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Abstract
A number of different types of information are generally associated with places. It is estimated that about 75–90% of informationmay contain an official link to a specific area, expressed as, for example, coordinates, or addresses, and therefore has a spatialcharacter, making data collection a responsible and important stage, which reasonably affects the quality of its results.Information and its sources are treated with particular care and rigor in the scientific field: in most cases, the data must berelevant, reliable, technically simple, and collected quickly at reasonable costs. The analysis of geographic information makes itpossible to obtain qualitatively new information and reveal previously unknown patterns. Modern data collection methods aredivided into three distinct groups: terrestrial, cartographic, and remote. Remote or aerospace methods are considered to be thosethat allow information to be collected. It refers to objects on the Earth’s surface, phenomena, or processes from space or theatmosphere, recorded by detecting electromagnetic radiation on the ground across various spectral ranges. The involvement ofvarious platforms (providers) of surveillance equipment makes it possible to divide them into: space, aerial photography, andimages from Unmanned Aerial Vehicles (UAVs). As a technology justified on security grounds, UAVs show great promise in manyareas of application. Effective planning of drone missions allows for the collection of larger sets of data with a higher level of detailand in a shorter period of time. The continuity of information collection for a given territory allows for the most accurate andreliable three-dimensional modelling, spatial analysis and geostatistics of the local situation.
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1 Introduction

1.1 The role and importance of geodata

More than 80% of all information is tied to a specific location onEarth, yet only 10% of the collected and stored data is effectively

utilized (Burrough et al., 2015), meaning that this information,used by specialists for different purposes, contains geographicaldata (metric, spatial) and various information about the spatial orterritorial distribution of objects, phenomena, processes, events(Zatserkovnyi et al., 2016).”According to estimates by experts in geographic information
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technology, the cost of collecting and entering data when imple-menting geographic information projects is 5–10 times higher thanthe cost of hardware and software of geographic information sys-tems (GIS). This is explained by the fact that existing technologiesfor collecting graphic and text data automatically provide less than20% of the total data volume. Therefore, further development ofautomatic methods for collecting all types of data is of particularimportance for GIS” (Zatserkovnyi et al., 2016).The terms "geodata", "spatial information", "geographic infor-mation", "geospatial data", or "location-based information" areused interchangeably (GGIM, 2015). Geodata, combining attributeinformation with location information (usually, the coordinates),is becoming easier to access every year and its number of users isincreasing. The demand for accuracy and detail in the geographicdata collected is increasing (Apollo et al., 2023). Geodata is cover-ing increased areas and beyond solely collecting basic data, it alsopresents the results of its multi-purpose analyses. Understandingthe characteristics of and possibilities of using geodata is premisedon proper comprehension of the underlying concepts of space, time,and scale, contextualized within the Earth’s framework.Geodata is the core component of GIS, enabling the storage,querying, analysis, and visualization of data. In its modern sense,geodata encompasses a broad spectrum of information, extend-ing far beyond the realm of Earth sciences. It offers detailed in-sights into phenomena both on and beneath the Earth’s surface.Geographic data can represent human-made structures – suchas buildings, roads, railways, trails, and hydraulic systems – ornatural features, including reservoirs, streams, vegetation, andsoils. Additionally, geographic information can integrate data fromvarious disciplines, such as: economics, sociology, management,education, and even transient phenomena (e.g., weather systems)(Goodchild, 2005). The scope of GIS implementation reaches be-yond the scope of the term that many people and organizationsusing GIS technology may not even be aware of (Dangermond andGoodchild, 2019).The technological characteristics of geodata are that it is notobtained from direct measurements but is the result of post-processing of measured information. For decades, the creation,maintenance and distribution of geographic data has been the ex-clusive domain of government surveying agencies and commercialcompanies, due to the need for centralized and cost-effective dis-tribution of geodata (Elwood et al., 2012). Geodata combines loca-tion information with characteristics or attributes of other datasetsover a period of time, and it can be collected from maps, aerialphotographs, satellite imagery, telematics devices, smartphones,Global Positioning System (GPS), Light Detection and Ranging (Li-DAR), Internet of Things (IoT), Geotagging, and from other sources(Garg, 2020).
1.2 Using UAVs is the key to collecting high-quality spa-

tial data

Unmanned aerial vehicles (UAV) represent a groundbreaking tech-nology in the realm of intellectual advancements. Innovation per-meates every aspect, from advanced composite materials to cutting-edge software and navigation systems. The broad range of applica-tions, the complexity of tasks, and the variety of requirements arereflected in the multitude of UAV models. Currently, there are morethan 1,500 models of drones of various types in mass production.Their total number has tripled in recent years. The use of dronesallows its users to avoid dangers, perform activities that exceed thephysical and psychophysiological capabilities of humans, amongmany other uses that previously seemed unrealistic (Hutsul et al.,2022). The data collection and logistics functions of drones must beimplemented before optimal flight mission planning. The collec-tion of geodata throughby drones has witnessed the highest growth(Berra and Peppa, 2020) in the second decade of the 21st century.

Drones are seen as a key technology that will enhance and im-prove a number of important services and processes, supportedby the characteristics gained during their application: 1) energyefficiency; 2) speed; 3) security; 4) low cost (Alyassi et al., 2023).Small drones typically use less energy per kilometer of cargo trans-ported than delivery trucks. Optimal energy efficiency is achievedwhen transporting light loads over short distances (within 4 km)(Stolaroff et al., 2018). The speed of drones is achieved when thereis no traffic congestion and there is a minimum number of obsta-cles on the way. The safety of drones is related to their ability to beused for tasks and missions that could potentially harm humans.Expanding and improving the capabilities of drones helps reducethe cost of operating them.Operating a drone always requires complex training of the op-erator. Rodríguez-Fernández et al. (2017) conducted a study onhuman factors in the field of control systems to improve operatorproductivity. Advances in drone autonomy have shifted the role ofthe operator to supervision, with the operator primarily involved inhigh-level mission control rather than manual low-altitude flightcontrol. Increasing levels of autonomy and automation have cre-ated a need for faster and safer systems to perform complex droneoperations (Thibbotuwawa et al., 2020).Control and navigation are essential aspects of drone technology.The initial development of drone guidance and navigation relied onGPS with limited accuracy, which was later replaced through theintegration of GPS and Inertial Navigation System (INS) with visualphotogrammetry. Future trends focus on the use of advanced arti-ficial intelligence and computer vision algorithms for navigation(Budiyono and Higashino, 2023). Given the substantial cost of suchsensors, a more economical solution is the use of Real-Time Kine-matic (RTK) positioning, whereby the accuracy of the on-boardGlobal Navigation Satellite Systems (GNSS) receiver is improved viaa correction signal sent by a fixed base station. Such RTK systems intheory allow for the absolute position of the UAV to be determinedto less than ten centimeters (Ekaso et al., 2020).Much research on drones has focused on increasing the auton-omy of drones and the ability to perform pre-planned missions.Autonomy increases the economic efficiency of their operations.In terms of autonomy not operated by a pilot, current militarydrones are capable of performing entire pre-planned missions au-tonomously, often only requiring supervision to address real-timechanges that result in changes in flight plans depending on dynamicchanges in the environment (Miller et al., 2007). One of the currentobstacles, overcoming which will mark a new development in thefields of logistics, e-commerce, video surveillance, etc., is beyondvisual line of sight (BVLOS) flights (Ebeid et al., 2018).Ramírez-Atencia et al. (2014) define the mission planning prob-lem as the time constraint satisfaction problem (TCSP). Nikoloset al. (2003) define a scalable algorithm for drone navigation envi-ronments that is capable of generating offline and online optimalpaths. The further development of drone control strategies is fore-cast to take two separate paths, one of which putting the operatorin control of several vehicles (agents) at the same time. Therefore,multi-agent methods (MAPF – Multi-Agent Path Finding) must beconsidered when planning missions to avoid possible collisions ina swarm of drones (Ho et al., 2022).Remote methods make it possible to obtain objective, opera-tional and simultaneous data over large areas. They allow for theestablishment of real boundaries and the identification of integralobjects; the identification of patterns of territorial distribution, for-mation factors, operational features, man-made modifications, etc.Drones are becoming popular among providers of geospatialdata due to the relatively low cost of sensors/cameras equipment aswell as the high speed of data collection and processing in the fieldof interest to create: orthomosaic sounds, digital terrain models,large-scale terrain plans, etc. (Karpinskyi and Lazorenko-Hevel,2018).Overall, planning a photogrammetric mission entails identify-
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Table 1. Criteria for the optimality of the flight mission of civilian UAVs
Data source Logistics

tasks

Spatial
data col-
lection

Load capacity + –Positioning accuracy – +Requirements for speed of movement + +Minimization of time costs + –Distance minimization + +Minimization of battery energy consumption + +Mapping – +

ing the flyover locations and specifying the actions the vehicle willundertake (such as capturing photos) within a designated time-frame. The predetermined geometric elements (azimuth, distance,altitude) have a direct impact on the ultimate quality of the spatialdata. Additionally, such factors as: the drone’s flight area, includingmaximum flight time, speed, altitude, and distance, along with theinformation gathered by the sensor, as well as the orientation andposition of the captured image, are also established (Gómez-Lópezet al., 2020).

2 Justification of the optimality criterion of the
flight mission

Optimum (from Latin "optimus" – best; in English "optimal", inGerman "optimal") – the best possible choice for something, themost suitable for a given task, under given conditions. The varietyof tasks applied determines the definition of the optimality criterionby combining one or more conditions (Table 1). A flight mission canbe described as a target to attain. The planning of a drone missioninvolves identifying the locations to be visited (waypoints) and thetasks the vehicle can perform, such as: loading or unloading cargoand taking videos or photographs, usually within a certain timeframe. In the context of our study, the purpose of the flight missionis precisely expressed in demonstrating the optimality of geodatacollection.A review of the literature on the topic of determining decisioncriteria when planning an unmanned aerial vehicle mission is con-vincing due to their large number and complexity (Thibbotuwawa,2019; Thibbotuwawa et al., 2019). The decision space encompassesfactors related to routing and planning, variations in weather con-ditions, technical specifications of the drone, and energy consump-tion influenced by weather conditions, as well as payloads carried bythe drone, avoiding collisions with moving objects and stationaryobstacles (Thibbotuwawa et al., 2020). All of these factors highlightthe capability and the complexity of mission planning, as it is diffi-cult to create models that consider all of these influential aspects atonce (Thibbotuwawa, 2019). By far the most important constraintof any mission is minimizing the risk of losing the drone (Stecz andGromada, 2020).The main difference between drones for logistics and spatialdata collection lies in the priorities placed on them. Logistics dronesfocus on minimizing payload and time, while spatial data collectiondrones focus on positioning accuracy and mapping quality. Mini-mizing distance and battery power consumption are high-prioritycriteria for logistics and spatial data collection missions becausethey affect the efficiency, and quality of the mission. For logis-tics, these criteria are important to ensure fast, dependable, andcost-effective delivery, while for spatial data collection, they helpenhance the precision, range, and quality of the gathered data.In recent times, methods of optimizing flight missions are pri-marily categorized into three types: minimum trajectory optimiza-tion, hard constraints, and soft constraint optimization (Yu et al.,2021). Hard constraint optimization establishes boundary values,

whereas soft constraint optimization considers connection strengthto help the drone navigate around obstacles. Contemporary meth-ods frequently integrate pathfinding and trajectory optimization todevelop a safe, smooth, and adaptable mission suitable for droneoperations.Careful mission preparation is a prerequisite for a successful out-come, subject to specific legal constraints. In numerous countries,civil aviation authorities are striving to establish suitable rules andregulations to enhance the safety of drone operations (EASA, 2023).For example, no-fly zones are designated areas of airspace that arerestricted above a specific landmark, event, or geographic regionin which manned or unmanned aircraft are prohibited from flyingunless specifically authorized.The rapid growth of UAVs in recent years and the diversity oftheir usage at the global level have led to significant regulatory dif-ferences and discussions on the effectiveness of their operation andthe minimization of the associated risks. Although at the interna-tional level there exist general recommendations for UAVs devel-oped by the International Civil Aviation Organization (ICAO), thisarea requires further research and improvement of regulatory acts.According to Henderson (2022), there has not yet been a systematicscientific study that analyzes the views of end-users regulating thesystem regarding UAV, which, in our visit, may lead to additionalcosts during their use.In general, the task of planning a flight, especially planning aphotogrammetry exercise for collecting spatial data, is essentiallysimilar to the well-known task of terrain navigation, which is ageneralization of the "traveling salesman" task. When addressingthe traveling salesman problem, the optimality criteria for the path(shortest, least expensive, global criteria, etc.) and the correspond-ing distance, cost, and other variables’ matrices are specified. Itis often stipulated that the path must pass through each point onthe path only once, in which case the solution lies in a Hamiltoniancycle.Operating in complex environments, such as mountainousregions, requires more sophisticated planning strategies. Thisreaches beyond such standard approaches as 2D terrain mappingand waypoint selection based on ground sampling distance andoverlap parameters. Although terrain models are publicly avail-able, users can use their own high-resolution digital terrain models(DTMs, including surfaces) to improve image acquisition soundsin terms of coverage, overlap, and resolution. This significantlyreduces the risk of travel in un-covered areas. Simple 2D path plan-ning methods cannot manage complex 3D environments with anumber of constraints and structural uncertainties (Yang et al.,2014).Changing the distance to the photographed object primarilyaffects the ground sampling distance/spatial resolution of the im-age. When the distance to the object changes following, amongothers, the change in relief, the overlap of the image changes, theground sampling distance/spatial resolution changes. Since thedistance from the object of photography to the UAV is usually smallcompared to light aircraft (airplanes), the differences in terrainsignificantly affect the quality of the output data. A single flightwithout considering the terrain elevation will affect the pixel size,which will not be the same throughout the project due to variationsin the terrain (Medvedskyi et al., 2024).The drone’s trajectory over an area with different surface eleva-tions results in increased pixel size, which reduces the detail andaccuracy of the data in the lower elevation areas. The flight altitudevariation due to the complex terrain of the area affects the qualityof the overlapping flight sections. Images whose adjacent scenes donot overlap will create serious problems for photogrammetry andmay render part of the data unusable for further use.A study by Lopes Bento et al. (2022) assessed the accuracy of dig-ital elevation models acquired by drones with different parameters,vertical and horizontal overlap ratios, and flight paths. The find-ings obtained by the drones were compared with data from GNSS
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Figure 1. UAV path planning (Yu et al., 2021)

topographic surveying in RTK mode. Twelve aerial plans strate-gies were developed, each featuring a different overlapping area(90×90, 80×80, 80×60, 70×50, 70×30, and 60×40%) and direc-tions (horizontal and vertical to the landing line). The altitude andspeed were established at 90m and 3 m/s, respectively, along withthe ground sampling distance of 0.1m for all flights. The 70×50%overlap yielded reliable results while requiring less flight time anddata processing – being approximately 1.5 hours shorter than the90×90% overlap. This configuration achieved a root mean squareerror (RMSE) of 0.589m and met the minimum overlap neededfor aerial photogrammetry of 60×30%. Additionally, the resultswere statistically comparable to those obtained from higher overlaplevels of 90×90% and 80×80%.

3 Comparison of optimal path search algo-
rithms

The motion planning issue can be broadly described as the endeavorto determine trajectories that avoid collisions between the initialand final states. This process must also meet specific kinematicand dynamic requirements.The classification of existing algorithms for finding and opti-mizing suitable flight paths for drones (Yu et al., 2021) is given inFigure 1. They are conditionally divided into two groups from theinitial discrete trajectory search and the background optimizationof a continuous trajectory.Elmokadem and Savkin (2021) classify classical short path plan-ning algorithms into:
• search-based algorithms (e.g., A∗, D∗, Dijkstra, and others);• potential field algorithms (e.g., navigation functions, wavefrontplans, and others);• geometric algorithms (e.g., cell decomposition, generalizedVoronoi diagrams, visualization graphs, and others);• pattern-based algorithms (e.g., BIT, FMT, PRM, RRT, RRT*, andothers);• optimization-based algorithms (genetic algorithms, PSO, andothers).

Many of these short path planning algorithms can determinethe best route if they exist due to the need for complete knowledgeof the environment, which is not suitable for dynamic and unfamil-iar surroundings. For more details on these planning algorithms,Elmokadem and Savkin (2021), refer to LaValle (2006).The main challenge with short path finding problems is the lackof a universal algorithm to solve them. These algorithms can beeasily implemented with a small number of graph vertices. The pathnetwork is illustrated as a graph model, and the graph structurecan change under the influence of many distinct factors. As theirnumber increases, finding the optimal path becomes more difficult(Table 2).

Table 2. Computational complexity of algorithms for finding the short-est path
Algorithm Complexity Calculated

complexity,
calculation
date

Author of the
algorithm,
date of ap-
pearance

Dijkstra O(n2 +m) Alekseevand Talanov(2005); Cor-men et al.(2009)

Dijkstra(1959)

Bellman-Ford O(n×m) Cormen et al.(2009); Lev-itin (2006)
Bellman(1958)

Search algorithm
A∗

O(log(h(x)) Cormen et al.(2009) Moore (1959)
Floyd-Warshall O(n3) (Levitin,2006) Hart et al.(1968)Lee’s algorithm(wave) O(n2) – –

Marking: O – notation of the complexity assessment of algo-rithms (Bachmann–Landau notation);m– number of edges; n– number of vertices; h(x) – heuristic estimation of the distancefrom the considered vertex to the final one.
Drone navigation algorithms based on environmental informa-tion acquisition are classified as opportunistic or deliberate (globalplanning), perceptual (local planning), and hybrid (Elmokademand Savkin, 2021).In recent years computational intelligence techniques have beenincreasingly employed to tackle combinatorial optimization issues.These algorithms have a number of undeniable advantages, in-cluding being sufficiently simple to be widely implemented, theirflexibility of parameters, high efficiency, and the ability to findglobal solutions or ones close to them in polynomial time (Hutsul,2019).In classical theory of artificial intelligence, an intelligent sys-tem is created to solve a problem that contains all the necessaryresources. In multi-agent system theory, the opposite principle isused: It is assumed that a single agent has an incomplete view ofthe overall problem, so a set of agents and their interactions arecreated. The overall behavior of the entire system is considered tobe the result of the interactions of individual agents.Multi-agent optimization algorithms are based on the definitionof the term agent. In a broad sense, an agent is a part of a systemthat is responsible for making decisions. In a more rigorous sense,agents model certain biological objects and their behavior (e.g., anant or bee algorithm). Each individual agent is quite primitive andpossesses knowledge only about a certain local situation, but a col-lection (aggregate) of such objects demonstrates an extraordinaryability to solve the most complex NP-complete problems of our time(e.g., the traveling salesman problem, task scheduling,). Currently,there exist three main multi-agent optimization algorithms: antalgorithm (ACO), bee colony algorithm, and swarm optimization.Most ACO methods can be used on a plane, without the need forconsidering the impact of terrain slopes on route selection. Mean-while, the parallel ant colony approach enables planning withinthree-dimensional (3D) terrains. Rasterizing the map using theapplication of the bilinear interpolation method facilitates the tran-sition from spatial to planar based on a certain slope step. Modellingresults show that it is suitable for path planning on 3D surfaces (Hut-sul and Karpinskyi, 2021). Moreover, with the evolution of area andparallel computation, its performance increases threefold (Zhanget al., 2017). The modelling results (Zhang et al., 2010) also demon-strate that ACO can perform drone trajectory planning efficiently.In a multi-entity system, tasks are distributed among agents,each of which is considered a member of a group or organization.
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Figure 2. Taxonomy of UAV three-dimensional path planning algo-rithms (Yang et al., 2014)

Task assignment entails allocating roles to each member of thegroup while defining their level of responsibility and the necessaryexperience requirements. Each autonomous agent decides on thefeasibility of utilizing a cell to transmit a segment of a linear objectas a future trajectory. At the same time, the initial data can begeospatial information layers (e.g., DTM, a no-fly zone). Deliberate(opportunistic) approaches to comprehensive planning are basedon an environmental approach presented in the form of a map.Therefore, with a high probability, it is possible to immediately"reject" parts of the territory of the layers, the conditional adoptionof which would contradict current regulatory requirements or incursignificant energy costs.Sensor-based (local planning) approaches rely directly onpresent sensor data or a concise history of sensor observations (i.e.,a local map) to devise safe trajectories in real-time. The planninghorizon can frequently be quite short, set for a brief period in ad-vance, or it may occur during each control update cycle at progres-sively shorter time intervals.Path planning in 3D environments has an enormous potential,but unlike 2D path planning, the difficulty increases exponentiallyas the dynamic and kinematic constraints become more complex.Many algorithms for 3D drone trajectory planning have been devel-oped. Figure 2 shows the systematics of modern approaches to 3Dtrajectory planning algorithms (Yang et al., 2014).Sampling-based algorithmic methods require previouslyknown information about the work site where the drone isoperating. This is usually an environmental sample in the form ofa collection of nodes or alternative structures through which theoptimal path is randomly searched.Optimal node-based algorithms create a path using a collectionof nodes. Sampling-based algorithms can be classified into twotypes, with one being passive, like a probabilistic path map (PRM)and cannot find an output on its own, the other is in the form ofcomplementary algorithms that search for an optimal path. Thesealgorithms search through a collection of nodes on a graph or mapwhere initial information gathering and processing tasks have beencompleted.Mathematical model-based algorithms include approaches likelinear programming and optimal control, among others. Thesetechniques depict both the environment and the entity, consideringkinematic and dynamic constraints. They then associate the costfunction with various inequalities or equations to obtain the optimalsolution.Biomimetic algorithms are heuristic methods coming from sim-ulating biological behavior for solving a problem. This way of plan-ning the path eliminates the process of building complex unstruc-tured models of the environment and provides an efficient searchmethod that allows you to gradually approach the goal. This type ofalgorithm can only work in the offline mode. Current 3D trajectoryplanning algorithms are often integrated with other algorithms orcombined in turn to plan optimal trajectories (optimal in terms oflength, time, energy, or threats).Multi-combination-based algorithms solve problems when theproposed algorithm cannot achieve optimal results individually.Table 3 presents a visual idea of the time complexity when applying

each type of 3D drone trajectory planning method.

4 Overview of popular flight mission planning
software

Current technologies (cloud computing, big data) cannot solve theproblems of pathfinding and object localization, as drones are notcapable of finding solutions on their own (Aggarwal and Kumar,2020).Today, the market offers a wide variety of platforms that arecompatible with different mission planners. These planners canbe categorized into three main groups: The first category includesproprietary software designed for specific platforms (eMotion orMAVinci Desktop; Mikrokopter Tool; mdCockpit or DJI GroundStation, etc.); the second – open-source mission planning tools(ArduPilot; Mission Planner, RPAS, etc.); the third – universal soft-ware that is not specific to a specific platform (QGroundControl).When working with drone modelling and control, it is importantto distinguish between two types of software: autopilot softwareand ground control station (GCS) software. A comparative analysisbetween popular autopilot programs and ground control stations isprovided by Hentati et al. (2018).eMotion is beginner-friendly but equipped with advanced fea-tures for the most demanding tasks. It lets you quickly launch yourdrone and focus more on analyzing geospatial data. eMotion allowsfor terrain tracking by default, also facilitating the import of ownelevation data. Exported KML flight trajectories can be verified inGoogle Earth Pro. Moreover, eMotion connects wirelessly to theuser’s existing drones, industry cloud solutions, geodetic layer basestations, airspace data, and it even includes real-time weather up-dates. If the map data has been downloaded in advance, offlinework is supported in case of loss of internet connection. Loss ofradio contact for more than 5 minutes will return the drone to thehome point and land it.The Mikrokopter tool facilitates the uploading of imagery byconnecting to a browser-based mapping tool to generate a requiredimage (with geodata) of the desired area of interest. The waypointgenerator allows the user to create flight paths to capture terrainand circles of points of interest. There is also a panoramic flight pathgenerator and a raster and circle drawing tool to support manualplacement of waypoints. Creating a polygon-based scan area is notprovided.DJI Ground Station is available as one of the DJI drone controloptions with PC or iPad. Ground Station for PC uses the GoogleEarth plugin. Thanks to the 3D platform, the viewing direction isnot limited to the lowest point. The software stores satellite imagesfrom Google Earth, allowing offline operation. The PC ground sta-tion’s mission planning module has different models for generatingflight trajectories. The initial step involves establishing a boundingrectangle for the required flight trajectory. Following this, variousshapes such as point, line, triangle, rectangle, circle, or sweep canbe selected. The sweep option refers to a band sweep that includeswaypoints solely at the turning points. In contrast to the Asctecmatrix, there are no intermediate waypoints between these turningpoints. All waypoints are maintained at the same elevation, whichneeds to be defined at this stage. After leaving the route templatetoolbar, the elevation of each waypoint can be adjusted (Israel et al.,2015).ArduPilot is a versatile, open-source autopilot system that facil-itates the operation of fully autonomous drones, ranging from FPVracing models to aerial photography platforms, ground vehicles,and even underwater drones. ArduPilot is distinct due to its com-prehensive features and ease of use, making it a well-supportedopen-source project. It enables users to control a wide variety of au-tonomous systems through compatible ground station applications(ArduPilot Copter, 2021a). Specifically, the ArduCopter platform,as part of the broader ArduPilot ecosystem, fully integrates with
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Table 3. Computational complexity of algorithms for finding the shortest path
Method Time Complexity S/D Environment Real-Time

Sampling Based Algorithms O(n log n) ≤ T ≤ O(n2) S and D On-lineNode Based Algorithms O(m log n) ≤ T ≤ O(n2) S and D On-lineMathematic Model Based Algorithms Depending on the polynomial equation S and D Off-lineBioinspired Algorithms T ≥ O(n2) S Off-lineMultifusion Based Algorithms O(n log n) ≤ T Depending on the algorithm On-line

multirotor systems (such as: quadcopters, hexacopters, and heli-copters), in addition to supporting VTOL aircraft. In common usage,ArduPilot often refers to the firmware installed on controllers toenable autonomous control. However, it is frequently mentionedalongside its companion ground control software, Mission Planner.Mission Planner, developed by Michael Oborn (ArduPilot Copter,2021b), simplifies the creation of autonomous missions by usingstraightforward inputs through Google MapsTM (or other third-party maps) supported by Google Maps. Mission Planner can bedefined as a ground control station for an aircraft, helicopter, orany other robot (Didulescu et al., 2018). Mission Planner also offersmission simulation capabilities, allowing users to predict the move-ment and behavior of a vehicle without endangering the real drone(Chintanadilok et al., 2022). This software provides two methods ofgeotagging images from mission logs. Geotagged images facilitatethe integration of multiple images taken during mission/cameraoperations, which is essential for such applications as photogram-metry, orthophotogrammetry, and 3D terrain modelling. MissionPlanner automatically checks for updates at startup and notifies theuser if an update is available. The latest version of Mission Plannersoftware should always be used.Remotely Piloted Aircraft System (RPAS) is an open-source toolfor flight planning. Designed for high-precision photometric map-ping, the tool incorporates planning capabilities commonly foundin professional mapping systems for manned aircraft, along withinnovative features addressing GPS signal masking in challeng-ing terrains, such as mountainous regions. By combining real 3Dterrain for mission planning with selected advanced features, thetool will significantly facilitate the mission preparation process.Although the terrain model is available globally, users can use theirown high-resolution digital terrain model (including surface) to im-prove the planning of imagery scene locations in terms of coverage,overlap, and resolution. The geodetic system employed in missionplanning is the World Geodetic System 1984 (WGS84). Geometricelevations are linked to the Earth Gravity Model 1996 (EGM96). Thesystem plans offline missions in high-resolution 3D space.QGroundControl is an open-source application that providescomprehensive support for ground stations, flight control, andmulti-drone configurations using MAVLink to operate ArduPilotand PX4 vehicles. A key advantage of QGroundControl is its intuitiveinterface, which is designed for beginners while also offering exten-sive features for experienced users. It includes an easy-to-navigateroute planning interface that facilitates automated flights throughwaypoint insertion. Additionally, it allows users to view a flightmap that displays vehicle locations, flight paths, waypoints, vehicleequipment, and live video streaming. However, QGroundControl,like other ground station software, only allows for the creation ofplans manually by inserting waypoints for each drone, meaningit does not provide an automated planning algorithm. It does notallow you to create missions or drone zones to create missions tobe scheduled automatically. However, QGroundControl only allowsviewing of the waypoint map for one drone at a time, making itdifficult for multi-UAV missions to control all vehicles at the sametime (Ramirez-Atencia and Camacho, 2018).

5 Formation of recommendations for flight
tasks for the collection of spatial data

Effective and flexible data collection methods are one of the crucialelements of military operations. Geospatial intelligence, known inEnglish-speaking sources under the acronym GEOINT, GeoIntel orGSI, is an intelligence activity that involves the study and analysis ofgeospatial imagery and data, so that physical features and processeslocated geographically on the globe are described, evaluated, andvisualized. The components of geospatial intelligence are: imagery,optical intelligence (species) and geospatial information.Drones equipped with RTK can attain centimeter-level position-ing accuracy, allowing for the absolute GNSS coordinates of groundtargets to be derived from both the relative positions of these tar-gets and the drones, as well as from GNSS coordinates. The primarysource of error is largely dependent on the relative position errormeasured from the data image.The hardware of the UAV remote sensing platform is divided intotwo components: the UAV flight platform and the installed sensors.One of the primary advantages of UAV remote sensing, in contrastto remote sensing satellites, is the flexibility to replace sensors.This capability enables researchers to utilize the same equipmentby attaching different sensors to gather various types of spatialinformation. The choice of sensors to use is mainly dependenton the information requirements. The weight of the sensors andtheir installation reduces the flight range of the drone. Under suchconditions, the parameters of changing the "cost" of covering theroute and obtaining "profit" will be interdependent and decisive.Drones typically utilize two primary types of sensors: visual sen-sors and 3D sensors. Among the most frequently employed sensorsare thermal sensors, RGB cameras, multispectral cameras, hyper-spectral cameras, and LIDAR. Less common sensors include: smallradars, gas sensors, and air particle sensors (Zhang and Zhu, 2023).Additionally, ultrasonic, infrared, and time-of-flight vision sensorscan be integrated into UAV communication systems to facilitateprecise 3D positioning and monitor real-time collision detectionand avoidance for UAVs (Paredes et al., 2017).The flight altitude of a drone is crucial for determining the spa-tial resolution of the ground target information gathered by thesensors. Most drones operate at a fixed altitude while collectingdata, a flight pattern that is suitable only for tracking targets onflat terrain. For targets that necessitate altitude information (e.g.,those listed in Šipoš and Gleich (2020); Barnawi et al. (2023)), it isnecessary to generate the digital surface model (DSM) in advanceand take their surface altitude into account for planning subsequentflight missions.Most mission planners rely on elevation data from Google Earth.The platform sometimes allows users to upload their own DEM files.Geostatistical analysis conducted in particular by Rusli et al. (2014)provides evidence that Google Earth DSM correlate well with ASTERand SRTM data. Hutsul and Smirnov (2017) determined the accu-racy of the ASTER and SRTM global models relative to topographicmap data at scales of 1:25,000, 1:50,000, and 1:100,000 for areaswith different terrain conditions: flat, hilly, and mountainous. Theresults showed that the height scale of 1:25,000 was only suitablefor flat areas; 1:50,000 – for mountainous areas; 1:100,000 – forhighland area. Therefore, using DSM (by ASTER or SRTM data) toplan low-altitude drone missions from such altitude data sources
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can be dangerous.Without a dependable battery consumption model, long-rangedrone routing can lead to downtime and excessive operating costs(Alyassi et al., 2023). Incorrectly assessed battery levels (e.g., due toignoring adverse weather conditions) can reduce service quality oreven cause mission failures (e.g., when a drone discharges beforereaching a charging station or returning to a depot). Meanwhile,frequent skip charging can cause unnecessary delays and excessivepower consumption.LiPo-based batteries are used for targeted operations, while hy-drogen fuel cells are used for long-duration drone missions. Using"green" energy sources (solar, wind) to charge drone batteries canhelp increase energy efficiency.Some initial planning parameters may be uncertain as dronesoperate in dynamic, real-time environments. Weather conditions(changes in wind strength) increase the drone’s power consump-tion. Ambient temperature has a significant impact on the energycapacity of the batteries utilized in drones. Cold temperatures canadversely affect battery performance until they reach a warmerstate (Huawei, 2016).Wind can be categorized into two types based on the character-istics of the airflow: turbulent and laminar (Jayaweera and Hanoun,2022). In turbulent winds, air particles experience rapidly fluc-tuating speeds, influenced by various factors such as mountains,trees, sudden and irregular changes in temperature gradients, andfriction, which cause velocity variations. Conversely, air particlesin laminar winds move at consistently or slightly varying speeds,resulting in smooth airflow in any open environment. The impactof turbulent and laminar wind disturbances on drones varies ac-cording to wind speed, air particle mass, inertia, and drone speed.Therefore, the influence of wind will manifest itself in a completelydifferent ways for rotary aircraft and drones. Modelling of the inter-action between wind and aircraft-type drones has been performed(Choi et al., 2015) and it has been demonstrated that equippingan airborne data system (ADS) or a GPS sensor in combinationwith an INS allows for accurate measurements of air winds. Inpropeller-type drones, the propeller strongly influences the air-flow around the drone (Meier et al., 2022), so measuring air flowswith an anemometer or Pitot tube is not appropriate and only acombination of INS and GPS data must be considered.The relative speed of the drone is the main factor that deter-mines the power consumption. Direction and wind speed are re-lated to the flight speed, because, depending on the wind direction,it can positively or negatively affect the flight behavior of the drone(Thibbotuwawa et al., 2018). The optimal speed is the speed withthe least drag.Drones frequently carry various types of payloads, such as pho-tographic equipment or packages. The effect of differing payloadweights can be substantial, necessitating consideration in the de-velopment of energy consumption models (Alyassi et al., 2023).The diversity of modern drone missions and their increasingcomplexity require the development of reliable flight control sys-tems for drones. Based on parametric and structural methods of sys-tem synthesis, algorithms and programs for autonomous dronescontrol the laws in the modes of directional, speed and altitudestability, as well as control guidance, including the trajectory ofmovement.

6 Conclusions

The past few years have seen the popularity and use of drones inmany applications. Geodata is one of the many popular means ofanalyzing spatial features and phenomena, a tool for learning aboutthe world around us. They are used not only in geoinformatics butalso in other scientific fields, especially artificial intelligence.To obtain a uniform distribution of errors on the orthophoto-graph, it is recommended to calculate the aerial photography route

in areas with significant height overshoots considering the DSMand select control points in flat and open areas.Data collection continues to be the costliest and the most time-intensive component of the majority of GIS projects, often con-suming as much as 60% to 80% of the total time and budget. Thesignificant disparity between the high expenses associated withacquiring data and the relatively low levels of data utilization ne-cessitates a new strategy to address and improve this situation.Path planning is a critical issue in drone research, focusing onfinding the most efficient route between the starting point and thedestination. The challenge of determining an optimal path for adrone is markedly different from that of identifying a basic routefor a ground vehicle.Most modern mission planning software is not capable of op-timizing flights based on, for example, the prevailing winds, thedrone type and the mission. Therefore, research in this field andanalysis of existing tools is a necessary scientific and technical tasknowadays.Off-line path planning methods cannot guarantee reliability inthe face of model uncertainty, while online path planning methodsmay not provide optimal solutions to meet constraints such as timeor distance constraints. Hybrid algorithms that combine the ad-vantages of off-line and online approaches are the future researchdirection.
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