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Abstract
Landslides near critical infrastructure, such as power transmission lines, represent signi�cant safety and economic risks,
especially in regions prone to geohazards. Early detection and monitoring are essential to mitigate potential damage.
Interferometric Synthetic Aperture Radar (InSAR) technology has become a powerful tool for detecting slow-moving
landslides and monitoring millimetre-scale ground displacements over time. Among the various satellite data sources,
Sentinel-1 provides consistent and high-resolution data, advancing research in landslide kinematics and instability
prediction. However, accurate delineation of landslide-a�ected areas remains particularly challenging in densely vegetated
regions, where signal decorrelation limits traditional methods. To address these limitations, this study introduces a
modi�ed Distributed Scatterer InSAR (DSI) method designed to assess landslide velocity more e�ectively. The proposed
approach incorporates a regularization technique into the covariance matrix estimation process, reducing phase estimation
bias and improving the signal-to-noise ratio of displacement time series. The modi�ed DSI method was applied to the Faer
Town landslide in Guizhou Province, Southwest China. Results from synthetic and real-data experiments demonstrate
signi�cant improvements in the accuracy and reliability of landslide velocity detection, with a higher density of reliable
measurement points compared to traditional approaches. These �ndings highlight the method’s potential for enhancing
landslide monitoring and risk mitigation in challenging environments.
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1 Introduction

Due to fragile geological conditions, rainfall, weathering pro-
cesses, and human activities, landslides in Southwest China
have caused signi�cant damage to local residents (Jia et al.,
2022; Zhou et al., 2020; Zhang et al., 2021; Dai et al., 2022).
Faer Town, located in Shuicheng County, Guizhou Province,
China, has been particularly a�ected by extensive underground

coal mining activities. These activities disrupt the stress dis-
tribution of the overlying rock strata, especially in karst moun-
tainous regions with fragile geological conditions, often lead-
ing to dangerous rockfalls or landslides (Li et al., 2022; Guo
et al., 2022; Hu et al., 2018), which can cause incalculable dam-
age to transmission lines along the path. Reports indicate that
coal mining activities in Faer Town have resulted in approx-
imately 80 landslides, a�ecting an area of about 2.8 million
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square meters (Jiao et al., 2013; Wu et al., 2023).
Previous studies on the Faer landslide have mainly focused

on �eld surveys, numerical simulations, microseismic source
location, rockfall deposition simulation, and sensitivity predic-
tion (Jiao et al., 2013; Wu et al., 2023). However, there has been
limited application of techniques for the quantitative monitor-
ing of landslide deformation. Moreover, past research has pri-
marily concentrated on landslides that have already occurred,
leaving the movement processes of potentially unstable slopes
largely unexplored. Thus, it is essential to investigate the spa-
tial extent, temporal evolution, and potential risk zones for
transmission lines impacted by the Faer landslide.
Interferometric Synthetic Aperture Radar (InSAR) technol-

ogy, known for its wide coverage and high spatial and temporal
resolution, has been successfully applied to landslide deforma-
tion detection and measurement (He et al., 2023a; Fobert et al.,
2021; Moretto et al., 2021; van Natijne et al., 2022; Li et al., 2021;
He et al., 2023b; Dai et al., 2022). Over the past two decades,
multi-temporal InSAR methods based on Persistent Scatterer
(PS) (Ferretti et al., 2001) or Distributed Scatterer (DS) (Fer-
retti et al., 2011) have been proposed to identify potential risks
and retrieve deformation time series for landslides. The goal
of Persistent Scatterer Interferometry (PSI) is to select stable
targets and remove atmospheric phase screens and other noise
to obtain accurate deformation results. A series of PSI tech-
niques, such as Interferometric Point Target Analysis (IPTA)
(Werner et al., 2003), Stanford Method for Persistent Scatter-
ers (StaMPS) (Hooper, 2008), and Quasi-Persistent Scatterers
(Perissin and Wang, 2011), have advanced the application of
InSAR in landslide monitoring. On the other hand, the Small
Baseline Subset (SBAS) is a typical method for DS interferom-
etry (DSI) (Berardino et al., 2002), which mitigates decorrela-
tion by selecting interferograms with short temporal and spa-
tial baselines. Improved SBAS methods, such as Multiscale In-
SAR Time Series (Hetland et al., 2012), Intermittent SBAS (IS-
BAS) (Bateson et al., 2015), and the Python-based Miami In-
SAR Time Series software (MintPy) (Yunjun et al., 2019), have
been developed to minimize decorrelation e�ects. As another
framework of DSI, SqueeSAR was proposed to explore a solu-
tion using a redundant network of all possible interferograms
with maximum likelihood estimation (Ferretti et al., 2011).
Despite the advancements in InSAR technology, its applica-

tion for landslide monitoring in mountainous areas with dense
vegetation faces signi�cant challenges. Key limiting factors
include spatiotemporal decorrelation, complex terrain, and at-
mospheric disturbances, all of which reduce the accuracy of
InSAR measurements. These challenges are particularly pro-
nounced in regions traversed by critical infrastructure such as
transmission lines, where accurate monitoring is essential for
risk mitigation. Karst landslides, common in such regions, are
often covered by dense vegetation, which signi�cantly reduces
the number of persistent scatterer (PS) targets that can be re-
liably identi�ed. This scarcity of PS targets results in limited
deformation data, making it di�cult to track landslide activity
with high precision.
Additionally, the distributed scatterer (DS) method, which

uses the maximum likelihood estimation criterion, often suf-
fers from considerable computational complexity (Ansari et al.,
2018). This heavy computational load complicates the estab-
lishment of robust relationships between observed deforma-
tion patterns and underlying failure mechanisms, a critical re-
quirement for understanding landslide dynamics and predict-
ing future behaviour.
To address these challenges, researchers have explored al-

ternative methods to improve phase estimation accuracy in
vegetated regions. For instance, eigenvalue decomposition
(EVD) of the covariance matrix has been employed to esti-
mate the optimal phase of interferograms (Fornaro et al., 2015),

which enhances both the quantity and quality of coherent tar-
gets in densely vegetated areas. Other regularization strate-
gies have also shown promise in calibrating covariance matrix
magnitudes, including M-estimators, Hadamard–spectral reg-
ularization, and shrinkage techniques (Schmitt et al., 2014; Vu
et al., 2023; Zhao et al., 2023; Wang and Zhu, 2016). These
methods leverage the full exploitation of coherence, achieving
strong performance in scenarios where long-term coherence
can be maintained.
However, these approaches encounter limitations in fast-

decorrelation environments, where coherence levels approach
zero. In such cases, as demonstrated by recent studies, meth-
ods that rely on low-coherence interferometric pairs, while
bene�cial for improving phase estimation accuracy under per-
sistent scatterer interferometry (PSI) (Ferretti et al., 2001),
tend to underperform in distributed scatterer interferometry
(DSI) scenarios (Ferretti et al., 2011). The loss of coherence
in rapidly decorrelating landscapes, such as those a�ected by
vegetation and topographic complexity, severely hampers the
reliability of phase measurements and the accuracy of defor-
mation time series.
In this study, we introduce a novel regularization method

into the Distributed Scatterer InSAR technique, leveraging C-
band Sentinel-1 data to overcome the limitations posed by
dense vegetation and complex terrain. This method is applied
to detect potentially unstable slopes in the Faer landslide, a re-
gion characterized by high landslide risk due to both natural
and anthropogenic factors. The remainder of this paper is or-
ganized as follows: �rst, we introduced the study area, and the
SAR dataset used in the analysis, followed by a detailed expla-
nation of the methodological framework. We then presented
and discussed the results, highlighting the method’s e�ective-
ness in identifying landslide deformation. Finally, we summa-
rized the key �ndings and discussed the implications for future
landslide monitoring e�orts.

2 Materials and methods

2.1 Study region and datasets

The Faer landslide, located in Shuicheng County, China, oc-
curred in a region of rugged terrain in�uenced by tectonic ero-
sion and underground mining. This region, characterized by
multiple active landslides along the Beipan River slopes, re-
cently experienced a signi�cant landslide in Jichangzhen on
23 July 2019, causing substantial human and economic losses
(Dong et al., 2022). The area’s subtropical monsoon climate,
with abundant rainfall and dense vegetation, leads to rapid
decorrelation, making it an ideal test site for landslide body
detection using InSAR methods. For this study, we analysed
100 Sentinel-1 images acquired from ascending Track 128 be-
tween 4 December 2018 and 17 February 2023 (see Figure 1).
SAR image co-registration was performed using a two-step
strategy: �rst, external one-arc SRTM DEM data facilitated
geometrical co-registration (Ma et al., 2020) and topographic
phase removal; then, a network-based enhanced spectral di-
versity method (Ma et al., 2019) re�ned the accuracy to 0.001
pixel in the azimuth direction. Using the co-registered SLC im-
ages, we applied the sequential selection algorithm to identify
DS candidates for subsequent coherence matrix and phase esti-
mation. After phase estimation of all interferograms, we then
unwrapped all interferograms (Ma et al., 2021) and converted
them into the reference of the �rst-time acquisition. Then w
could �t the velocity from the time series using a 1-order poly-
nomial �t.
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Figure 1. Satellite image of the landslide region and the used datacoverage of Sentinel-1 SAR images of ascending Track 128

2.2 Modi�ed Distributed Scatterer InSAR

Over the past decade, phase triangularity has been demon-
strated as an e�ective constraint for improving the InSAR
phase signal-to-noise ratio (SNR) (Ferretti et al., 2011). One
of the most e�cient phase estimators based on this approach
is the Eigenvalue Maximization Interferometry (EMI) method
(Ansari et al., 2018), which derives the maximum likelihood es-
timation (MLE) of phase solutions by minimizing the smallest
eigenvector of the full covariance matrix. The mathematical
formulation for a single pixel is provided by Ansari et al. (2018,
2017):

Σ̂ = xxHn ,
φ̂ = argminφ

{
ξH(γ̂–1 ◦ Σ̂)ξ} . (1)

Here, φ̂ = 6 ξ denotes the estimated phase series, and ξ rep-
resents the minimum eigenvector of the Hadamard product
γ̂–1 ◦ Σ̂, where γ̂–1 is a key factor for weighting the noise level.
The superscript H indicates the Hermitian transpose. Σ̂ is the
estimated full covariance matrix, constructed fromm SLCs and
n pixels within a homogeneous region (Ferretti et al., 2011). γ̂
is the coherence matrix, consisting of the modulus of Σ̂, where
each element shown below represents the coherence between
two time nodes i and j,

γ̂i,j = ∑
p∈Ω

e
√–1{6 (xi,px∗j,p)}. (2)

The theoretical probability dense function of the covariance
matrix Σ̂ is formed by Deledalle et al. (2015):

p
(
Σ̂|Σ) = nnm

∣∣∣Σ̂∣∣∣n–m
Γm(n) |Σ|n e

–n·Tr(Σ–1Σ̂). (3)

Here, Tr denotes the matrix trace, and Γ represents the hy-
pergeometric function. When n < m, the covariance matrix Σ̂
becomes nearly singular, as its determinant approaches zero.
In this case, equation (3) is considered a degenerate distribu-
tion. Consequently, the coherence matrix γ̂ is not of full rank,
and its inverse γ̂–1 ampli�es the estimation error of γ̂, further
propagating this error to the estimation of φ̂.

For long time series, where m is typically large, the Sequen-
tial Estimator (Seq) method (Dong et al., 2022) can help reduce
the occurrence of singularities. Seq works by dividing the full
covariance matrix into several block diagonals and sequentially
compressing them into rank-1 subspace clusters. Through
subspace clustering, these block diagonals are connected to a
unique phase datum, resulting in an estimated phase with a
higher SNR than the original EMI method.
The size of the block diagonals in Seq is manually selected

by the user. For example, choosing a diagonal matrix size of
20 corresponds to a 120-day time baseline. In this case, the
sample pixel number only needs to be greater than 20 to reduce
the occurrence of singularities. However, an unresolved issue
from previous studies arises when the sample number is less
than the block diagonal matrix size, leaving the question of
how to improve the estimation of the precision matrix γ̂.
To suppress matrix singularity, regularization techniques

are commonly employed. A matrix can be made positive de�-
nite by either adding a small value to its diagonal or truncat-
ing small eigenvalues. However, determining the appropriate
value for minimizing the estimation error of γ̂ while maximiz-
ing the estimation accuracy of φ̂ is challenging.
To address this, we propose applying a non-thresholding

regularization method to Seq+EMI, aiming to further improve
InSAR phase estimation accuracy. This new regularization ap-
proach conditions the coherence matrix by adding a scaled unit
matrix I as:

ρ = λ(γ̂)max – λ(γ̂)minMmaxMmax – 1 . (4)

Here, the eigenvalue λ of the symmetric positive de�nite
coherence matrix γ̂ is de�ned as λ(γ̂)max ≥ . . . ≥ λ(γ̂)min >0, and the threshold condition number Mmax is set between1 ≤ Mmax ≤ M. The condition number M in the L2 norm is
expressed as M = λ(γ̂)max

λ(γ̂)min . In this context, the reconditionedcoherence matrix γ̂ is formed by:
γ̂r = γ̂ + ρI. (5)

Equation (5) represents a regularization technique for least
squares problems, functioning similarly to Tikhonov regular-
ization. However, in the context of EMI, ridge regression is
applied solely to recondition the coherence matrix. The regu-
larized matrix is then inverted and used as a weighting matrix
in the phase optimization process.

2.3 Phase stacking for the reliable velocity estimation

Slope instability often occurs prior to sliding events and is ac-
companied by signi�cant deformation characteristics. The reg-
istration of Sentinel-1 images is based on a cross-correlation
optimization algorithm, which can estimate the o�sets in the
slant range and azimuth directions with sub-pixel accuracy.
A direct method for deriving the deformation rate from a set
of unwrapped interferograms involves dividing the sum of the
phases by the sum of the time intervals (Eq. 1). However, the
phase stacking method weights the interferograms based on
their temporal baselines, e�ectively suppressing atmospheric
delays and random noise in the time domain. Although the av-
erage deformation rate represents only the linear deformation
component over the observation period, it can serve as an in-
dicator for identifying locations with signi�cant surface defor-
mation and recognizing potentially unstable areas. Therefore,
this method is employed to extract the deformation rate in Faer
County.
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3 Results

3.1 Synthetic data test on the theoretical accuracy

In the synthetic data test, following the synthetic coherence
matrix simulation described by Ansari et al. (2018); Dong et al.
(2022), we used an exponential decorrelation model to simu-
late a coherence matrix with a constant time of 27 days, a
short-term coherence of 0.6, and a long-term coherence of 0.1.
To evaluate phase estimation performance, we tested various
methods, as shown in Figure 2, including EMI, Seq+EMI, and
the newly integrated regularization approach (Seq+EMI+reg).
The tests were conducted in two scenarios: both with a time
baseline of 600 days (100 SLCs), but with 49 and 121 samples
for phase estimation, respectively. The homogeneous pixel
number for each pixel was randomly set to either 49 or 121.
We then applied the previously mentioned methods to recover
all interferograms. Comparisons were made between the orig-
inal phase and the phase after multilooking, EMI, Seq+EMI,
and Seq+EMI+reg. The �rst and second rows display the es-
timated phase time series with a 600-day temporal baseline
after applying each method but with di�erent sample num-
bers. Seq+EMI, when using the regularized coherence matrix,
achieves higher estimation accuracy than the original EMI and
Seq+EMI. Notably, in Figure 2b, the performances of Seq+EMI
and Seq+EMI+reg are close, whereas Figure 2a shows an im-
provement with the new estimator. This performance gain
can be attributed to the improved precision matrix estimation
through regularization. In Figure 2b, 121 samples were used, a
number signi�cantly larger than the stack size, ensuring that
the coherence matrix remained positively de�nite in Seq, thus
negating the need for regularization. However, with only 49
samples (Figure 2a), regularization became necessary, result-
ing in improved performance, as indicated by the higher phase
SNR. This improvement suggests that regularization enhances
the accuracy of the precision matrix, bringing it closer to the
true values.
To further assess the velocity estimation performance of

these methods, we simulated deformations using the "peaks"
function in MATLAB. The simulated velocity map is shown in
Figure 3. Using the synthetic coherence matrix, we generated
100 SAR images in SAR coordinate reference, each with a size
of 200 by 800 (azimuth by range). The time-dependent defor-
mation phase was simulated using the "peaks" function, while
noise components were derived from the coherence matrix. To-
pographic and �at-earth phases were simulated using precise
orbits and external DEM. After stacking all recovered interfer-
ograms, we obtained velocity estimates. Visual inspection of
the velocity maps shows that the SNR progressively increases
(with smoother fringes) from left to right. Overall, the new
method demonstrates the most signi�cant improvement, par-
ticularly after the introduction of regularization, which more
points. The velocity estimation accuracy of the new estimator
outperforms the other methods, as its deviation from the true
value is the smallest. These comparisons con�rm that SNR is
a critical factor in�uencing velocity estimation accuracy.

3.2 Phase SNR comparison on real data

First, we visually assess the performance of various phase esti-
mation algorithms in recovering the wrapped phase time series.
We compare the original phase with the multilooked phase,
EMI, Seq+EMI, and our proposed method. All phase estima-
tion algorithms are applied at full spatial resolution without
pre-multilooking, allowing a direct comparison of their e�ec-
tiveness.
Figure 4 shows two reconstructed sample interferograms

Figure 2. Theoretical accuracy (phase root mean square error) offour methods: (a) sample number 49, (b) sample number121

with di�erent temporal baselines. The noise level in the orig-
inal phase is relatively high, even in the shortest temporal
baseline interferogram (12 days). In contrast, the phase esti-
mation methods demonstrate signi�cant improvements in re-
covering the signal, as shown in Figure 2. While all methods
reduce noise, the improvements are more pronounced in meth-
ods other than EMI. This is because the latter methods exclude
weakly coherent pairs during temporal phase �ltering, unlike
EMI, which applies a full-stack approach. To further validate
the results, we analysed a longer temporal baseline interfer-
ogram (84 and 168 days), shown in Figure 4. As expected,
severe decorrelation noise almost entirely obscured the use-
ful signal in Figure 4. Although the existing phase estimation
methods recovered some of the interferometric phases, they
remained largely ine�ective in other regions. In contrast, our
method consistently delivered satisfactory performance across
the interferogram. We concluded that the proposed estimator
is highly e�ective in both short- and long-term interferogram
phase recovery.
To quantify the performance, we evaluated the phase quality

across di�erent phase estimators by calculating the variation
in SNR before and after phase estimation. The SNR metric is
de�ned as:

SNR = 10 log10 δ
2
φ

δ2̂
φ

, (6)

where δ2φ and δ2̂φ are the original and optimized phase vari-ances, respectively.
The phase variances for each pixel were calculated using a

symmetric window with dimensions of 10 × 40 (azimuth by
range). To ensure robust estimation of velocity, the normal-
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Figure 3. Estimated velocity maps with two di�erent sample numbers. The �rst line represents the velocity maps estimated by four di�erentmethods, and the second line represents their errors from the true values. The third and fourth lines represent the same order,but the sample number used is di�erent. The results of the �rst two lines are based on the sample number of 49 and the last twolines of 121.
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Figure 4. Estimated interferograms with three di�erent time baselines. Each line represents a di�erent time baseline. Each column denotesthe results of the di�erent methods.
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Figure 5. Phase SNR comparison

ized median absolute deviation and an a posteriori coherence
threshold greater than 0.35 were applied to mitigate outlier in-
terference. Figure 5 presents the average of the interferograms
as the temporal baselines increase. A higher value re�ects bet-
ter phase estimation performance.
Interestingly, the SNR improvement from EMI and Seq+EMI

is largely con�ned to shorter temporal baselines. Unexpect-
edly, the multilooked phase exhibits negative e�ects for some
longer temporal baseline interferograms, as seen in Figure 5.
In comparison, Seq+EMI shows less performance degradation,
followed by EMI. The newly proposed method in Figure 5
demonstrates a substantial improvement across all temporal
baselines, signi�cantly outperforming other state-of-the-art
phase estimation techniques.

3.3 Velocity Results and Error Comparison on Real
Data

Figure 6 compares line-of-sight velocity maps estimated using
the multilooked phase, EMI, Seq+EMI, and the newly proposed
method. In the velocity estimation, we selected only points
with temporal coherence higher than 0.5. Across the entire
landslide region, the multilooked phase retained 3,049 points,
the EMI method retained 17,359 points, and Seq+EMI identi-
�ed 66,399 points. The newly proposedmethod detected 87,114
points.
Overall, compared to the previousmethods, the newmethod

increased the number of measurement points by approximately
15 times compared to the multilooked phase and by nearly one-
third compared to the EMI and Seq+EMI methods. Traditional
methods struggled to cover measurement points in mountain-
ous regions, whereas the new method provided a relatively
dense distribution of points, even in vegetation-covered areas.
This resulted in a substantial increase in observations, with
the slowmovement of several landslide bodies being delineated
more clearly. Notably, the bodies we detected here correspond
to velocity contrast boundaries. However, delineating the ac-
tual boundaries of landslides requires more detailed geological
mapping, and ideally, con�rmation of such activity through in-
dependent measurements (e.g., GNSS or di�erential LiDAR).
To validate the accuracy improvement of our proposed

method we presented the root mean square errors (RMSE) of
the conversion process from unwrapped interferograms to the
single reference phase in Figure 7. The higher the RMSE, the
lower the accuracy. It can be seen in Figure 7 that our proposed
method outperforms the other methods. We also presented
the unwrapping cost of all unwrapped interferograms for their

unwrapping process after phase reconstruction. If the recon-
structed interferograms have higher SNR, the unwrapping cost
should be low. In Figure 8, the recorded unwrapping cost of
our method is the lowest, and therefore the best performance.

4 Conclusions

Aiming to accurately detect landslide motion in power line re-
gions, we have developed an InSAR phase estimator algorithm
that incorporates a novel regularization approach. The pro-
posed method was �rst validated using synthetic data, demon-
strating superior phase recovery performance compared to
state-of-the-art techniques. We then applied this method to
the Faer landslide region, a high-risk area in�uenced by both
natural and anthropogenic factors. The experimental results
con�rm the e�ectiveness of the proposed phase estimator in
detecting and characterizing landslide deformation, highlight-
ing its potential for improving geohazard monitoring in chal-
lenging environments.
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