0 VII
Seuclidean 1 1 8 8 6 6 1 2 4.2 VIII
Sqeuclidean 4 5 7 6 7 7 5 3 5.7 I
Braycurtis 8 8 6 5 8 8 6 A 6.9 A%
Canberra 8 8 7 5 6 6 7 4 6.7 VI
Correlation 8 8 7 8 7 7 6 A 7.2 I
I Cosine 8 8 7 6 7 7 6 4 7.0 v
Ly 8 8 7 8 7 7 6 A 7.2 II
L, 8 8 7 7 5 5 6 4 6.6 VII
Seuclidean 8 8 7 7 8 8 6 4 7.3 I
Sqeuclidean 8 8 7 7 5 5 6 4 6.6 VIII
Public Utilities Interiors
Braycurtis 7 8 7 6 6 7 7 4 6.8 \%
Canberra 5 8 7 6 6 6 6 4 6.4 VIII
Correlation 6 8 8 6 6 7 7 3 6.8 \%
I Cosine 6 8 8 6 7 7 7 3 7.0 v
Ly 8 8 8 8 8 7 7 3 7.6 I
L, 6 8 8 7 7 7 7 3 71 I
Seuclidean 7 8 7 7 6 6 6 3 6.7 VII
Sqeuclidean 6 8 8 6 8 7 7 3 7.1 I
Braycurtis 5 6 4 3 6 5 5 4 4.9 VII
Canberra 3 3 3 5 6 5 5 4 41 VIII
Correlation 4 5 4 4 7 7 7 2 5.2 VI
v Cosine 7 6 5 4 7 7 7 4 6.0 111
Ly 8 8 4 3 6 5 5 4 5.6 \
L, 6 6 6 4 7 7 7 4 6.0 111
Seuclidean 7 7 3 3 8 8 8 4 6.1 I
Sqeuclidean 7 7 6 4 7 7 7 4 6.4 I
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could conclude that the choice of distance metrics does not sig-
nificantly impact the accuracy and completeness of TLS point
cloud registration.

« Test Site III is an office space with smooth-textured walls,
ceiling-mounted lamps, electrical wiring, and a dark carpeted
floor. Due to the office dimensions, the scanner positions were
placed close to all walls. This resulted in acute scanning angles
relative to the walls’ normal planes and significant changes in
intensity and distortions in the spherical images. However, the
differences in the total scores for the individual distance met-
rics are negligible due to the short scanning distances and full
angular resolution, similar to Test Site II. Analysing pairwise
registration, it can be observed that the difference in the num-
ber of correctly matched values between the worst (Canberra)
and the best (Correlation and Euclidean) metrics is only 3 pairs.
This does not affect the completeness of the full registration.
By evaluating the RMSE values linearly, it can be seen that for
all approaches, except for Barycurtis and Canberra, the RMSE
values do not exceed 2 mm. At the same time, for the two met-
rics mentioned above, it is 2.5 mm. Comparing this with the
results from Target-based, which is 1 mm, it can be concluded
that using all of these distance metrics, it is possible to perform
fully automated TLS point cloud registration correctly.

Test Site VI was the “Empty Shopping Mall” consisting of

smooth walls, a concrete floor, overhead lighting, visible electric

wires, and an air-conditioning system. Due to the dimensions
and shape of the room, the TLS positions were placed further
from the walls, and there were relatively long baselines between
the individual positions. All point clouds were acquired at ap-
proximately the same height. It should be emphasised, however,
that the scanning resolution was twice as low as that for the
point clouds obtained from Test Sites II and III. Selecting the
appropriate distance metric is crucial for this arrangement of

TLS stations and the type of object being measured. It influ-

ences the number of correctly matched pairwise registrations.

The best results were obtained with the L, -norm, Sqeuclidean,

L, Seuclidean, and Cosine metrics, which directly impact the

quality and accuracy of the full registration. This is evident in

the linear RMSE error values, which for L, -norm, Cosine, and

Sqeuclidean did not exceed 11 mm, being approximately twice as

high as those for the Target-based method. However, consider-

ing the adopted scanning resolution (12.1 mm / 10 m), it can be
concluded that the process was correctly done for the methods
mentioned above.

- In summary, based on the values obtained for the two groups of
point clouds — cultural heritage objects characterised by good
texture (with significant grayscale gradient variations) and nu-
merous architectural details and public utility objects with sim-
ple geometry and textureless surfaces — it is recommended to
use L;-norm and Sqgeuclidean distance metrics, respectively,
during pairwise registration.

Future research will focus on analysing the selection of distance
metrics for point cloud alignment performed outdoors, as well as
examining the impact of descriptor selection on the accuracy and
completeness of TLS point cloud registration using the TLS-SfM
method.
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