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Abstract
Advanced measurement techniques, such as Terrestrial Laser Scanning (TLS), play a vital role in documenting cultural heritageand civil engineering structures. A key aspect of these applications is the accurate registration of point clouds. Conventional TLSmethods often rely on manual or semi-automated correspondence detection, which can be inefficient for large or complex objects.Structure-from-Motion Terrestrial Laser Scanning (SfM-TLS) offers an alternative methodology, comprising two primary phases:correspondence search and incremental reconstruction. Descriptor matching in SfM-TLS typically employs the L2 norm tomeasure Euclidean distances between features, valued for its simplicity and compatibility with algorithms like SIFT. This studyinvestigates the influence of various distance metrics on descriptor matching during the correspondence search stage of SfM-TLS.Eight metrics were analysed: Bray-Curtis, Canberra, Correlation, Cosine, L1, L2, Squared Euclidean, and Standardised Euclidean.Synthetic data experiments highlighted challenges in keypoint detection and matching due to measurement angles, materialcharacteristics, and 3D-to-2D transformations. Simulations incorporating Gaussian noise demonstrated that image rotation andskew significantly affected tie-point accuracy, more so than variations in intensity. In field applications involving cultural heritagesites and building interiors, the L1 and Squared Euclidean metrics yielded higher accuracy, while the Canberra metricunderperformed. Metric selection was found to have a greater impact on complex geometries, such as historical structures,compared to simpler forms. Consequently, this study recommends the L1 and Squared Euclidean metrics for pairwise SfM-TLSregistration, as they exhibit robustness in maintaining high accuracy and completeness across a variety of architectural scenarios.
Key words: distance metrics, descriptor matching, pairwise TLS registration, cultural heritage, public utilities

1 Introduction

Nowadays, one of the most important measurement techniquesused in the inventory and measurement of architecture (Abbateet al., 2019; Arif and Essa, 2017; Giżyńska et al., 2022; Kuzyk, 2023),civil engineering, or industrial objects and sites (Kowalska andKowalczyk, 2024; Mukupa et al., 2016; Rashidi et al., 2020) is Ter-restrial Laser Scanning (TLS). It is widely applied in generatingmeasurement documentation, primarily due to its main advantages,which include, among others, accuracy in data acquisition, datadensity, automation of point measurement, and non-destructiveway of data acquisition (Grussenmeyer et al., 2012; Remondino and

Stylianidis, 2016; Tobiasz et al., 2019). The process of generatingmeasurement documentation based on TLS data is a multi-stageprocess, which includes: (1) planning scanner positions concerningthe measured object, (2) data acquisition, (3) point cloud registra-tion, and (4) generating the final documentation in the form of3D models, orthoimages, or vector drawings (Berenyi et al., 2010;Cipriani et al., 2019; Markiewicz et al., 2015; Mukupa et al., 2016;Piermattei et al., 2019; Tobiasz et al., 2019). However, one of thecritical stages determining the accuracy of the final measurementdocumentation is the point cloud registration process (Cheng et al.,2018).
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Figure 1. The Incremental SfM procedure (Bianco et al., 2018)

In general, the registration method is based on determining themathematical relationship between the registered point cloud andthe reference system corresponding to it. The number of differentTLS point cloud registration methods can be found in the litera-ture (Dong et al., 2018; Kowalska and Kowalczyk, 2024; Rashidiet al., 2020) but is generally divided into two groups, i.e. pairwiseand multi-view registration. Recent research focuses on methodsfor automatic detection and matching feature points detected onpoint clouds, mainly based on the modified Structure-from-Motion(SfM) approaches (Alba et al., 2012; Han et al., 2018; Janßen et al.,2023; Kang et al., 2009; Markiewicz, 2024; Markiewicz et al., 2023;Moussa et al., 2012; Urban and Weinmann, 2015). The SfM methodallows the determination of the relative orientation parameters be-tween an unordered group of images and three-dimensional shapereconstruction based on these images. The SfM approach is a com-plex computational process consisting of multiple stages, whichcan be generally divided into two main components: (1) correspon-dence search and (2) incremental reconstruction (Figure 1).The main idea of the Corresponding search part is to find robustand stable tie points according to the Tuytelaars and Mikolajczyktheory (Tuytelaars and Mikolajczyk, 2007). In the Feature Extractionphase, characteristic features, also named keypoints, are detectedseparately for each processing image, and the local characteristicof the image intensity gradients around each keypoint is described.Feature matching refers to finding corresponding features from twosimilar images based on similarity between descriptors. It should beemphasised that the feature matching accuracy depends on imagesimilarity, complexity, and quality. The outcome of this step is a col-lection of images with a minimum of pairwise overlap, along with acorresponding set of feature matches. At this stage, points are iden-tified and subjected to Geometric Verification and further processingin the SfM method. Geometric Verification is needed to eliminateoutliers and improve the quality of tie points and, consequently,the quality of the final image orientation. Additionally, the relativeimage orientation parameters (using the homography method) andthe 3D coordinates of tie points are determined and utilised in thefinal step – the incremental reconstruction. Incremental reconstruc-tion allows the determination of image orientation parameters withcamera calibration parameters (Karwel and Markiewicz, 2022). TheReconstruction Initialization is the crucial part because it leads to 3Dmodel quality and final accuracy of data orientation. This processbegins by selecting a pair of geometrically verified images withthe densest matches (the highest number of tie points). These im-ages provide the initial camera poses and common points, whichserve as the foundation for the reconstruction. Image registration isused to calculate the pose (position and orientation) of newly addedimages using 2D-3D correspondences and solves the Perspective-n-Point (PnP) problem, often robustly optimized with RANSAC or itsvariants. Triangulation determines the 3D coordinates of additionalpoints by leveraging epipolar constraints and solving reprojectionerrors, adding density to the point cloud. Finally, Bundle Adjust-ment (BA) refines both camera parameters and 3D points using theLevenberg-Marquardt algorithm, reducing accumulated errors.The feature-based methods used for point cloud alignment fromterrestrial laser scanning are based on a modified SfM methodknown in the literature as TLS-SfM. The main differences in the

data processing workflow are related to the type of input data andthe Geometric Verification stage. Since 2D detectors search forpoints on images, it is necessary to convert point clouds into theraster form. This is typically done by applying cartographic pro-jections, for example, to create spherical images, where grayscalevalues of pixels are interpolated based on the intensity of laser beamreflection or the colour assigned to the point cloud. A depth map orX, Y, and Z coordinate maps are assigned for these spherical images,enabling the calculation of corresponding 3D coordinates in thepoint cloud based on detected 2D coordinates in the image. Anotherdifference compared to the classical SfM method is the choice of therelative orientation model used during the geometrical verificationstage. This method uses the 2D coordinates of point pairs detectedduring the descriptor-matching stage and the homography model.For the TLS-SfM method, a 6-parameter 3D transformation andthe 3D coordinates of point pairs detected during the descriptormatching stage are used. Articles Markiewicz (2024); Markiewiczet al. (2023) detailed the TLS-SfM method and the individual dataprocessing stages.This article is a continuation of previous work (Markiewicz,2024; Markiewicz et al., 2023), in which the TLS-SfM method waspresented, and studies were conducted on the impact of detectorselection on the accuracy and completeness of TLS point cloudregistration. Most studies related to TLS point cloud registrationbased on a modified SfM method typically utilised the L2 norm(Alba et al., 2012; Markiewicz, 2024; Moussa et al., 2012; Urbanand Weinmann, 2015) or metrics similar to the L2 norm during thedescriptor-matching stage (Janßen et al., 2023). The choice of thisnorm is associated with the fundamental algorithm for keypoint de-tection and matching, which is based on the SIFT algorithm (Lowe,2004). In this article, different strategies for similarity computa-tion (Barycurtis, Canberra, Correlation, Coine, L1, L2, Seuclidean,Sqeuclidean) in the descriptor matching were presented, as well asassets’ influence on the final registration accuracy.As Test Sites, point clouds of interiors of buildings with histori-cal surfaces of a decorative structure and interiors of public utilities(an office and an empty shop in a shopping mall) were chosen. Thecommonly used target-based registration method was comparedwith the proposed method.This paper is divided into five main sections. Section 2 describesthe descriptor matching methods. Section 3 describes the test sites,approach, and data analysis method. In Section 4, the results of thedescriptor-matching assessments are summarised. In the conclu-sion (Section 5), future work is proposed, and the possibilities andlimitations of matching approaches are summarised.

2 Feature matching

Feature matching, or generally image matching, is fundamentalin many computer vision applications, namely image orientation,camera calibration, object recognition or tracking. The main idea ofthis approach is to establish correspondence between two images orfeatures of the same scene. A common approach to feature matching(a part of the SfM’s corresponding search phase) consists of a setof features, also named keypoints and the assignment of the local
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characteristic of the image intensity (description part). The feature-extraction part is performed on each image separately and basedon the algorithms and methods which detect features invariantto image translation, scaling, and rotation, partially invariant toillumination changes, and robust to local geometric distortion suchas SIFT (Bay et al., 2006; Harris and Stephens, 1988; Moussa et al.,2012; Tuytelaars and Mikolajczyk, 2007). Each detected featureis analysed for gradient change based on its nearest neighbour toassign unique features. In literature, many descriptors exist, suchas SIFT, SURF or DAISY (Bay et al., 2006; Lowe, 2004; Tola et al.,2010). The SIFT (used in this investigation) descriptor’s main ideais to calculate local image gradients at a selected scale around theregion’s key point under study. The descriptor’s work is basedon analysing histograms of 4×4 pixel neighbourhood orientationswith 8 bins each. The histograms are derived from magnitudes andorientations sampled in a 16×16 region around the keypoint so thatfor each histogram, a 4×4 subregion of the original neighbourhoodregion is sampled. The magnitude and orientations of the imagegradient are probed around the location of the keypoint, using thescale of the keypoint to select the image. To obtain orientationinvariance, the descriptor coordinates and gradient orientations arerotated relative to the keypoint orientation (Karwel and Markiewicz,2022).Once the feature vector is obtained, the next stage of determin-ing tie points on image pairs is the relative matching of keypoints.This is typically performed using a similarity measure for featurevectors. One of the simplest methods is based on the Brute-ForceMatching algorithm. In this approach, a descriptor from one fea-ture in the first set is compared to all features in the second setusing distance calculations. The closest feature is then returned.This expansive solution guarantees getting the solution, but itdoes not guarantee that it will be optimal. Another more sophis-ticated approach is a FLAN-based matcher (Fast Library for Ap-proximate Nearest Neighbours) that utilises a k-dimensional tree,a space-partitioning data structure used in computer science toorganise points in a k-dimensional space. This method is basedon the t-nearest neighbour search in large datasets and for high-dimensional features (OpenCV, 2018).In data science, especially in Machine Learning, the similaritymeasure determines how data samples are related or close to eachother. The similarity measure is usually expressed as a numericalvalue that allows it to assess whether it is correlated. Generally, forsimilarity function value analysis, it can be assumed that largervalues indicate more significant similarity, while in distance func-tions, smaller values indicate more significant similarity (Aggarwalet al., 2015). Choosing a distance metric significantly influencesthe quality and correctness of description matching and tie pointquality. Therefore, selecting the correct metric distance affects thefinal quality of image matching and TLS point cloud registration.
2.1 Ln norm – Minkowski distance

One of the most commonly used distance methods for quantita-tive data matching is the Ln norm between two vectors of data,respectively. X = (x1, x2, . . . , xs) and Y = (y1, y2, . . . , ys), which isdetermined by the following equation:
Distance(X, Y) = ( s∑

i=1
∣∣xi – yi∣∣p) 1p . (1)

One commonly used Ln norm is L2 also called the Euclidean dis-tance method. This particular case derives its intuition from spatialapplication, where it has a physical interpretation. The main prop-erty of the Euclidean distance is the invitation of rotation, which iscrucial, especially in the description matching case. The Manhat-tan distance, also known as Taxicab, Block Distance and L1 norm,calculates the distance between two real-valued vectors and the

sum of the absolute differences between two vectors.The L1 norm distance offers advantages such as robustnessagainst outliers, encouragement of sparse solutions, geometric in-terpretability, and support for feature selection. However, it alsocomes with drawbacks, including a lack of smoothness, potentialmultiple solutions in the presence of correlated data, sensitivityto scaling, inefficiency for non-sparse data, and limited insightinto relationships among non-zero coefficients. The L2 norm dis-tance has several advantages, including being differentiable at allpoints, making optimisation smoother; showing less sensitivityto outliers compared to the L1 norm; yielding a unique solutionin most cases, even with correlated data; being more efficient fornon-sparse data; and capturing relationships between non-zerocoefficients. However, it also has disadvantages, such as potentiallyweaker promotion of sparsity compared to the L1 norm, sensitivityto feature scaling, a less intuitive geometric interpretation, andpotential performance issues with datasets containing outliers.In some cases, when the weight of some features is more impor-tant than others, it is possible to apply the weight of the featuresdifferently if domain-specific knowledge about the relative impor-tance of different features is available. The generalised Minkowskidistance (Eq. 1) is extended with the weight:
Distance(X, Y) = ( s∑

i=1
ai · ∣∣xi – yi∣∣p) 1p . (2)

2.2 Normalized L1 and L2 norms

The normalised versions of the L1 and L2 norms are the fundamentalmetrics in the least square problems, linear algebra and MachineLearning applications. Applying normalised L1 norm is also calledMean-Squared Error (MSE) (Eq. 3). The MSE is sensitive to thelarge outliers and allows for assets the quality of matching.

Distance(X, Y) = 1s
s∑

i=1
∣∣xi – yi∣∣2 (3)

Another weighted method applied for L1 is Bray-Cutris (alsoknown as Braycurtis) distance (Eq. 4). It is often used for datascattered around an origin, as it is biased for measures aroundthe origin and very sensitive for values close to zero (math.net,2024). Compared to the L1 norm, it is more robust regarding outlierinfluence.

Distance(X, Y) = s∑
i=1

∣∣xi – yi∣∣∣∣xi + yi∣∣ (4)

The Braycurtis distance measure is advantageous for capturingrelative abundances and handling sparse data effectively, but it canbe sensitive to dominant species’ influence and scaling differences.The standardised Euclidean distance, also known as the “Seu-clidean” distance, can measure the dissimilarity between datapoints while accounting for feature scaling:

Distance(X, Y) =
√√√√ 1s

s∑
i=1

∣∣xi – yi∣∣2, (5)

where s is a 1-D array of component variances, it is usually com-puted among a larger collection of vectors.This distance metric is advantageous as it normalises the databy dividing the squared differences between coordinates by the vari-ances of each dimension. This normalisation process allows fairercomparisons among features with different scales, preventing fea-tures with larger ranges from dominating the distance calculation.
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However, while addressing scaling issues, the seuclidean distancemay still be sensitive to outliers or skewed distributions. It is advan-tageous when working with data where feature scales vary widely,helping to provide a more accurate representation of dissimilaritywhile considering the characteristics of individual features.The squared Euclidean distance, often abbreviated as “sqeu-clidean” distance, is a distance metric used to quantify the dis-similarity between two points in a multi-dimensional space. It iscalculated by taking the sum of the squared differences betweenthe corresponding coordinates of the two points:
Distance(X, Y) = s s∑

i=1
∣∣xi – yi∣∣2 , (6)

where s is the weight for each value in u and v. Default is None,which gives each value a weight of 1.0.This distance metric is advantageous for various applicationsdue to its simplicity and computational efficiency. However, it canbe sensitive to differences in the magnitudes of features, potentiallyleading to biased results when dealing with data with varying scales.Despite this limitation, the squared Euclidean distance remains apopular choice in various fields for its ease of calculation and abilityto capture differences between points based on their coordinates.
2.3 Canberra distance

The Canberra distance is a quantitative measure to gauge dissimi-larity between two sets of numerical attributes. It calculates diver-gence by summing the absolute differences between correspondingattributes in both sets and then normalising by summating theirabsolute magnitudes:
Distance(X, Y) = s∑

i=1
∣∣xi – yi∣∣∣∣xi∣∣ + ∣∣yi∣∣ . (7)

This property makes it particularly suitable for data with vary-ing scales. An advantage lies in its ability to capture both attributemagnitude and direction. Yet, this sensitivity can lead to undueinfluence from attributes with higher magnitudes, potentially dis-torting outcomes.
2.4 Cosine distance

The cosine similarity is defined as a cosine of angles between vectorsof data, respectively X = (x1, x2, . . . , xs) and Y = (y1, y2, . . . , ys),which is the dot product of the vector divided by its length:
Cosine similarity(X, Y) = cos (θ) = dot(X, Y)∥∥∥X∥∥∥∥∥∥Y∥∥∥

=
∑si=1 xi ∗ yi√∑si=1 x2i

√∑si=1 yx2i
Distance(X, Y) = 1 – Cosine similarity(X, Y)

(8)

The cosine similarity value is always ranges between [-1, 1]. If thevalue is equal to 1, two analysed vectors are similar; if the value isequal to 0, those vectors are orthogonal, and if it is -1, the vectorsare negative. However, cosine similarity is mainly used in positivespaces, where outcomes are between [0,1]. Cosine distance (andsimilarity) is generally used as a metric for measuring distancewhen the magnitude of the vector does not play a key role. The mainadvantage of the cosine similarity is the low complexity, especiallyfor sparse vectors.

2.5 Pearson Correlation distance

Another commonly used distance metric is based on the correlationcoefficient. In principle, it allows determination of the strength ofthe relationship between two sets of numerical attributes. The co-variance value is used to calculate the value of this distance metric:
Correlation similarity(X, Y) = Covariance(X, Y)√Variance(X)√Variance(Y)

=
∑si=1(xi – 1s ∑si=1 xi)(yi – 1s ∑si=1 yi)√∑si=1(x2i – 1s ∑si=1 xi)√∑si=1(y2i – 1s ∑si=1 yi)

Distance(X, Y) = 1 – Cosine similarity(X, Y)
(9)The correlation similarity value always is between [-1, 1]. Sim-ilarly to the cosine similarity, it is assumed that values close to 1indicate that the vectors are similar, values of 0 indicate no similar-ity, and values of -1 represent negative correlation. For this reason(as in the case of cosine similarity), the similarity values from therange [0,1] are used. The main advantages of cosine similarity arethe straightforward interpretation of results, ease of calculation,and the ability to indicate whether there is a relationship betweenvectors and assess the quality of that relationship. Despite theseadvantages, the primary limitation of this similarity measure is itssensitivity to outliers.

3 Materials and methods

3.1 The overview of the approach

This research examined the impact of selecting distance metricsduring the feature-matching stage for automatic TLS point cloudregistration. For this purpose, the TLS-SfM method (Markiewiczet al., 2023), a multi-stage solution applied for point cloud regis-tration, was used. It is based on the original software that utilisedthe OpenCV (OpenCV, 2018), NumPy (NumPy, 2024), SciPy (SciPy,2024) libraries, and the Author’s algorithms and methods. It con-sists of (1) data conversion from RAW point clouds into the rasterform in the spherical projection with depth map (Markiewicz et al.,2023), (2) detection features by SIFT algorithm (Lowe, 2004), (3)descript detected keypoints by SIFT descriptor (Lowe, 2004), de-scriptor matching with Brute-Force Matching with the followingdistance measures: Barycurtis, Canberra, Correlation, Coine, L1,L2, Seuclidean, Sqeuclidean, (4) TLS pair co-registration with geo-metrical verification, (5) multiple-pair matching and (6) bundleadjustment (Figure 2).The simulated data (Section 4.1) and real-world data (Section4.2) were used to evaluate the selection of distance metrics dur-ing the feature-matching stage. To perform a complete analysisof the applying the strategy for feature matching, the followingparameters were assets:
1. Data registration’s completeness determines the distancemetrics’ robustness in the feature matching step. It is understoodas the ability to register all pair scans with each other and deter-mine the robustness and effectiveness of using specific metricdistance in feature matching.2. The number of correctly matched keypoints for a pair of TLSpoint clouds directly impacts the robustness, accuracy, and com-pleteness of the TLS point cloud registration process (TP). At thesame time, it also defines the effectiveness of distance metricsduring the feature registration stage.3. The number of incorrectly matched keypoints for a pair ofpoint clouds that have correspondence to the second dataset (FP).4. The number of correctly defined keypoints for which nomatching points were found in the second dataset (TN).5. The number of keypoints for which the correspondence on
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Figure 2. The diagram of the performed research

the second point cloud was found, but this prediction is incorrect(FN).6. The accuracy parameter is used to measure how well data arematched. The accuracy is the proportion of correct predictions(both true positives and true negatives) among the total numberof cases examined:
Accuracy = TP + TNTP + TN + FP + FN (10)

where TP is true positive, TN is true negative, FP is false positive,and FN is false negative.7. The precision determines how close the measurements are toeach other. It is also defined as the proportion of true positives toall positive predictions, including false positives and true positives(also known as positive predictive value):
Precision = TPTP + FP (11)

8. The sensitivity (also known as Recall) determines the abilityto identify points correctly. A high sensitivity means that morepoints are correctly detected, while a low sensitivity means that alot of possible pairs of points are missing:
Sensitivity = TPTP + FN (12)

9. The F1 score is an overall measure of accuracy that combinesprecision and recall. If the F1 score is good (the high values), itseems that after the matching descriptor step, a low false positiveand a low false negative exist:
F1 = 2 ·

Precision · RecallPrecision + Recall (13)
10. The Jaccard score (also known as the Intersection and Union)is used for evaluating the similarity and diversity of correct de-

tected pairs of keypoints:
Jaccard score = TPTP + FN + FP (14)

11. The Root Mean Square Error (RMSE) and Sigma Median Ab-solute Deviation (SMAD) on signalised check points were used toassess the quality of point cloud registration and comparison ofthe results obtained from different distance measurements:
RMSE =

√∑ ((xi – µ)2)
N – 1 (15)

SMAD = 1.4826 · median(∣∣xi – δ∣∣) (16)
where xi is a value in the data set; µ is the mean, N is the numberof data points, and δ is the median.

3.2 Test Sites Description

In order to verify the impact of the selection of distance measure-ments, two types of test fields were used: (1) simulated data, forwhich:
• Gaussian noise and radial distortion,• rotations and tilt were introduced,

and (2) real data (Figure 3):
• two decorated historical chambers at the Museum of King JanIII’s Palace at Wilanów (Test Site I and II),• a narrow office (Test Site III) located in the main hall of WarsawUniversity of Technology and• a shopping mall, “Serenada”, located in Krakow, Poland (TestSite IV), were selected.

The terrestrial laser scanning (TLS) data utilised in this inves-tigation were acquired with use of the two phase-shift scanninginstruments: the Z+F 5003 scanner with an angular scanning res-olution 3.2 mm/10 m (deployed at Test Site I) and the Z+F 5006hscanner with resolution respectively 3.2 mm/10 m for Test Site II,6.2 mm/10 m for Test Site III and 12 mm/10 m for Test Site IV. Thosewere acquired from different positions and heights (Figure 3). Forthe independent quality assessment, marked check points (notused for orientation parameters determination) were utilised. Ta-ble 1 provides summary information on the point clouds used inthis investigation.The selection of cultural heritage and public utility objects wascaused by the characteristics of the acquired data, which exhibitheterogeneous structural attributes and surface geometries, allow-ing for the assessment of the efficacy and quality of determiningtie points in the feature-matching steps using various distancemetrics.Test Site I is a complex geometric room with numerous orna-ments, bas-reliefs, and facets. Alongside these, lavish gold-framedmirrors, an ornamental fireplace, and suspended fabrics grace thewalls (refer to Figure 3a). In contrast to Test Site I, Test Site II doesnot contain ornaments and bas-reliefs, facets, or wall fabrics. Nev-ertheless, the walls still imitate the spatial effect due to the presenceof wall paintings, as shown in Figure 3b. Test Site III comprises anoffice space featuring a slender lobby, sleek texture-free walls, andsuspended lamps and power wires on the ceiling. Moreover, thefloor is adorned with a dark carpet (Figure 3c). Test Site IV repre-sents a standard empty retail space with untextured smooth walls.The concrete ceiling is decorated with lamps, electrical wires and asuspended air conditioner (Figure 3d).



44 | Reports on Geodesy and Geoinformatics, 2025, Vol. 119, pp. 39–61

Table 1. The list of the point clouds with parameters (Markiewicz, 2024)
Test Site name Scanner Angular resolution Point scan No. scans Avg. number of

type Horizontal Vertical resolution points per scan

I - “The Queen’s Bedroom,” in theMuseum of King Jan III’s Palace atWilanów
Z+F 5003 1 scan -360◦

5 scan -90◦
1 scan -320◦

1 scan -180◦
3.2 mm/10 m 6 1 scan – 42,308,2625 scan – 126,913,021

II - “The Chamber with a Parrot,” inthe Museum of King Jan III’s Palaceat Wilanów
Z+F 5006 360◦ 320◦ 6.3 mm/10 m 4 40,320,455

III – “The office room” in the mainhall of Warsaw University ofTechnology
Z+F 5006 360◦ 320◦ 6.3 mm/10 m 8 28,722,210

IV - “Empty Shopping Mall” Z+F 5006 360◦ 320◦ 12.1 mm/10 m 7 13,677,292

(a)

(b)

(c)

(d)

Figure 3. The point cloud in the spherical projection of: (a) Test Site I, (b) Test Site II, (c) Test Site III and (d) Test Site IV with marked points (redcircles) (Markiewicz, 2024)
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Figure 4. The Plot of the relationship between percentages correctlymatched points and sigma value (Gaussian noise distortion)for all distance metrics

4 Results and Discussion

4.1 Synthetic data analysis

To assess the impact of the (1) variance of greyscale, (2) rotationsand tilt, and (3) changes in image distortion on the quality of de-scriptor matching, synthetic data (a virtual test field) was prepared.The analysis of this abovementioned factor is a crucial step in key-point matching because changes in the intensity of the laser beamreflection depend on scanning distances and beam incidence angles,which is unusual in images.
Gaussian noise influenceThe initial investigations focused on assessing the effect of greyvariance on descriptor-matching accuracy. The 128-parameter de-scriptor (equivalent to the size of the SIFT descriptor) was preparedfor 2550 points consisting of random numbers between 0 and 1. Tosimulate the effect of grey variance, adding a Gaussian noise with asigma value between 0 and 1.09 with a step of 0.01 was decided. Thismade it possible to asset descriptor matching accuracy between theoutput descriptor and the descriptor affected by Gaussian noise.Figure 4 shows the relationship between the percentage of correctlydetected points and the sigma value for all the methods.The results presented in Figure 4 for all distance measures indi-cate that the graphs will take on an inverted distribution functiondue to the representation of the value of correctly matched pointson the graph rather than the result of incorrectly matched descrip-tors. This shows that the distance measures used for descriptorsladen only with the variance of grey degree changes in the keypointenvironment are robust to the occurrence of the image mentionedabove’s distortions. In contrast, differences are noticeable for sigmavalues, for which the fitted accuracy decreases (Figure 4).Figure 4 shows that the measure least susceptible to mismatch-ing descriptors is the correlation distance and the largest Canberra.Another distance measure to determine the tie points correctly isthe Cosine measure. For the remaining distances, i.e. L1, L2, Seu-clidean and Sqeuclidean, similar confounding effects of the sigmavalue on the correctness of the descriptor matching can be consid-ered, as this is related to the specificity of the calculation of thesemeasures.To perform statistical evaluation (based on the measures de-scribed in Section 3.1), the F1-score, Jaccard index, and accuracyvalues were assessed (Figure 5).Analysing the F1-score (Figure 5a) and Jaccard (Figure 5b) val-ues, it can be seen that the shape of the approximation curves issimilar to the curves shown in Figure 4. The only difference occursfor sigma values (the value on the x-axis shifted to the left rela-tive to the original data), for which there is a significant decreasein the percentage correctness of the descriptor matching. When

analysing the F1-score values for Canberra, it can be observed thata significant impact of variance intensity (Gaussian noise distor-tion) leads to a rapid decline in value. This indicates that using thismatching metric results in low sensitivity (a high number of falsenegatives) and low precision (false positives). The highest inde-pendence of variance intensity (for the highest value of the sigmaparameter) was obtained for correlation. The other values havesimilar magnitudes and comparable distributions. When evaluat-ing Jaccard values, which do not account for True Negative values(unlike the F1-score), a similar trend can be observed as with theF1-score. This confirms that the number of false positives andfalse negatives is relatively low. The accuracy values (Figure 5c)approximately follow a Gaussian distribution, but differences canbe seen in the peak height of the graph (y-axis) and the sigmavalues (x-axis). For the Barycurtis and L2 measures, the lowestaccuracy values were less than 10 per cent, and for sigma values,they were around 0.4. For the second group of distances, i.e. Cosine,L1, Seuclidean and Sqeculidean, the accuracy values were around15 per cent for sigma values between 0.45 and 0.5. For the Canberrameasure, the lowest accuracy of 20% was the highest of the lowestaccuracies obtained from all the measures. Still, it should be notedthat descriptor matching using this measure is the least robust tothe occurrence of Gaussian noise in the descriptors. The correlationmeasure had the second-highest accuracy, with the highest degreeof noise robustness.
Distortion effect influenceOne of the most common distortions of spherical images resultsfrom the conversion of point clouds to the raster form, based onthe cartographic transformation that converts data from 3D to 2D.For this reason, it is essential to know how this distortion affectsthe choice of descriptor distance measurement. This translates intothe correctness of detection and matching and the number anddistribution of tie points. For this purpose, a simulation of radialdistortion for both the “barrel” and the “pincushion” distortioncases was performed. Figures 6a and 6c show examples of thedistorted images used in the analyses.The distribution of the percentage of correctly matched points(Figure 6d) is symmetrical to 0 (the original image), which indi-cates that the effect of the “barrel” and the “pincushion” distortionon the accuracy of descriptor matching is the same, and the dis-tribution resembles the graph of a homographic function. Thesedistributions show that the highest percentage of correctly matchedpoints was achieved with the Canberra distance measure. The val-ues of the other measures are similar but, on average, about 10%lower than those of the Canberra distance measure.Analysing the effect of distortion on descriptor-matching ac-curacy reveals that all the methods are susceptible to its impact.This is shown in the low F1-score and Jaccard values, which forCosine distance (the best-performing method) are 65% and 50%,respectively. Analysing the individual values for distance metricsreveals two distinct groups: those associated with the L1, L2 norms,Sececlidean, and Sqeuclidean, and those associated with Braycurtis,Canberra, Correlation, and Cosine (Figure 7a and 7b). Evaluatingthe results obtained for the first group of distance metrics indicatesthat they have similar values, differing by an average of about 1%and from Canberra by around 5%. Assessing the second group ofdistances reveals that they are higher, averaging around 5%. Thebest results were obtained with the Cosine method (directly relatedto the calculation method of this metric), while the worst resultswere observed for Canberra.It should be noted, however, that all the metrics show low re-silience to the significant impact of distortion (Figure 7c). At lowdistortion levels, they match tie points accurately. As image distor-tions increase, this accuracy rises due to the correct prediction andnot due to determining of tie points. Evaluating the values obtainedfor each distance metric separately, it can be concluded that themost minor differences (and thus the best accuracy) were achieved
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(a) F1-score (b) Jaccard (c) Accuracy
Figure 5. The plot of the relationship between percentage values of: (a) F1-score, (b) Jaccard and (c) Accuracy values and sigma value (Gaussian noisedistortion) for all distance metrics

(a) (b)

(c) (d)

Figure 6. The example of: (a) a maximum “pincushion” distortion image, (b) an original image, (c) a maximum “barrel” distortion image, (d) a plotof the relationship between percentage values of corrected matched points and distortion values

(a) F1-score (b) Jaccard (c) Accuracy
Figure 7. The plot of the relationship between percentage values of: (a) F1-score, (b) Jaccard and (c) Accuracy values and distortion for all distancemetricises



Markiewicz, 2025 | 47

Figure 8. Geometric interpretation of affine decomposition (Yu andMorel, 2011)

with Cosine, Braycurtis, and Correlation. For the other measures,these values depend more on the impact of distortion, with thepoorest results obtained for Sqeuclidean.
Skew (tilt) and rotations effect influenceThe influence of the image’s tilt and rotations on the correctnessand accuracy was also checked using different distance metrics.For this purpose, we used a decomposition of the parameters men-tioned above based on the method presented in the article ASIFT: AnAlgorithm for Fully Affine Invariant Comparison (Yu and Morel, 2011)and used in Affine-detectors for point detection and matching. Inthe ASIFT algorithm, each image is transformed by simulating allpossible affine distortions caused by the change of the initial cam-era positions. For this purpose, affine decomposition is utilised todescribe the transformation using the angle of rotation around theoptical axis (spin, angleψ), the skew angle θ (understood as thecamera tilt angle), andϕ, which defines the rotation around theZ-axis (Figure 8). To perform this, Equations 17 and 18 are utilised(Yu and Morel, 2011):

u (x, y) → u(ax + by + e, cx + dy + f) (17)

A =
[ a bc d

]
= HλR1 (ψ) TtR2 (ϕ)

= λ
[ cosψ – sin(ψ)sin(ψ) cosψ

][ t 00 1
][ cosϕ – sin(ϕ)sin(ϕ) cosϕ

]
(18)where λ > 0 is the determinant of A (affine transformation matrix),Ri are the rotations,ϕ ∈ [0,π) and Tt is the tilt, namely a diagonalmatrix with first eigenvalue t > 1 and the second one equal to 1. Itis possible to prepare the decomposition of the camera motion pa-rameters into the viewing point angles (longitude (ϕ) and latitude(θ = arccos( 1t ))), spin of the camera (ψ) and zoom factor (λ). Inthe ASIFT algorithm, images undergo rotation with angle θ, whichis represented by tilt parameter t = 1cosθ .From the results shown in Figure 9a, it can be observed thatthe image skew significantly decreases the accuracy of descriptormatching for distance measures. For a skew of 50 degrees, there isa noticeable trend of a rapid decrease in the accuracy of descriptormatching. Despite this, it should be noted that the least susceptiblemeasure to incorrect descriptor matching for skew images is theCanberra distance, and the results for the other distance measuresare similar.Assessing the effect of the rotation of the image around the Z-axis on the correctness of descriptor matching (Figure 9b), it mightbe stated (similar to the skew effect) that the highest percentageof correctly matched descriptors was obtained for the Canberrameasure. For other distance metrics, the matching accuracies arevery close. Figure 9b shows that between 0 and ±22.5◦, the decreasein accuracy of descriptor matching using all accuracy measures is

marginal and does not exceed 5%. Above this value, a significantdecline in accuracy is noticeable from a value of ±80◦.Rotation of the image around the optical axis (depth direction)has no negative impact on the accuracy of the descriptors as muchas the influence of tilt and rotation around the Z-axis. The highestpercentage of correctly matched tie points were obtained using theCanberra measure and successively for L1 norm, Seuclidean, L2norm, Cosine, Sqeuclidean and Correlation. As the rotation of theimage concerning the optical axis increases, a successive decreasein the percentage of correctly matched tie points can be observed.In the range from 0 to 45 degrees, these values do not exceed 90%;in the range from 45 to 90 degrees, 80%; in the range from 90 to180 degrees, 60%; and in the range from 180 to 359 degrees, 40%.A classical approach using SIFT was used in this investigationto detect tie points. As shown in Figures 10a–10c, the most sig-nificant decrease in F1-score and Jaccard values is observed whenthe image skew exceeds 5 degrees. As previously described, thisreduces the number of tie points and results in the missed detectionof points with counterparts on the matched image. Assessing theAccuracy value (Figure 10c) reveals that, between 5 and 60 degrees,the Accuracy values remain stable at an average of 50% across alldistance metrics, indicating considerable difficulty in accurate de-scriptor matching. From around 40 degrees onward, an increase inAccuracy is noticeable – tie points are correctly not matched.A similar relationship was observed for the values obtained forrotation about the Z axis (Figure 10d and 10e). Evaluating the distri-bution of the F1-score and Jaccard values, it can be seen that thereis a significant decrease in these values for about 15 degrees of rota-tion to the left and right. From about 30 degrees onwards, there isa value of approximately 0%, which indicates, at the very least, alack of correct detection of the vantage points. Assessing the Accu-racy values (Figure 10f), it can be seen that from around 5 degrees,there is a significant decrease in accuracy (no points detected) andfrom around 15 degrees, accuracy increases correct “mismatching”of tie points and a decline in the number of tie points detected. Itshould be noted that these values are similar for all distance metrics.It is impossible to divide them into groups, as was possible whenanalysing the impact of distortion.The final assessment focused on the F1-score and Jaccard valuesobtained for rotation around the optical axis. The results indicatethat this rotation has the most significant impact on descriptormatching accuracy. The data in Figure 10g show that all distancemetrics, except for Canberra, exhibit low coefficients within therange of 0 to 12% for rotation angles between 10 and 360 degrees.Only for Canberra do these values remain stable until the rotationangle exceeds 80 degrees. Evaluating the Accuracy values (Fig-ure 10i) reveals a linear increase in errors as the rotation anglegrows, which, as with previous cases, is due to the correct “non-detection” of tie points.
The summary of analyses on synthetic dataIn detecting and matching keypoints on point clouds converted tothe raster form, several issues may arise related to input data qual-ity and cartographic transformations’ effects on data conversionfrom the 3D to the 2D form – particularly noticeable in the TLS-SfMprocess. Problems associated with converting point clouds to theraster form have been detailed in Markiewicz and Zawieska (2019).These issues are related to (1) raw intensity deviations caused bythe angle relative to the normal of the measured surface and thescanning distance and properties of the measured material; (2) de-formations of a generated image, such as the effect of “distortion”and large deformations, which occur for large values of angles, i.e.,in the upper and lower parts of the raster. These geometric failuresconsiderably influence the number and the distribution of tie pointsdetected by algorithms applied in image processing (Markiewiczand Zawieska, 2019). For this reason, it was decided to simulate theimpact of intensity changes by introducing Gaussian noise into thereference descriptor and geometric distortion changes by generat-
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(a) (b) (c)

Figure 9. The plot of the relationship between percentage values of corrected matched points and (a) skew angle, (b) rotation around the Z-axis and(c) rotation around the depth direction (optical) axis

(a) F1-score (b) Jaccard (c) Accuracy

(d) F1-score (e) Jaccard (f) Accuracy

(g) F1-score (h) Jaccard (i) Accuracy
Figure 10. The plot of the relationship between percentage values of the F1-score, Jaccard and Accuracy values and (a)–(c) skew angle, (d)–(f)rotation around the Z-axis and (g)–(i) rotation around the depth direction (optical) axis
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Figure 11. The accuracy of the TLS registration for Test Site I

ing virtual images with the influence of radial distortion and imagerotations and tilt.When evaluating the impact of individual factors on the accuracyand reliability of tie-point matching, it can be observed that imagerotation angles and skew have the most significant influence. Incontrast, deviations in intensity values have the most negligibleimpact. Considering the effect of scanning surfaces at large anglesand/or close distances, it must be concluded that distortion canoccur on raster fragments (Figure 9a), and fragments can be rotatedrelative to each other in the Z-axis (Figure 9b). For this reason,the effect of distortion and rotation should be analysed together.When performing TLS measurements, it is assumed that the unitshould be level and that the use of compensators will allow thiscondition to be met. An analysis of the rotation of the raster aroundthe “optical axis” showed that the accuracy of descriptor matchingwhen using the Canberra measure was close to 100%, and for theother measures was above 95%. For this reason, it can be assumedthat the influence of this rotation can be considered negligible whenselecting a descriptor-matching measure.The effect of distortion is noticeable when processing pointclouds are obtained from scanner positions close to walls, where thepart of the objects are scanned with acute scan angles to the surfacenormal vector. With this in mind, it can be expected that fewerfeature tie points will be detected and matched in such sections ofpoint clouds. Therefore, it is advisable to consider the placementof TLS stations in a way that ensures not only accurate shape rep-resentation but also effective tie-point detection in the TLS-SfMprocess.
4.2 Real data analysis

The next investigation involved analysing the distance metrics se-lection on real data characterised by different geometric complex-ity and texture. For this purpose, the following parameters werechecked: (1) the correctness of the pairwise point cloud registra-tion (with the analysis used in Machine Learning), (2) the accuracyof the pairwise point cloud registration, and (3) the number anddistribution of points used in the combined bundle adjustment.
Evaluation of the Accuracy of Automatic Matching of Pairs of ScansFigures 11–14 present the results obtained for all distance metrics(Test Sites I–IV). To categorise the obtained results, the followingcolours were used: (1) full registration (green), where the RMSEfor X, Y, and Z coordinates ≤ 0.005 m (for Test Sites I–III)/≤ 0.01m (for Test Site IV), and points are evenly distributed within theanalysed area, (2) preliminary orientation parameters that shouldbe used in the ICP (orange), and (3) no registration (red). Thesymbol “x” indicates that pairs of scans could not be registered dueto the insufficient overlap.From the results presented in Figure 11 for Test Site I, it appears

that it is only possible to register all scans using the Barycurtis mea-sure for all pairs of scans acquired from different distances, heightsand angles. The worst results were obtained for the Seuclideanmethod, for which only 2 pairs out of 9 could be registered. Theother methods allowed only 7 out of 9 pairs of scans to be registered.It was problematic to correctly register the point clouds for whichthe spherical images had significantly different “distortion” (scans1, 3 and 19) for the corresponding fragments due to the impact ofpoint cloud conversion to the spherical image form. It should benoted that for Test Site I, only scan 19 depicted the entire site, withthe others only depicting individual walls.The results obtained for Test Site II (Figure 12) show that it ispossible to register all point clouds regardless of metricise distances.Compared to Test Site I, this is because all point clouds were ac-quired over the full angular range – all room walls, ceiling and floorwere mapped. In addition, it should be mentioned that it is possi-ble to use all measures for objects characterised by complex goodand unambiguous textures and spherical images characterised bysimilar “distortions”. A decisive aspect for selecting a specific solu-tion is the number of points, their distribution and the achievableaccuracies described in the following subsection.Based on the results presented for Test Site III (Figure 13), theworst outcomes were observed for the Barycurtis, Correlation andSeuclidean distance metrics. In contrast, the best results wereachieved using the L1 norm. It should be noted that in cases wherethe point clouds were acquired over the full angular range, the base-line between the point cloud pairs was small, and the distribution ofthe scanner position affected the significant effects of “distortion”on the spherical images, not all the methods allowed pair scans tobe registered and only the Canberra method allowed the correct ori-entation of pairs 1–7. Despite this, all the methods allowed full finalregistration of all point clouds, as indicated by the number of pairswith pre-orientation (orange) and those without orientation (red)in all distance metrics. Similar to Test Site II, the choice of methoddepends on the number, distribution, and expected registrationaccuracy.Significant differences in the selection of distance metrics whenmatching keypoints used to register point clouds can be seen forTest Site IV (Figure 14), for which point cloud pairs are acquiredfrom a wide-range base, and the object is characterised by homo-geneous texture or textureless areas. In this case, the best results(guaranteeing the best determination of tie points on point clouds)were obtained for the L1 norm, Sqeuclidean, L2 norm and Cosinemethod, respectively. It should be noted, however, that a more sig-nificant number of pre-preliminary registered pairs (orange colour)may contribute to fewer tie points for the final bundle adjustmentof all TLS pairs and it may also affect the final accuracy of registra-tion. These aspects are evaluated and discussed in the followingsubsections.
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Figure 12. The accuracy of the TLS registration for Test Site II

Figure 13. The accuracy of the TLS registration for Test Site III

Figure 14. The accuracy of the TLS registration for Test Site IV
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(a) (b)

(c) (d)

Figure 15. The plots of linear error values for RMSE and SMAD for: (a) Test Site I, (b) Test Site II, (c) Test Site III and (d) Test Site IV

Accuracy Analysis of Signalised Check PointsTo assess the accuracy of the point cloud orientation process, valuesof deviations (from the full registration) of signalised (Test Site I,III and IV) and natural (Test Site II) check points were used; thosepoints were used for independent quality assessment. To assess theaccuracy of TLS point cloud registration, linear values of RMSE andSMAD deviations were used (Figure 15), along with the distributionof error values presented as boxplots (Figure 16).Comparing the RMSE and SMAD values for Test Site I (Fig-ure 15a), it can be concluded that the differences between themdo not exceed (a) 0.5 mm for Canberra, Sqeuclidean, and Target-based; (b) 0.8 mm for Correlation, Cosine, L1, and L2; (c) 1.5 mmfor Braycurtis; and (d) 2 mm for Seuclidean, indicating the absenceof outliers in the tie points. The RMSE values for all the methods,except Braycurtis, fall within the range of 4.5 mm to 5 mm, withthe RMSE for Braycurtis reaching 8.5 mm. Comparing these resultswith the RMSE values obtained for the Target-based method, themost negligible difference was found for Seuclidean (1.5 mm), whilethe largest was for Braycurtis (5.4 mm). It can be concluded that, forall the methods except Braycurtis, the results are similar to thoseof the Target-based method.The RMSE values obtained for Test Site II (Figure 15b) showan improvement in point cloud registration accuracy comparedto Test Site I. Although both sites are characterised by good tex-ture (significant changes in grayscale gradients), two key factorscontributed to the improved registration accuracy: the acquisitionof point clouds at full angular resolution and smaller differencesin the height of the registered scanner positions. However, likeTest Site I, the worst results were obtained with Braycurtis. Thedifferences between RMSE and SMAD do not exceed (a) 1 mm forCorrelation, Cosine, and Target-based; (b) 1.2 mm for Canberra, L1,L2, Seculidean, and Sqeuclidean; and (c) 1.3 mm for Target-basedmethod (with differences not exceeding 1.2 mm). Therefore, it canbe concluded that they enable TLS point cloud registration that iscomparable to the commonly used state-of-the-art methods.For Test Site III (Figure 15c), similar trends can be observedas for Test Site II, except for the method with the highest RMSE

value – Barycurtis for Test Site II and Canberra for Test Site III.Additionally, there are no significant differences between RMSEand SMAD; they do not exceed 0.8 mm for Barycurtis and Canberra,while for the other distance metrics, they remain below 0.5 mm.Comparing the obtained RMSE values with those from the Target-based method, it can also be concluded (as with Test Site II) that theTLS registration results are comparable to those of state-of-the-artapproaches, with 1.5.mm differences being negligible.The worst results were obtained for Test Site IV (Figure 15d).Comparing the RMSE and SMAD results, it is noticeable that (a)the RMSE error for Cosine, L2, and Sqeuclidean is approximatelytwice as high, (b) about three times as high for Braycurtis, L1, andSeuclidean, and (c) seven times fas high or Canberra. The high-est RMSE values were achieved with Braycurtis, Canberra, and L2,while the best results were obtained for L2, Cosine, and Sqeuclidean.Although the errors for these distance metrics differ by approxi-mately 5 mm from the Target-based method, these results shouldbe considered acceptable, as they are lower than the scanning reso-lution of 12.1 mm at 10 m.Due to the minor differences between the RMSE values for thevarious distance metrics, it is also essential to analyse the distribu-tion of deviations presented in the boxplots (Figure 16).When analysing the values presented in Figure 16a, variability inmaximum and minimum values, as well as different sizes of IQR forthe various distance metrics, were observed. The most significantspread of values was noted for Braycurtis, while the smallest wasfor Seuclidean (X, Y and Z-coordinates). However, consideringthat the Seuclidean method has the least number of registered scanpairs, this value should not be considered further, and the values forCorrelation should be regarded as the smallest. For the Braycurtisand Correlation methods (across all axes), Canberra (for the Y andZ axes), and Cosine (for the Z axis), the median value exceeds 1mm, indicating the presence of systematic errors. For the othermethods, these values also do not equal 0, but the deviations do notexceed 1 mm. Evaluating the first quartile (Q1), the third quartile(Q3), and the interquartile range (IQR), it can be concluded that forthe X axis, there are disparities in the distribution (uneven relative
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Figure 16. Box plots for the distribution of the deviations on signalised check points for all pairs of point clouds fully registered scans for: (a) Test SiteI, (b) Test Site II, (c) Test Site III and (d) Test Site IV
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to the median). Smaller disparities are noticeable for the Y andZ coordinates. Uniform distributions of values were obtained forthe L1, L2, Sqeuclidean, and Target-based methods, with the mostsimilar distribution achieved for the L1 method. On average (acrossall axes), the highest number of outliers (marked as circles) wasobtained for Braycurtis (20 outliers), while the fewest were obtainedfor Canberra and Cosine, each with one outlier. For the remainingmethods, there were two outliers each.In contrast to Test Site I, for Test Site II (Figure 16b), the dis-tribution of deviation values is uniform relative to the median forall the methods. For all distance metrics for the X, Y, and Z compo-nents, the median value does not exceed 0.3 mm, which allows usto conclude that there are no systematic errors in the data set. Thesmallest Q1 and Q3 values were obtained for Seuclidean, while thelargest were for L2. The boxplot analysis shows that when register-ing point clouds over a full scanning range (360◦) and processingobjects with good texture, the choice of distance metric is less sig-nificant, as all the methods enable registration with high accuracy.A similar uniform distribution of deviations as observed for TestSite II was achieved for Test Site III (Figure 16c). Although thescanned room is not characterised by the good texture and had flatwhite walls, and the scans were taken at close range to the walls,high registration accuracy comparable to the Target-based methodwas achieved. However, the near distance to the walls, while advan-tageous for achieving significant point cloud density, resulted insubstantial distortions in the spherical images. This is evident fromthe large number of outliers marked as circles. Analysing all com-ponents (X, Y, Z), it can be seen that Canberra recorded the highestnumber of outliers. Assessing the remaining distance metrics, itcan be clearly stated that the best results were achieved for L1 andL2. The results presented for Test Site IV (an empty shop in a shop-ping mall) indicate the presence of systematic errors in the orienta-tion of the data for the X coordinate, with all average values beingapproximately -1.5 mm. The boxplots show that the best resultswere obtained for L2, Sqeuclidean, and Correlation. The distribu-tions are uniform relative to the median, and the IQR values aresimilar. Similarly to Test Site III, there are many outliers in the datasets. The obtained maximum and minimum values range from ±15mm, while 50% of the error values for the best distance metrics fallwithin the ±5 mm range. This, concerning the scanning resolution,indicates the correctness of the data registration process.
Point distributionsTo assess the density and distribution of the identified tie points,the datasets were divided into an Octree with dimensions of 2×2×2meters (Figure 17) and the number of points in individual cubeswas presented using bar charts (Figs. 18–21).When assessing the number and distribution of points obtainedfor Test Site I (Figure 18), which features numerous architecturaldetails, bas-reliefs, and facets, as well as the point clouds acquired,an uneven distribution of points within specific cubes can be ob-served, along with significant variation in the results obtained fordifferent distance metrics,. This relationship might be caused bythe utilisation of point clouds acquired from significantly differ-ent heights and capturing the same wall sections at substantiallyvarying angles – an effect similar to the impact of distortion androtation around the Z-axis, as discussed in section 4.1.Evaluating the distribution (the filling of individual cubes withpoints; Figure 18), it can be observed that the best results wereobtained for the Braycurtis metric. At the same time, the worstones were obtained for the Squared Euclidean (Seuclidean) metric.Comparing the results for the remaining methods, it is noticeablethat they are similar for all the methods except Canberra, for whichno points were detected in cubes where tie points should have beenlocated.In the assessment of the results for Test Site II (Figure 19), whichis characterised by simple geometry but featuring wall paintings

that imitate a 3D effect, only the points obtained from point cloudsacquired at different angles and distances relative to the measuredwalls were evaluated (without the first pair of scans). However, itshould be emphasised that these differences in the scanning anglerelative to the normal of the wall surfaces are not as significant as inthe case of the point clouds acquired for Test Site I. Evaluating thedistributions and the number of points in individual cubes, it canbe observed that the results for all the methods are similar. Only forCanberra, in octree cube 85, a slightly higher number of points wasobserved.The results presented in Figure 20 indicate (similarly to the pre-vious Test Sites) that, for all the methods, the distribution of pointswithin individual cubes is similar. Significant differences are no-ticeable for cubes from 35 to 40 and cube 55. It should be noted thatall the methods enabled the detection of multiple points due to thesmall distance between the scanner position and the measured wall.The best results were obtained with Barycurtis and Canberra, re-spectively. However, when comparing these results to those for TestSite II, the number of points is significantly lower. This is because,unlike Test Site III, Test Site II features better texture, resulting insignificant changes in grayscale gradients. These changes impactboth the number of detected keypoints and the number of correctlymatched descriptors.Evaluating the distribution and number of matching points ob-tained for Test Site IV (Figure 21), it can be observed that the worstresults (fewest points) were achieved with Barycurtis. In contrast,the best results were obtained with Cosine. It is also noticeable thatall modifications of the Euclidean measure, i.e., L1, L2, Seculidean,and Sqeuclidean, exhibit similar distributions and point counts.Similar to Test Site III, there is a lower number of matching pointsfor textureless objects compared to Test Sites I and II. This trend isassociated with changes in grayscale gradients and the significantdistance between the scanner positions and the measured wall seg-ments, which results in a lower point cloud density and quality ofthe utilised spherical images.
The statistical analysis of the performance of utilised metricisesTo evaluate the accuracy of pairwise point cloud registration, com-monly used metrics in machine learning literature, such as ac-curacy, precision, recall, and F1-score, were selected for analysis.These metrics were applied, allowing a comprehensive assessmentof the matched key points and the effectiveness of eliminating theimpact of incorrect descriptor matching. Given that multiple pairsof point clouds were analysed, the results include the median valuesof these metrics and their minimum and maximum values. Theresults are presented in Table 2.Evaluating the obtained Accuracy, Precision, Recall, and F1-score values, it can be unequivocally stated that regardless of thedistance metrics used, the model has difficulties in correctly match-ing all possible tie points. This is evident in the F1-score, recall,and precision values. Therefore, it is essential to analyse these val-ues for individual test fields separately, characterised by varyinggeometrical complexity and TLS scanner positions.Evaluating the values obtained for Test Site I, characterised bygeometrical complexity and a large number of architectural deco-rations acquired from significantly different heights and capturingthe same wall sections at substantially varying angles, it can bestated that:
• High Accuracy values indicate many correctly unmatched key-points (True Negatives), which is the dominant class – averag-ing 98.8% across all the methods. The average spread (under-stood as the difference between the maximum and minimumvalue) was approximately 1.2%, with the most significant spreadfor Correlation (1.5%) and the smallest for Seuclidean (0.2%).It should be noted that for Seuclidean, only 2 out of 9 pointclouds could be relatively registered (preliminary orientation;Figure 11).
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Figure 17. Point clouds with defined Octree for: (a) Test Site I, (b) Test Site II, (c) Test Sit III and (d) Test Site IV
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(e) (f) (g) (h)

Figure 18. The bar chart of the points number in individual octree cubes for: (a) Barycurtis, (b) Canberra, (c) Correlation, (d) Cosine, (e) L1, (f) L2, (g)Seuclidean and (h) Sqeuclidean – Test Site I
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Figure 19. The bar chart of the points number in individual octree cubes for: (a) Barycurtis, (b) Canberra, (c) Correlation, (d) Cosine, (e) L1, (f) L2, (g)Seuclidean and (h) Sqeuclidean – Test Site II
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(e) (f) (g) (h)

Figure 20. The bar chart of the points number in individual octree cubes for: (a) Barycurtis, (b) Canberra, (c) Correlation, (d) Cosine, (e) L1, (f) L2, (g)Seuclidean and (h) Sqeuclidean – Test Site III
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Figure 21. The bar chart of the points number in individual octree cubes for: (a) Barycurtis, (b) Canberra, (c) Correlation, (d) Cosine, (e) L1, (f) L2, (g)Seuclidean and (h) Sqeuclidean – Test Site IV

Table 2. The statistical analysis of pairwise TLS point cloud registration for all the Test Sites
Test Method Accuracy [%] Precision [%] Recall [%] F1 [%]
Site Min Median Max Min Median Max Min Median Max Min Median Max

I

Braycurtis 98.5 99.3 99.7 35.9 67.9 95.4 38.2 65.2 89.4 38.9 62.5 83.8Canberra 98.5 98.9 99.8 55.3 68.4 94.6 37.8 67.7 83.3 54.0 62.5 83.3Correlation 98.2 98.2 99.7 36.0 60.0 85.8 34.3 59.0 75.4 39.6 56.6 74.6Cosine 98.2 98.9 99.7 35.9 63.0 88.8 34.3 58.9 76.8 39.6 56.2 76.8L1 98.5 98.9 99.7 46.5 62.8 91.7 81.1 64.6 81.2 51.2 61.9 81.2L2 98.2 98.9 99.7 36.0 62.8 88.8 35.5 59.0 76.3 39.6 56.2 76.3Seuclidean 98.3 98.4 98.5 61.4 64.3 67.2 67.2 70.9 74.5 67.2 67.2 67.3Sqeuclidean 98.2 98.9 99.7 35.9 62.8 88.8 35.5 58.7 76.3 39.6 56.2 76.3

II

Braycurtis 84.7 89.9 98.8 56.2 61.7 71.6 49.8 74.7 82.7 52.8 67.6 74.5Canberra 85.2 89.5 94.1 56.6 60.2 72.6 52.1 72/9 82.0 55.2 65.9 75.4Correlation 82.5 88.8 93.4 52.8 57.9 67.3 46.8 70.0 79.6 49.6 63.5 69.9Cosine 82.9 89.1 93.4 52.9 58.9 68.1 46.9 71.0 80.9 49.7 64.6 70.8L1 83.9 89.6 93.8 55.6 60.7 70.1 49.9 73.2 81.4 52.9 66.5 72.9L2 82.9 89.1 93.4 52.9 59.0 68.1 46.9 71.0 80.9 49.7 64.6 70.9Seuclidean 83.6 89.2 93.5 53.4 59.2 69.5 47.4 71.8 80.4 50.2 64.9 72.3Sqeuclidean 82.9 89.1 93.4 52.9 59.0 68.1 46.9 71.0 80.9 49.7 64.6 70.8

III

Braycurtis 80.5 96.5 97.9 3.6 17.4 56.7 4.0 30.2 91.2 3.8 20.2 69.9Canberra 81.6 96.5 97.9 4.1 19.6 57.9 4.5 31.6 93.0 4.3 20.1 71.3Correlation 79.4 96.5 97.9 3.0 15.7 49.8 3.4 25.3 95.2 3.2 17.9 61.4Cosine 79.7 96.5 97.9 3.6 15.7 51.4 4.0 25.8 92.6 3.8 18.3 63.4L1 80.0 96.5 97.9 3.6 16.7 54.6 4.0 29.0 88.6 3.8 19.9 67.3L2 79.7 96.5 97.9 3.6 15.5 51.3 4.0 26.0 92.1 3.8 18.4 63.3Seuclidean 79.6 96.5 97.9 2.5 15.2 51.0 2.9 26.7 93.1 2.7 18.9 62.9Sqeuclidean 79.7 96.5 97.9 3.6 15.5 51.3 4.0 26.0 92.1 3.8 18.4 63.3

IV

Braycurtis 95.6 98.5 99.3 16.3 46.4 85.7 5.7 17.7 62.2 9.9 26.2 67.6Canberra 95.8 98.5 99.3 11.6 47.9 81.8 5.1 17.6 61.1 7.1 24.3 64.9Correlation 95.3 97.9 99.3 22.5 38.0 100.0 6.6 16.5 53.6 12.2 12.2 59.2Cosine 95.3 98.0 99.3 21.1 40.0 100.0 6.6 17.3 58.4 12.4 25.3 64.5L1 95.5 98.3 99.3 16.3 43.3 100.0 6.6 16.4 59.5 9.9 24.6 65.7L2 95.3 98.0 99.3 21.1 40.0 100.0 6.6 17.3 58.4 12.4 25.0 64.5Seuclidean 95.4 98.2 99.3 11.6 41.4 71.4 4.7 16.3 56.7 7.1 22.9 62.6Sqeuclidean 95.3 98.0 99.3 21.1 40.0 100.0 6.6 17.3 58.4 12.4 25.0 64.5
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• Relatively low Precision values (averaging around 64%) suggestthat using the Brute-Force Matching method and the testedsimilarity metrics contributes to the incorrect matching of tiepoints, classifying them as False Positives. The spread valuesdiffer significantly, with the worst case being 59.5% for Braycur-tis and the best at 5.8% for Seuclidean. The second-best distancemetric is Canberra, with a Precision value of 39.3%.• The median Recall values, averaging around 64%, indicate thatapproximately 36% of all positive cases were not recognised,with about 36% omitted as False Negatives. The spread valuesare significantly lower than those for Precision, ranging from40.8% (L2) to 49.5% (Braycurtis), not considering the resultsobtained for Seuclidean (7.4%).• Evaluating the F1-score values (the harmonic mean of Precisionand Recall), the spread of these values ranged from 29.3% forCanberra to 44.9% for Braycurtis. The highest median valuewas obtained for Seuclidean at 67.2%, while the lowest was forL2 at 56.2%.
Evaluating the values obtained for Test Site II (characterised bysimple geometry but featuring wall paintings that create a three-dimensional effect), it can be observed that there is an averagedecrease of 8% in the median Accuracy values, similar median val-ues for Precision, and an increase in Recall and F1-score comparedto the results for Test Site I. Analysing the individual values, it canbe stated that:

• The highest median Accuracy value was obtained for Braycurtis(89.9%), while the lowest was for Correlation (88.8%) – theseare insignificant differences. The average spread values were9.9%, with a minimum of 8.8% for Canberra and a maximumof 10.8% for Correlation.• Similar to the Precision values obtained for Test Site I, the aver-age median values were around 60% (approximately 64% forTest Site I). The spread between the maximum and minimumvalues was smaller than that for Test Site I, ranging from 14.4%to 16.0% for Correlation and Seuclidean, respectively.• Similar to the precision values, the average median Recall valuewas also 8% higher than that of Test Site I, which stood at 72%.This indicates that for point clouds acquired from greater dis-tances than those for Test Site I and with more minor changes inthe heights of the scanner positions, it was possible to detect amore significant number of positive cases, including False Neg-atives (FN). Analysing the spread values, it can be observed thatthey range from 29.9% for Canberra to 34.0% for Cosine. Themaximum value of 74.5% was obtained for Braycurtis, whilethe lowest was for Correlation at 70.0%. This is a 12% increasecompared to the values obtained for Test Site I.• For F1-score values, compared to Test Site I, the differencebetween the minimum (63.5% – Correlation) and maximum(65.3% – Bray-Curtis) values, as well as the spread values(19.9% – L1 and 22.0% – Seuclidean), is relatively small butstill observable. This indicates better effectiveness in determin-ing tie points for point clouds acquired over a full angular range.It applies particularly to scanner positions that measure fromgreater distances and at smaller angles relative to the surfacenormal, reducing the impact of distortions in spherical imagescaused by converting point clouds into raster form.
In the case of Test Site III (office room), with scanner positionsplaced near walls, significantly lower Precision, Recall, and F1-score values were observed compared to Test Sites I and II:

• The average Accuracy values were 96.5%, with the spread rang-ing from 16.3% for Canberra to 18.5% for Correlation.• In contrast to the previous Test Sites, the average median valuesare about four times lower, averaging only 16.4%. The differ-ences between the maximum and minimum values are similarto those obtained for Test Site I, amounting to 46.8% for Corre-lation and 53.8% for Canberra, respectively.

• Evaluating the Recall results, it should be noted that for pointclouds acquired close to walls and for which sections werescanned at acute angles, potential tie points were incorrectlydetected during descriptor matching using various distancemetrics. This resulted in instability, as seen in significant dif-ferences between the minimum and maximum values (84.6–91.7%) and the average median value (27.6%) across all themetrics. This instability may also have been influenced by thelow texture quality of the object, which made the descriptorsrepetitive and thus impacted the accuracy of descriptor match-ing.• Evaluating the F1-score values reveals an average threefold de-crease compared to Test Sites I and II and reduced stability inpoint detection (values ranging from 58.2% to 67.1%). This isdue to the placement of scanner positions relative to the wallsand the characteristics of the Test Field itself, which contributesto the distortion effect on spherical images. This relationshipwas demonstrated in analyses of synthetic data. The best re-sults (highest median F1-score) were obtained for Braycurtis at20.2%, while the worst ones were for Correlation at 17.9%.
Test Site IV (an empty shop in a shopping mall) was charac-terised by the flat, textureless surfaces of the measured site and hadcharacteristics similar to those of Test Site III. The difference lies inthe scanner position and the chosen scanning resolution. In the caseof Test Site III (as mentioned earlier), the scanner positions wereplaced close to the walls. Due to Test Site IV’s dimensions, deter-mining the positions farther from the walls was possible, resultingin less significant distortion in the spherical images compared toTest Site III. This is seen in the values presented in Table 2:

• The average median Accuracy values are 1.7% higher than forTest Site III, with 98.5% for Braycurtis and 97.9% for Correlation.The spread values are approximately 4.7 times as small, rangingfrom 3.5% (Canberra) to 4.0% (Cosine).• For Precision values, the average median values are approxi-mately 2.5 times as high as for Test Site III, with minimumand maximum values of 38.0% for Correlation and 47.9% forCanberra, respectively. The spread for Test Site IV is more signif-icant than for Test Site III’s, ranging from 59.8% for Seuclideanto 83.7% for L1.• Assessing the Recall values shows lower values than for TestSite III. This indicates that many points are incorrectly matchedas False Negatives. The average median value is 17.1% acrossall the distance metrics, with individual methods ranging from16.3% for Seuclidean to 17.5% for Braycurtis. Evaluating thespread from minimum to maximum values reveals that it is, onaverage, about 36% smaller, amounting to 47.0% and 56.5% forCorrelation and Braycurtis, respectively.• For F1-score values, a slight improvement of around 8% isobserved compared to the results obtained for Test Site III.Analysing the individual values shows that the minimum andmaximum median F1-score values were obtained for Seuclidean(22.8%) and Braycurtis (26.1%). However, it should be empha-sised that these values are low and indicate ineffective detectionand accurate matching of tie points. There are many points forwhich counterparts in the registered point cloud were not found,or these values were incorrectly matched. This is also evident inthe spread values between the maximum and minimum values,which are 47.0% for Correlation and 57.8% for Canberra.
In summary, when selecting the best distance metric based onthe values of Accuracy, Precision, Recall, and F1-score (withoutconsidering the number of points, their distribution, or the correct-ness of pairwise registration), two cases of point clouds should beconsidered separately: (1) point clouds of objects with good texture(significant differences in grayscale gradient values) and numerousarchitectural details (Test Sites I and II), and (2) point clouds ofobjects characterised by simple geometry and textureless surfaces(Test Sites III and IV).
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• Comparing both cases, it can be observed that F1-score valuesare significantly higher for case 1 than case 2, although they stillremain low. Assessing the Accuracy, Recall, and Precision val-ues for case 1, it can be concluded that most points are classifiedas negative cases (a high percentage of True Negatives), whichincreases Accuracy but does not reflect the effectiveness in de-tecting all possible tie points. Precision and Recall indicators arenot high due to False Positives and False Negatives, indicatingthat there may be difficulties in recognising the positive classduring descriptor matching. Using spherical images at full scan-ning resolution (360◦ – Test Site II) increases the values of allthe statistical metrics. After analysing the results presented forcase 1, it is recommended that the L1-norm be used.• Evaluating the values for case 2, it should be emphasised thatall indicator values are low. This is due to minimal changes ingrayscale gradient values and incorrect descriptor matchingwhen using various distance metrics. Another factor contribut-ing to the lower Precision values is the distance between TLSpositions and measured object sections and the acute anglesrelative to scanning to the normal vectors of measured surfaces,leading to significant spherical image distortion (Test Site III).For this reason, when using this method for tie point detection,one should bear in mind that many points may not be correctlymatched. For the alignment of point clouds with poor textureand few architectural details, it is recommended to use the Bray-curtis distance metric.

5 Discussion and summary

The research focused on examining the influence of selecting dis-tance metrics during the descriptor matching stage in the TLS-SfMmethod on the accuracy of point cloud registration. For the analysis,commonly used distance metrics were selected, namely Barycurtis,Canberra, Correlation, Coine, L1, L2, Seuclidean and Sqeuclidean,which are utilised in machine learning.Initial tests on synthetic data revealed challenges in detectingand matching keypoints on point clouds converted to the rasterform, with major issues emerging from input data quality and ef-fects of 3D-to-2D transformations, particularly in the TLS-SfMprocess. These issues include intensity deviations caused by mea-surement angles relative to the surface normal vector, scanningdistance, material properties, and substantial geometric distortionsat high angles, significantly affecting the upper and lower sectionsof rasters. These distortions impact the number and spatial distri-bution of detected tie points, necessitating simulations that applyGaussian noise to represent intensity variation and virtual images toreplicate radial distortion, rotation, and tilt. The analysis indicatedthat image rotation angles and skew greatly influenced tie-pointaccuracy, whereas intensity deviations had minimal effect. Furtherexamination showed that raster fragments scanned at high anglesor close distances could exhibit distortions and rotations, under-scoring the need for joint consideration of these factors. Using theCanberra measure resulted in nearly perfect descriptor matchingaccuracy, suggesting that minor rotations are negligible when em-ploying this measure, with other measures also achieving over 95%accuracy. These results highlight the importance of countering geo-metric distortion and rotation to ensure reliable keypoint detection,especially when scanning at close range or acute angles.The experiments on real data were conducted at two types oftest sites located in cultural heritage buildings and public utilityfacilities, allowing an independent analysis of data characterisedby various architectural details, colours, and complex geometricfeatures. Using these two types of test fields enabled an indepen-dent study of the impact of distance measurement selection on theaccuracy of point cloud registration and the completeness of theentire process. For this reason, each type of test site was evalu-ated separately, and Table 3 presents a summary of the usefulness

evaluation criteria, rated on a scale from 1 to 8. The individual ob-servations were weighted to assess and differentiate the impact ofindividual components on the final evaluation and selection of thebest distance metrics. The experiments resulted in the followingconclusions:
• Research indicates that, despite the low values obtained forF1-score, Accuracy, Precision, and Recall, using the TLS-SfMmethod enables the correct orientation of point clouds. Theachieved registration accuracy (comparable to the commonlyused Target-based method), point distribution (lower impact),and pairwise registration allow complete TLS data registration.• A two-stage approach could solve the issue of low F1-score, accu-racy, precision, and recall. In the first stage, it is recommendedto use the pairwise registration method to obtain the orientationparameters of the point clouds. In the next stage, using the k-NN method, the remaining tie points with correspondences inboth datasets should be identified, and a final bundle adjustmentshould be performed based on them.• A comprehensive analysis of the results (without considering thedivision into specific types of test fields characterised by varyinggeometric complexity, different textures, and scanner positiondistributions) indicates that the best results were obtained withthe L1 and Sqeuclidean methods. At the same time, the worstresult was achieved with the Canberra method.• Evaluating the differences in the total sum of points, it can beobserved that more minor differences are noticeable for testfields with short baselines between TLS positions (Test SitesII and III) compared to those with larger baselines (Test Sites Iand IV).• Test Site I (the interior of a historical building) was characterisedby complex geometry, many gilded elements, and architecturaldetails, which contributed to a well-defined texture in the gen-erated spherical images. The registered point clouds were cap-tured at significantly different heights (with height differencesbetween pairs of point clouds ranging from 0.1 m to 2.8 m), andthe same sections were scanned at notably different, acute an-gles relative to the surface normal, resulting in various imagedistortions (not in full 360◦ resolution). For this scanner setupand test field type, the overall best results were obtained usingthe L1-norm and Sqeuclidean methods, while the worst wereachieved with Sececlidean. It should be noted, however, thatonly the Braycurtis method enabled full registration of all pointclouds. However, with this method, the registration error wasapproximately three times as high as with the state-of-the-artTarget-based approach using signalised check points. Whenevaluating the error values for the other approaches, it can bestated that the RMSE values were approximately twice as highas those for the target-based approach. However, they did notexceed 5 mm, which makes this solution acceptable.• Test Site II, like Test Site I, is the interior of a cultural heritageobject; however, unlike Test Site I, it features simple geometry.The walls were decorated with paintings that imitate a spatialillusion effect, and the point clouds were captured at similarheights. The point clouds were acquired in full angular resolu-tion, resulting in only selected sections being scanned from closedistances (with acute angles relative to the wall’s normal planevector). In contrast, the remaining areas were scanned from sig-nificantly longer distances. This setup led to notable distortionsonly in certain sections of the generated spherical images. Thisrelationship results in only slight differences in the outcomesof point cloud alignment when using different distance metrics.All the methods allowed the process to be conducted accuratelyfor pairwise and full registration. The differences are noticeableonly in the RMSE values. For all the methods except Braycurtis,RMSE values did not exceed 2.5 mm, while for Braycurtis, RMSEwas approximately 3.0 mm, compared to about 1.5 mm for theTarget-based approach. When processing such interiors, one
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Table 3. Summary of the evaluation criteria for point detection algorithms across all the Test Sites, rated on a scale from 1 to 8
Test Method Evaluation Criteria Total Final
Site Completenessof pairwiseregistra-tion

Completenessof full regis-tration
RMSEon sig-nalisedcheckpoints

Deviationsonmarkedcheckpoints –X-axis

Deviationsonmarkedcheckpoints –Y-axis

Deviationsonmarkedcheckpoints –Z-axis

Pointdistri-bution
ML sta-tisticalanaly-sis

Ranking

Weight 3 5 4 3 3 3 3 1 25
Cultural Heritage Interiors

I

Braycurtis 3 6 5 3 3 3 8 2 4.5 VICanberra 4 4 8 5 7 7 5 4 5.6 IIICorrelation 3 3 7 7 7 7 5 2 5.3 IVCosine 2 3 7 6 5 5 5 2 4.6 VL1 5 5 7 7 8 8 5 4 6.2 IL2 2 3 7 6 7 7 5 2 5.0 VIISeuclidean 1 1 8 8 6 6 1 2 4.2 VIIISqeuclidean 4 5 7 6 7 7 5 3 5.7 II

II

Braycurtis 8 8 6 5 8 8 6 4 6.9 VCanberra 8 8 7 5 6 6 7 4 6.7 VICorrelation 8 8 7 8 7 7 6 4 7.2 IICosine 8 8 7 6 7 7 6 4 7.0 IVL1 8 8 7 8 7 7 6 4 7.2 IIL2 8 8 7 7 5 5 6 4 6.6 VIISeuclidean 8 8 7 7 8 8 6 4 7.3 ISqeuclidean 8 8 7 7 5 5 6 4 6.6 VIII
Public Utilities Interiors

III

Braycurtis 7 8 7 6 6 7 7 4 6.8 VCanberra 5 8 7 6 6 6 6 4 6.4 VIIICorrelation 6 8 8 6 6 7 7 3 6.8 VCosine 6 8 8 6 7 7 7 3 7.0 IVL1 8 8 8 8 8 7 7 3 7.6 IL2 6 8 8 7 7 7 7 3 7.1 IISeuclidean 7 8 7 7 6 6 6 3 6.7 VIISqeuclidean 6 8 8 6 8 7 7 3 7.1 II

IV

Braycurtis 5 6 4 3 6 5 5 4 4.9 VIICanberra 3 3 3 5 6 5 5 4 4.1 VIIICorrelation 4 5 4 4 7 7 7 2 5.2 VICosine 7 6 5 4 7 7 7 4 6.0 IIIL1 8 8 4 3 6 5 5 4 5.6 VL2 6 6 6 4 7 7 7 4 6.0 IIISeuclidean 7 7 3 3 8 8 8 4 6.1 IISqeuclidean 7 7 6 4 7 7 7 4 6.4 I
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could conclude that the choice of distance metrics does not sig-nificantly impact the accuracy and completeness of TLS pointcloud registration.• Test Site III is an office space with smooth-textured walls,ceiling-mounted lamps, electrical wiring, and a dark carpetedfloor. Due to the office dimensions, the scanner positions wereplaced close to all walls. This resulted in acute scanning anglesrelative to the walls’ normal planes and significant changes inintensity and distortions in the spherical images. However, thedifferences in the total scores for the individual distance met-rics are negligible due to the short scanning distances and fullangular resolution, similar to Test Site II. Analysing pairwiseregistration, it can be observed that the difference in the num-ber of correctly matched values between the worst (Canberra)and the best (Correlation and Euclidean) metrics is only 3 pairs.This does not affect the completeness of the full registration.By evaluating the RMSE values linearly, it can be seen that forall approaches, except for Barycurtis and Canberra, the RMSEvalues do not exceed 2 mm. At the same time, for the two met-rics mentioned above, it is 2.5 mm. Comparing this with theresults from Target-based, which is 1 mm, it can be concludedthat using all of these distance metrics, it is possible to performfully automated TLS point cloud registration correctly.• Test Site VI was the “Empty Shopping Mall” consisting ofsmooth walls, a concrete floor, overhead lighting, visible electricwires, and an air-conditioning system. Due to the dimensionsand shape of the room, the TLS positions were placed furtherfrom the walls, and there were relatively long baselines betweenthe individual positions. All point clouds were acquired at ap-proximately the same height. It should be emphasised, however,that the scanning resolution was twice as low as that for thepoint clouds obtained from Test Sites II and III. Selecting theappropriate distance metric is crucial for this arrangement ofTLS stations and the type of object being measured. It influ-ences the number of correctly matched pairwise registrations.The best results were obtained with the L1-norm, Sqeuclidean,L2, Seuclidean, and Cosine metrics, which directly impact thequality and accuracy of the full registration. This is evident inthe linear RMSE error values, which for L2-norm, Cosine, andSqeuclidean did not exceed 11 mm, being approximately twice ashigh as those for the Target-based method. However, consider-ing the adopted scanning resolution (12.1 mm / 10 m), it can beconcluded that the process was correctly done for the methodsmentioned above.• In summary, based on the values obtained for the two groups ofpoint clouds – cultural heritage objects characterised by goodtexture (with significant grayscale gradient variations) and nu-merous architectural details and public utility objects with sim-ple geometry and textureless surfaces – it is recommended touse L1-norm and Sqeuclidean distance metrics, respectively,during pairwise registration.
Future research will focus on analysing the selection of distancemetrics for point cloud alignment performed outdoors, as well asexamining the impact of descriptor selection on the accuracy andcompleteness of TLS point cloud registration using the TLS-SfMmethod.
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