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Abstract
Wildlife monitoring is vital to conservation e�orts and the prevention of animal-related negative impacts on human
activities and ecosystems. The use of Unmanned Aerial Vehicles (UAVs) enables data collection with no harm to wildlife
and in di�cult �eld conditions. This study proposes a method of detecting hoofed animals in UAV-acquired thermal
images, addressing the challenges of low-resolution thermal imaging and the presence of other heated objects hindering
simple temperature analysis and image segmentation. The proposed method uses machine learning algorithms and is
designed to work with a limited size of training dataset. The method consists of an initial segmentation step that detects
potential animals based on thermal and geometrical signatures, followed by classi�cation using a Balanced Random Forest
(BRF) algorithm. One of the key aspects of the proposed method is the use of geometric and thermal features along with
multi-scale Convolutional Neural Network (CNN) extracted feature representations in BRF. The bene�t of the BRF is its
speed, little requirement regarding the amount of training data, and its capacity to work with an imbalanced number of
objects in di�erent classes. The dataset was collected during two UAV �ights over a fenced enclosure with wild hoofed
animals. The proposed approach showed high e�ciency, achieving an overall accuracy of 90%. These results con�rm the
feasibility of UAV-based animal detection based solely on thermal images collected during the day and showing many other
heated objects. The method provides a solution for wildlife monitoring, with potential adaptability to di�erent species and
further applications.
Key words: classi�cation, object detection, machine learning, unmanned aerial vehicle, remote sensing, wildlife monitoring

1 Introduction

Wildlife, an integral part of ecosystems, has long struggled to
cope with the di�culties related to human impact. Expanding
human activity into natural areas intensi�es human-wildlife
interactions (Nyhus, 2016), leading to potential con�icts and
challenges in environmental and safety management (Ridwan
et al., 2023). The migration and presence of animals in agricul-
tural areas cause signi�cant economic damage and increase the
risk of �eld accidents (Ramadhan, 2024). In addition, the prob-
lem of spreading diseases, such as African Swine Fever (ASF),
underscores the need to develop reliable methods of monitor-
ing wildlife populations (Woźniakowski et al., 2021). Current
methods of �ghting this disease, such as preventive shooting,

are controversial from an ecological and ethical point of view,
forcing the search for alternatives (Ridwan et al., 2023; Woźni-
akowski et al., 2021). Before undertaking certain actions that
interfere with the natural environment of animals, it is crucial
to implement animal monitoring to better understand their be-
havior, which in turn can help to plan and predict the e�ects
of human activities.
Traditional methods of wildlife monitoring, such as �eld ob-

servations and photo traps, are widely used but have signi�cant
limitations (Pollock et al., 2002). Field observations, which in-
volve counting animals or their tracks, require the participation
of experienced �eld researchers and a great deal of time and ef-
fort (Witmer, 2005). Additionally, it can involve the risk of en-
countering predators (Pollock et al., 2002). Photo traps allow
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for remote animal observation, but their e�ectiveness depends
on the strategic placement of the devices, which remain sta-
tionary (Witmer, 2005). These methods have a limited range
and do not guarantee full accuracy in estimating population
numbers (Pollock et al., 2002; Burton et al., 2015). Alterna-
tively, GPS tags allow precise tracking of individuals, but their
high cost and the need to locate the animal in advance and tag
application are major barriers (Foley and Sillero-Zubiri, 2020;
Ford et al., 2009).
Increasingly, drones (Unmanned Aerial Vehicles – UAVs) are

being used for this purpose, o�ering cutting-edge solutions for
monitoring wildlife (Christiansen et al., 2014; Hodgson et al.,
2016; Kalinowski et al., 2023; Lee et al., 2021; Lyu et al., 2024;
Rančić et al., 2023; Tuia et al., 2022; Witczuk et al., 2017). Com-
pared to traditional methods, drones allow for quick and e�-
cient mapping of larger areas and acquisition of data in dif-
ferent lighting conditions through the use of RGB and thermal
cameras (Hodgson et al., 2016; Lee et al., 2021; Witczuk et al.,
2017). Thanks to advanced image processing and data analysis
technologies, UAVs make it possible to identify animals in their
natural environment with minimal disruption to their behav-
ior (Witczuk et al., 2017). Integrating these technologies with
machine learningmethods allows automatic analysis of the col-
lected data, which enhances the reliability of monitoring (Tuia
et al., 2022).
Despite its many advantages, the use of drones also comes

with some challenges. These include the high costs of the
equipment (Witczuk et al., 2017), the need for adequate op-
erator training (Jewell, 2013), and limitations due to weather
(Verma et al., 2016), technical, and law factors. Nevertheless,
UAVs are promising tools that can e�ectively support the man-
agement of wildlife and reduce the negative impact of humans
on their natural environment.
This study focuses on image analysis and presents an auto-

matic method of detecting animals solely in thermal images
collected using UAV, which can also be further adapted for
counting individuals, monitoring their presence in speci�ed ar-
eas, or searching for missing persons. The proposed approach
leverages machine learning, combining image features used in
Convolutional Neural Networks (CNNs) with a Balanced Ran-
dom Forest (BRF) classi�er, o�ering a computationally e�-
cient solution requiring minimal training data. The following
sections provide a structured presentation of the research: a re-
view of related work on detection and classi�cation techniques
(Section 2), a description of the dataset and data acquisition
process (Section 3), and a detailed explanation of the proposed
methodology, including preprocessing, feature extraction, and
classi�cation (Section 4). The results of the conducted experi-
ments are analyzed in Section 5, followed by a discussion (Sec-
tion 6) assessing model performance, potential improvements,
and limitations. The �nal Section 7 presents concluding re-
marks and outlines directions for future research.

2 Related work

Research utilizing UAVs to identify animals in their natural
environments uses a variety of di�erent imaging techniques,
including both thermal and RGB cameras (Christiansen et al.,
2014; Kalinowski et al., 2023; Lee et al., 2021; Rančić et al.,
2023), often used simultaneously to leverage the strengths of
each type under di�erent lighting conditions. RGB images are
valued for their high resolution and e�ciency during the day
and in open areas. However, their usability decreases at night
and in dense forests, where access to sunlight is limited. In
such conditions, thermal images, capturing temperature val-
ues, tend to be more useful (Kalinowski et al., 2023).
Despite a considerable track record in automating the de-

tection of animals in UAV images, research faces numerous
technological and environmental di�culties. The visibility lim-
ited by dense vegetation (Kalinowski et al., 2023; Rančić et al.,
2023) and low resolution of thermal images (Christiansen et al.,
2014; Kalinowski et al., 2023; Rančić et al., 2023) pose signif-
icant challenges. Additionally, during daylight, the presence
of heated objects such as soil, branches, or buildings can in-
crease the rate of false detections (Christiansen et al., 2014;
Kalinowski et al., 2023). Variations in lighting conditions and
background changes, including moving leaves or shifting shad-
ows, further complicate the process, making it challenging for
computer vision models like CNNs, which are sensitive to such
anomalies (Rančić et al., 2023). Furthermore, ensuring a su�-
cient quantity and quality of training data (Christiansen et al.,
2014; Lee et al., 2021) poses an additional challenge, particu-
larly for rare species or peculiar environments.
A wide range of automatic image processing techniques are

being used to address those limitations. The most advanced
include CNN algorithms such as You Only Look Once (YOLO)
which o�ers a high performance rate (Kalinowski et al., 2023;
Rančić et al., 2023). For example, YOLOv4, used in deer iden-
ti�cation studies on RGB images, achieved 86% precision and
75% recall (Rančić et al., 2023). However, shallow machine
learning algorithms are used as well. An example is the use of
the k-Nearest Neighbors (kNN) algorithm to classify small ani-
mals in agricultural �elds, such as rabbits and chickens, in RGB
and thermal images. In this approach, features extracted using
morphological operations and Discrete Cosine Transform (DCT)
achieved a balanced classi�cation accuracy of 84.7% (Chris-
tiansen et al., 2014). Other studies propose combining simple
algorithms of image analysis with deep learning. An example is
the use of Canny’s edge detection algorithm to identify shapes
in thermal images, followed by classi�cation using the LeNet-5
convolutional neural network. This approach has achieved ani-
mal detection accuracy of 98.6% and 96.5% in classi�cation
into wild boar and other animal classes, respectively (Kali-
nowski et al., 2023). In another study (Lee et al., 2021), a real-
time detectionmethod using both thermal and RGB images was
developed to overcome the limitations of the low resolution of
thermal images and the small amount of training data. The
technique was based on Sobel’s edge detector algorithm and
analysis of thermal signatures processed using the DCT. By au-
tomatically removing features such as buildings and roads, the
method reduced false detections, reporting a best precision of
about 80.4% and recall of 69.9% in tests conducted from alti-
tudes below 100 meters (Lee et al., 2021).
The concept of combining di�erent methods for object de-

tection in images extends beyond wildlife detection. Such com-
binations have been successfully applied in other applications.
A particularly notable example is the integration of deep learn-
ing techniques, such as CNNs, with shallow learning algo-
rithms. For example, in the �eld of agricultural remote sensing,
Random Forest (RF) was used to classify crop types based on
CNN-created features, achieving an accuracy of 94.3%, signi�-
cantly outperforming results achieved using CNNs alone (Yang
et al., 2020). The same concept has been applied to sinkhole
and landslide detection studies with an equally high accuracy of
92% (Lee et al., 2016). A similar approach has been used in ur-
banmonitoring (De Oliveira andWehrmeister, 2018). In studies
on improving public safety and optimizing tra�cmanagement,
pedestrians were successfully identi�ed even in low-light con-
ditions thanks to data obtained from thermal and RGB cameras
mounted on drones (De Oliveira and Wehrmeister, 2018). Such
applications con�rm that combined approaches are not only
versatile but also e�cient.
In response to the di�culties of monitoring wildlife in their

natural habitat, this study focuses on developing another ap-
proach for animal detection using only thermal images ac-
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Figure 1. Localization of study area, �ight paths and reference datapartitioning

quired from UAVs. The goal was to develop a method that com-
bines e�cient image analysis and machine learning methods
to identify animals with minimal computing power require-
ments and a limited amount of training data. The method
is designed to handle daytime thermal imagery, where solar-
heated objects often create additional challenges. Such images
are easier to collect than nighttime images and are more suit-
able for animals showing their activity during the day. The
combined approach incorporates the advantages of the convo-
lutional features from deep learning (CNN) with classi�cation
using a modi�cation of the RF algorithm – Balanced Random
Forest. The work focuses on the development of the method
from the perspective of thermal image analysis and does not
deal with aspects of data acquisition or subsequent applica-
tions, such as animal localization, tracing, or counting.

3 Data

The test data were collected in late winter at a forest experi-
mental facility in Złotówek (Poland) at the enclosure for wild
animals (Figure 1). Recordings were acquired with an uncooled
thermal imaging camera Optris PI 450 lightweight mounted on
a DJI Matrice 600 Pro drone during two UAV �ights. The �ghts
were planned at 53 m above the ground level and resulted in
a Ground Sampling Distance (GSD) of thermal images equal to
about 17 cm.
Each thermal image had a resolution of 382 × 288 pixels,

covering an area of approximately 65 × 49 m. The �ight was
planned according to typical UAV mapping requirements along
parallel lines (Figure 1), with a front overlap of 90% between
consecutive images and a side overlap of 65% between �ight
lines. The large front overlap ensured that even a moving an-

imal was visible in several consecutive images. The �ights
lasted about 14 and 7 minutes and resulted in 870 and 420 ther-
mal images, respectively.
The fenced enclosure covers 1.263 ha. At the time, it housed

11 hoofed animals, including red deer (Cervus elaphus), roe deer
(Capreolus capreolus), mou�on (Ovis ammon musimon), and Eu-
ropean fallow deer (Dama dama). In the surroundings of the
enclosure, there were: farm buildings, a forest, a pond, and
a stream �owing from the pond into the forest (southwest of
the enclosure) (Figure 1). During the �ights, a small number of
other animate objects (swans, peacocks, dogs, humans) were
also captured in the footage; these were incidental and not part
of the main target group of hoofed animals, but were useful for
validating the robustness of the proposed method.
Additionally, in order to preliminarily assess the model per-

formance in uncontrolled, more natural conditions, an auxil-
iary dataset was collected in late spring over a semi-open area
located adjacent to the main study site. The surveyed area (ap-
proximately 20 ha) was characterized by fully developed veg-
etation, typical for this season. During �eld reconnaissance,
traces indicating the recent presence of wild ungulates (likely
roe deer) were identi�ed, although the number and species
could not be determined with certainty. A UAV equipped with
the same thermal imaging camera (Optris PI 450) was used to
acquire images under similar �ight parameters (altitude, over-
lap, time of day). In addition, a wide-angle RGB camera (smart-
phone) was mounted on board to enable potential visual veri-
�cation of detected objects. This supplementary dataset was
not used for training or labeling, but served as an independent
material to verify model generalization in a less controlled en-
vironment.
It was decided to collect thermal images in the morning dur-

ing daylight. This decision was justi�ed mostly due to the be-
havior of target animal species. The ungulate species observed
in this study are known to exhibit signi�cant activity during
daylight and twilight hours, particularly in spring and summer.
They often forage in open habitats such as meadows and forest
edges (Baskin and Danell, 2003), where they are more visible to
aerial sensors. At night, in contrast, these animals may tend to
stay hidden or rest in dense vegetation, which can mask their
thermal signatures and reduce detectability. Additionally, at
night they may often group together, making it di�cult to dis-
tinguish individual animals, especially in thermal imagery. For
these reasons, the use of daytime thermal imagery can not only
improve detection capability but also increase the applicability
of the method in open and semi-open environments where un-
gulates are most active. In addition, UAV �ights at daytime are
safer and can be performed without additional lights required
by law for night �ights.
The thermal images were not subjected to additional radio-

metric calibration to adjust the observed temperatures to the
real temperatures of objects. The manufacturer provides indi-
vidual calibration �les for each camera (based on serial num-
ber) that allow to achieve temperature measurement accuracy
of ±2◦C (or ±2% whichever is greater) at an ambient temper-
ature of 23 ± 5◦C, however, the calibration conditions are un-
known. In addition, the calibration model and raw image in-
tensities are not provided, thus the user cannot perform the
calibration. The parameters in�uencing observed temperature
that can be speci�ed by the user are the ambient temperature
(in this studymeasured by the camera sensor) and the radiation
emissivity factor (we used the camera default value). The tests
showed that the observed temperature is lower than the real
temperature and slightly decreases with increasing distance
from the object (Figure 2). The camera o�ers an option for
the in-situ calibration if the reference object with known tem-
perature is observed, however, it applies only for static images
and cannot be used for UAV images. This makes precise cali-
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Figure 2. Temperature measurement variability with the distanceto the object. Images of the car were collected during thelanding procedure from a height of about (a) 30 m and (b)10 m. The same (hottest) point of a car is marked with ared rectangle, and its observed temperature is displayedin the top right corner of each frame.

bration of collected temperature images extremely challenging
and reinforces our decision to develop a detection method that
is based on relative thermal contrast, and not in the absolute
temperatures of the objects.

3.1 Reference data

The reference data used for BRF model training and evalua-
tion were derived from the �rst UAV �ight. The assignment
of images to training, validation, and test datasets was con-
ducted according to �ight lines or their parts. Because animals
formed two separate groups in the enclosure (Figure 1), such
division of the data ensured that each animal was present in
one dataset type only. Given that the BRF algorithm operates
at the object level, data partitioning was performed after image
segmentation (see Section 4.1) rather than at the image pixel
level. Each detected image segment showed a single animal or
other heated object. These segments were assigned manually
to one of two classes: hoofed animals (class 1) or other objects
(class 0). Note that each animal visible in many images re-
sulted in many segments. Such segments were treated as sep-
arate objects in BRF regardless of whether they presented the
same animal or di�erent ones. This approach was used to de-
velop a detection method that is independent of �ight plan pa-
rameters, especially image overlaps or animal movement. The
created model should be able to detect an animal visible in UAV
thermal images regardless of the looking angle. The problem

of identifying the same (possibly moving) animal in di�erent
images is beyond the scope of this study. However, the large
image overlap was helpful during the manual assignment of
the object to one of two classes. It was easy to assign a seg-
ment to class 1 (hoofed animals) if it was in the central part of
the image. Segments in the image edges or corners were more
di�cult to assign, but checking the segment showing the same
animal or other heated object but in a di�erent image helped to
prepare reference data. The large image overlap also helped to
check if all image segments containing animals were created.
Another drawback of the low resolution of thermal images

and lack of RGB images was the inability to distinguish individ-
ual species in the collected data. For that reason, the aim of the
method was to detect animals belonging to the same biological
order that looks similar in thermal images.
The BRF model learned on the training dataset prepared

from images collected during the �rst UAV �ight was tested
also using the data collected during the second UAV �ight to
validate the proposed method. The reference data for the sec-
ond �ight was prepared in the same way as for the �rst �ight,
but all images collected during the second UAV �ight were
treated as the test dataset. In addition, in class 0 (other objects
– non-hoofed animals) there were marked segments showing
other animals, including humans. This allowed us to check for
possible false positive assignments of other animals. The sum-
mary of the segmentation process and the number of reference
objects belonging to each class for both �ights are given in Sec-
tion 5.

4 Methodology

The method used to detect animals in this study consists of
two main steps. First, an analysis of pixel temperatures is per-
formed to detect image segments that possibly show animals
and to extract segment features. In the second step, these seg-
ments are classi�ed using the BRF algorithm to eliminate im-
age segments that do not show animals. A key component of
this classi�cation is the set of features used, which includes
temperature and geometrical features calculated in the �rst
step, as well as additionally computed CNN features (Figure 3).
The details presented in the sections below describe the key

steps in the segment extraction and classi�cation process, with
an emphasis on minimizing false detections of hoofed animals.

4.1 Detection of image segments potentially showing
animals

Parameters of the equipment used (thermal camera) and the
�ight plan (�ying height equal to about 53 m above ground
level) caused the detected animals to appear as small, bright
groups of pixels (ranging from several to dozens of pixels),
clearly distinguishable from the background. The extraction
of these goups of pixels as image segments was executed in
three steps:
i. image preprocessing,
ii. image thresholding by analyzing neighboring pixel inten-
sities,
iii. segment extraction and �ltering.
The image preprocessing step included converting each im-

age to 8 bits and smoothing. The normalization of tempera-
ture images to 8 bits intensity images was executed to acceler-
ate image segmentation process because original images were
recorded as 16 bits temperature images (from about –328◦C to
about +328◦C with a step of 0.01◦C) which resulted in a low
dynamic range. Note that no temperature calibration was ap-
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Figure 3. Key steps in the work�ow for hoofed animal detection

plied to thermal images, thus exact temperature analysis was
impossible. The normalization was applied individually to each
image based on the minimum and maximum temperatures
recorded in this image. The image smoothing is a standard
procedure for noise removal. Similarly to many other stud-
ies, a Gaussian �lter was used for this purpose as it e�ectively
smooths noise while introducing minimal distortion to the im-
age (Afshari et al., 2017).
The next step was adaptive thresholding (Deng and Cahill,

1993). Since a global threshold often leads to incorrect segmen-
tation under non-uniform lighting conditions, for the adaptive
thresholding we used a local Gaussian kernel (size k = 13, cor-
responding to ~2m on the ground) to compute a new image
T. The binary image was created based on the intensity di�er-
ences between the smoothed image I and image T – Equation
(1). The threshold value C was selected empirically by visually
verifying whether the binary image retained animal pixels in
the training data. The threshold was set to –8 to ensure seg-
ments containing animals were detected. The parameters used
(the size of the Gaussian kernel and threshold value) can be
adjusted depending on dataset characteristics such as GSD, an-
imal size, and temperature di�erences.

B (i, j) =
1, I (i, j) – T (i, j) > C
0, otherwise (1)

where:
I : smoothed image,
T (i, j) =∑k

m=–k
∑k
n=–k I (i +m, j + n) · G (m,n) : pixel value af-ter applying Gaussian kernel,

C : threshold value.
The contours were generated from binary images by creat-

ing closed polygons around groups of pixels (segments) that
met the threshold criteria (white pixels in Figure 4). The ex-
tracted contours were further analyzed and �ltered to identify
segments potentially corresponding to hoofed animals (Fig-
ure 5a).
The �rst �ltering step focused on the size of the segment

area. Only segments whose area fell within a speci�ed range
were retained. Speci�cally, segments with an area between
Amin = 5 pixels and Amax = 60 pixels were considered. Thisrange corresponds to ground areas of approximately 0.14 m2
to 1.39 m2. The lower threshold allowed for the identi�ca-
tion of small segments likely representing partially visible an-
imals, while the upper threshold was based on a manual anal-
ysis of the maximum segment size observed for animals in the
training dataset. Segments exceeding Amax could correspondto non-animal objects such as parts of buildings, tree stems,
or exposed soil, and were excluded from further analysis (Fig-
ure 5b).
The second �ltering step used temperatures from the orig-

inal images and considered temperature variability within the

Figure 4. Binary images computed using adaptive thresholdingwith varying parameters. (a–c) Varying size of Gaussiankernel (k) with �xed threshold (C = –8); (d–f) Varyingthreshold (C) with �xed size of Gaussian kernel (k = 13).Panel (b) shows the selected parameters (k = 13, C = –8).

segment. Segments corresponding to sun-heated objects (e.g.
tree branches, soil) usually do not exhibit signi�cant temper-
ature changes, while animal bodies typically show noticeable
temperature variations due to di�erences in blood circulation,
skin thickness, or fur density (e.g., the head being warmer
than other, less vascularized, or more insulated body parts).
Although this variability is di�cult to observe in thermal im-
age visualizations, it can be easily calculated and is practically
una�ected by the temperature calibration. In this study, the
standard deviation (relative to its median) was used as a mea-
sure of temperature variability within the segment. The �lter-
ing threshold of temperature variability was empirically set to
0.5◦C, which represents the maximum standard deviation that
did not �lter out segments showing animals in the training
dataset.

4.2 Geometric and thermal feature extraction

To describe the resulting segments, an analysis of their ge-
ometric and thermal characteristics was carried out. Simple
features, such as segment size, shape, and thermal properties,
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Figure 5. Segment �ltering process: (a) all detected segments; (b)segments retained after area-based �ltering (5–60 pix-els); (c) segments retained after additional �ltering basedon the standard deviation of temperature from the me-dian within each segment.

provide important information for Random Forest classi�ca-
tion. It should be emphasized that these features were deter-
mined from the original thermal images, as preprocessing may
have altered certain object characteristics, such as shape and
temperature distribution.
To reduce the impact of segment irregularities and simplify

their shape, each segment was approximated by an ellipse (Fig-
ure 6a). This approach was chosen due to the characteristic
elongated shape of hoofed animals seen in UAV images. The
ellipse seems to be a good generalization of their shape in low-
resolution thermal images. The process of estimating ellipse
parameters from irregular segment shapes was carried out us-
ing Principal Component Analysis (PCA).
Key ellipse parameters, such as semi-axis lengths, area,

perimeter, and eccentricity, were determined and used as ge-
ometric features (Table 1). Furthermore, based on PCA, addi-
tional features categorized as geometric were obtained by cal-
culatingmean distance variances of pixels belonging to the seg-
ment along the two principal components, as de�ned in Equa-
tion (2). The standard deviations σ1 and σ2 were included asgeometric features.

σ21 = 1
Nc

Nc∑
p=1
(
zp1 – zp1)2 ,

σ22 = 1
Nc

Nc∑
p=1
(
zp2 – zp2)2

(2)

where:
Nc : number of pixels in the segment,
zp1, zp2 : coordinates of pixels on the principal axes p1, p2 de-termined by PCA,
zp1, zp2 : average values of the coordinates of all segment pix-els along these axes.

Figure 6. Visualization of a segmented region: (a) original segmentand PCA-�tted ellipse; (b) PCA-�tted ellipse and scaledellipse (Ellipse × 1.5) de�ning surrounding area.

Table 1. Summary of geometric features with their equations
Geometric features name Symbol

Length of major axis a
Length of minor axis b
Area A
Circumference L
Eccentricity E
Standard deviation for the �rst principal com-
ponent

σ1

Standard deviation for the second principal
component

σ2

The thermal analysis included only di�erential temperature
features (Table 2) to prevent overtraining themodel by limiting
the in�uence of external factors on temperature values. The
values were analyzed both within the ellipse and in its imme-
diate vicinity, de�ned by enlarging the ellipse by 50% of the
semi-axes lengths (Figure 6b).

4.3 Convolutional feature extraction

Since the dataset was based on a single �ight with a limited
number of training samples, the available data could be insuf-
�cient for a CNN-only detection approach. Therefore, the CNN
was used exclusively to generate additional segment features
for the BRF classi�cation. We used CNNs to capture patterns
and textures in images that do not have a direct physical rep-
resentation, due to their ability to automatically learn hierar-
chical image features. The network architecture was designed
speci�cally for the analysis of small objects, such as animals.
The CNN used consisted of four convolutional layers, each

using �lters of di�erent sizes (2×2, 3×3, 5×5 and 7×7) (Fig-
ure 7). Each convolutional layer contained a speci�c number
of �lters: 16 �lters for 2×2, 16 �lters for 3×3, 8 �lters for 5×5,
and 8 �lters for 7×7 kernel size. This multi-scale approach en-
abled the network to capture both �ne details and more general
spatial patterns. The function of the convolutional �lter is anal-
ogous to the Gaussian �lter described earlier, except that, in
the case of the convolutional �lter, the kernel weights G (m,n)
are not predetermined but are optimized during the neural net-
work training process (O’Shea and Nash, 2015).
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Table 2. Summary of thermal features with their equations, where:
e – ellipse, s – surrounding

Thermal feature name Equation

Di�erence in maximum temper-
atures between the ellipse and
the surrounding area

∆Tmax = Tmax,e – Tmax,s

Di�erence in minimum temper-
atures between the ellipse and
the surrounding area

∆Tmin = Tmin,e – Tmin,s

Di�erence in median tempera-
tures between the ellipse and
the surrounding area

∆Tmedian = Tmedian,e – Tmedian,s

Range of temperatures in the el-
lipse

Re = Tmax,e – Tmin,e
Range of temperatures in the
surrounding area

Rs = Tmax,s – Tmin,s

Figure 7. Convolutional network architecture for multi-scale fea-ture extraction

Figure 8. Examples of activation map cutouts for a single detectedsegment in di�erent convolution �lter sizes: a) 2×2, b)3×3, c) 5×5, d) 7×7.

This network was applied to all images in which at least one
segment had previously been detected, allowing for the gener-
ation of global activation maps. Rectangular areas of 30×30
pixels were then cut out from these maps (Figure 8), based on
the coordinates of the centers of the �tted ellipses, allowing
the analysis of local patterns to be consistent. These cutouts
were subsequently �attened into feature vectors, providing a
broader representation of the object. As a �nal result, each
segment corresponded to 48 feature vectors, each consisting
of 900 values (Figure 7).

4.4 Balanced Random Forest model building

The segment detection process described earlier results in a
large number of segments that mostly correspond to non-
animal objects. The number of animals, and consequently the
number of segments representing them is much lower. This
creates a problem of classifying objects with an unbalanced
number of samples in each class. Traditional machine learning
algorithms, such as the classic RF, very often fail under such
conditions, as they tend to favor the dominant class, leading to
incorrect predictions (More and Rana, 2017).
To solve this problem, the BRF algorithm, a modi�cation of

classical RF, was used. BRF employs data balancing techniques
during sample bootstrapping from the training dataset, auto-
matically adjusting the number of samples in minority classes
to the level of the dominant class by oversampling the minor-
ity class or undersampling the majority class. This keeps the
number of samples of each class considered for building each
tree close to each other, helping to build balanced trees without
actually changing the sample size. As a result, the algorithm
is more e�ective at predicting the minority class (More and
Rana, 2017). The entire process of BRF model optimization and
evaluation, including the use of training, validation, and test
datasets, is illustrated in Figure 9.
To optimize the model, a subspace of hyperparameters was

explored using the Tree-structured Parzen Estimator (TPE)
sampler (Watanabe, 2023). The tuned hyperparameters in-
cluded the number of estimators, the maximum tree depth, the
minimum number of samples required to split a node, the min-
imum number of samples per leaf, and the proportion of sam-
ples used to construct each tree. The search was conducted us-
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Figure 9. Work�ow of the Balanced Random Forest classi�cation

ing an adaptive Bayesian optimization approach to e�ciently
navigate the hyperparameter space and identify the most ef-
fective con�guration. The hyperparameter optimization pro-
cedure was conducted on the training dataset using cross-
validation (Browne, 2000) to determine the best-performing
con�guration for the BRF model.
The decision threshold was optimized using the validation

dataset to account for class imbalance. Instead of relying on the
default majority voting in BRF, which may not be optimal for
imbalanced classes, a speci�c threshold was chosen to improve
classi�cation reliability. Objects were classi�ed as class 1 if the
proportion of votes exceeded this threshold.

4.5 Accuracy assessment

To estimate the accuracy of the model, a classi�cation evalua-
tion metric based on a confusion matrix was used. According
to its general concept, it allows counting samples classi�ed
correctly (true positive – TP, true negative – TN) and incor-
rectly (false positive – FP, false negative – FN) (Vujovic, 2021).
From these values, key performance measures such as preci-
sion, recall, F1-score, overall accuracy (OA) (Vujovic, 2021) and
Cohen’s kappa coe�cient (Chicco et al., 2021) were calculated.
Overall accuracy is one of the most commonly used metrics,

representing the percentage of all correctly classi�ed samples
across both classes. Given the imbalanced nature of the dataset,
the F1-score was used to balance precision and recall, ensuring
a more suitable assessment of model performance in detect-
ing rare cases (Jeni et al., 2013). Additionally, Cohen’s kappa
was employed to account for agreement beyond random chance,
making it particularly useful for evaluating models where the
minority class is crucial (Crow and Watts, 2024).
To further assess the classi�cation performance of the

model, we used the Area Under the Curve (AUC) parameters for
the Precision-Recall curve (PR AUC) and the Receiver Operating
Characteristic curve (ROC AUC). PR AUC is particularly useful
for unbalanced datasets, as it highlights the model’s ability to
correctly classify the minority class, focusing on the trade-o�
between precision and recall. On the other hand, the ROC AUC
provides a broader measure of distinction between positive and
negative classes, illustrating the model’s ability to distinguish
between them at various decision thresholds. These metrics
complement the traditional evaluation results, o�ering a more
detailed perspective on classi�cation performance under imbal-
anced conditions (Vujovic, 2021).

Table 3. Summary of detected segments and their class for eachdataset
Dataset Class 0:

Other objects
Class 1:

Hoofed animals
Total

Training 1515 830 2345
Test 736 110 846
Validation 191 109 300
Total segments 1896 1049 3491

Table 4. Hyperparameter tuning: ranges, steps, and optimal values
Tuned hyperparameters Range: Optimal

From To Step value

Number of estimators 50 1500 50 800
Maximum tree depth 10 50 5 35
Minimum number of samples
required to split a node

2 50 1 2
Minimum number of samples
per leaf

1 20 1 1
Proportion of samples used to
construct each tree

0.5 1.0 0.1 0.6

5 Results

Segmentation of the thermal images from the �rst UAV �ight
resulted in 3491 detected segments, which were classi�ed into
two categories: hoofed animals (class 1) and other objects (class
0). The high number of class 0 segments is primarily due to the
daytime acquisition conditions, which led to many sun-heated
objects being detected beside actual animals. The spatial dis-
tribution of training, test, and validation datasets is illustrated
in Figure 1, while the sample count per dataset is summarized
in Table 3. For each detected segment, a total of 60 features
were extracted: 7 geometric, 5 thermal, and 48 CNN-derived
features.
In BRF, during sample bootstrapping, an undersampling

strategy was applied to the dominant class to address class im-
balance. Samples were drawn without replacement, ensuring
that unique data points were used in each iteration. This ap-
proach mitigated the risk of over�tting and allowed the model
to learn a more balanced representation of both classes. The
best-performing BRF classi�er was obtained for the hyperpa-
rameters given in Table 4 (optimal value). The number of trees
and the maximum tree depth were around the median of tested
values, while theminimumnumber of samples required to split
a node and the minimum number of samples per leaf were set
to the lowest tested values. This indicates that the trees were
allowed to grow as deep as necessary, capturing �ne-grained
decision boundaries in the data. However, since only 60% of
the training data was used to construct each tree, individual
trees were trained on di�erent subsets, reducing the risk of
over�tting while still preserving detailed feature representa-
tions.
The decision threshold was optimized on the basis of Co-

hen’s kappa metric, computed for various threshold values.
The model maintained high classi�cation performance across
multiple thresholds, with K-values exceeding 80% for decision
thresholds between 0.2 and 0.6. To enhance recall while pre-
serving model precision, a threshold of 0.4 was selected, where
K = 88.5%.
Feature importance analysis revealed distinct contributions

of thermal, geometric, and convolutional features to the clas-
si�cation process. Among thermal features, the most impor-
tant (19.48%) was the di�erence in maximum temperatures
between the ellipse and the surrounding area (∆Tmax), fol-
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Table 5. Performancemetrics of themodel across test datasets fromboth �ights in percentage values
Flight no. 1 (test data) 2

Class 0 1 0 1
Precision 99.7 56.2 95.8 86.0
Recall 88.6 98.2 93.6 90.4
F1-score 93.8 71.5 94.7 89.2
OA 89.8 92.7
K 65.9 82.9
PR AUC 86.2 91.2
ROC AUC 93.4 92.0

Figure 10. Receiver Operating Characteristic (ROC) curve for valida-tion and test datasets

lowed by the temperature range within an ellipse (Re) havingan importance of 9.02%. These results highlight the critical
role of temperature contrast in detecting warm-bodied objects,
as higher thermal variation increases the likelihood of distin-
guishing animals from other heated elements in the scene. In
the geometric feature set, eccentricity (e) had the highest im-
portance (7.02%), reinforcing the role of shape descriptors in
classi�cation. This result is consistent with the expectation
that hoofed animals have a characteristic elongated or ellipti-
cal shape in thermal imagery.
Convolutional features, extracted at multiple spatial scales,

had relatively low individual importance, with all values be-
low 1.47%. The most relevant features were obtained using a
3×3 kernel, where the highest-ranked �lter reached 1.47% im-
portance, while those extracted with a 2×2 kernel consistently
exhibited the lowest contributions, none exceeding 0.95%. De-
spite their lower individual importance, removing any subset
of these features led to a signi�cant drop in classi�cation ac-
curacy, con�rming their essential role in capturing spatial pat-
terns within thermal images. Moreover, retaining all convolu-
tional features did not a�ect signi�cantly computational time,
as the relatively small size of thermal images ensured e�cient
processing.
A comprehensive evaluation of model performance for test

datasets is presented in Table 5. For hoofed animals (class 1),
the model achieved an F1-score of 71.5%, while the overall ac-
curacy (OA) reached 89.8%. The ability of the model to di�er-
entiate between classes was further supported by a ROC AUC of
93.4% (Figure 10) and a PR AUC of 86.2%, while Cohen’s kappa
(K) reached 65.9%, indicating moderate agreement.
An additional independent dataset from �ight 2 was used

to further evaluate the model’s generalization capability. This
�ight, conducted on the same day but at a di�erent time, pro-

vided an opportunity to assess the model’s performance on
previously unseen data under similar, but not identical envi-
ronmental conditions. Note that observed animals were active
during the day and changed their location, though concentrat-
ing still in two regions of the enclosure (Figure 1). As in �ight
1, the same segmentation parameters were applied in �ight 2,
and segments were manually assigned to reference classes for
evaluation. This ensured consistency in the assessment of clas-
si�cation performance across both datasets.
Despite these variations in animal movement and environ-

mental conditions, the model maintained high classi�cation
performance (Table 5), achieving 92.7% OA and an F1-score of
89.2% for class 1 (hoofed animals). The observed K-value of
82.9% suggests improved classi�cation agreement compared
to the test data from �ight 1. The model also demonstrated
a PR AUC of 91.2% and a ROC AUC of 92.0%, con�rming its
ability to distinguish between target and non-target objects
across independent datasets. The improved results for �ight
2 can be attributed to the fact that this dataset was collected
only over the fenced enclosure, whereas �ight 1 also included
areas with buildings and other heated objects. The absence of
man-made structures in �ight 2 reduced the number of false
positives, which explains the higher precision and overall accu-
racy observed in this dataset. It is expected that in the natural
environment (without the enclosure) the object content in the
scene will be similar to that visible in the data collected during
�ight 2. Wild animals will rather avoid approachingman-made
objects.
Although the classi�cation task was designed to distinguish

hoofed animals (class 1) from other objects (class 0), the pres-
ence of additional animate objects in the test data in�uenced
classi�cation performance. In �ight 1, three humans appeared
in the images, along with swans, dogs, and peacocks (Fig-
ure 11), while �ight 2 contained only a single human and a dog.
These instances were too rare to form a dedicated class and lay
outside the main scope of detecting hoofed animals, so they
were collectively assigned to class0. However, their presence
allowed for an additional misclassi�cation analysis to assess
how well the model di�erentiates target animals from other
warm-bodied objects.
The precision for class 1 in �ight 1 was notably lower

(54.8%) compared to �ight 2 (86%), primarily due to the pres-
ence of non-hoofed animals that were misclassi�ed as hoofed
animals. Swans, recorded on a cooler water surface, were fre-
quently misclassi�ed as class 1 due to their strong thermal con-
trast with the background. Peacocks and dogs also contributed
to classi�cation variability, being inconsistently labeled as ei-
ther class 0 or class 1. This increased the number of false posi-
tives, leading to lower precision for the positive class.
Despite these challenges, inanimate objects were consis-

tently classi�ed as class 0 with high accuracy, and the model
correctly distinguished humans from hoofed animals in both
datasets. The improved results for �ight 2 were likely due to
the absence of swans, which reduced confusion between sim-
ilar thermal signatures. The classi�cation results for these
cases are summarized in Table 6.
To further explore the method’s performance in more com-

plex, natural conditions, we applied a developed detection
model for the data collected in the real environment during
di�erent season. Despite more challenging environmental con-
ditions, and without creating a new reference dataset, the
model trained using the data collected for the enclosure suc-
cessfully identi�ed two individual animals (Figure 12). The vi-
sual analysis of thermal and RGB images did not show other
animals. This result suggests that our approach can work out-
side controlled conditions and handle di�erent environmental
and lighting settings, particularly for diurnal species in semi-
open or forest glade landscapes.
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Figure 11. Examples of classi�cation results. Green markers indicate class 1 (hoofed animals) while red markers indicate class 0 (otherobjects). Small squares highlight detected segments, and the value shows the BRF probability of belonging to class 1. Largerectangles with descriptions highlight real (reference) objects. A square with a color di�erent from the surrounding rectangleindicates a misclassi�ed object.
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Figure 12. Sample frames from the late-spring forest test �ight. Panels (a) and (b) show paired thermal (left) and RGB (right) images.As in Figure 11, green and red markers denote objects classi�ed as hoofed animals (class 1) and non-target objects (class 0),respectively, along with their corresponding probability of belonging to class 1. On the RGB images, rectangles indicate thelocations of high-probability detections: white for hoofed animals and red for non-target objects.

Table 6. Classi�cation results for segments representing di�erentobjects. Values indicate the number of segments assignedby BRF to classes 0 and 1.
Flight no. 1 (test data) 2

Predicted class 0 1 0 1
Actual class 1: Hoofed animals 2 108 32 302

Actual class 0
Inanimate object 592 22 659 12
Human 39 0 26 9
Dog 6 12 8 21
Swan 5 40 – –
Peacock 10 10 – –

6 Discussion

The results indicate that our approach performed well in de-
tecting and classifying animals using only drone-acquired
daytime thermal images. The overall accuracy ranged from
89.8% to 92.7%, which is consistent with, or surpasses, results
from othermachine learning-basedwildlife detectionmethods,
where reported accuracies typically lie between 80% and 98%
(see Section 2). As discussed earlier, various studies have ex-
plored thermal or dual-sensor approaches (Christiansen et al.,
2014; Lee et al., 2021; Kalinowski et al., 2023; Rančić et al.,
2023). For instance, Lee et al. (2021) combined thermal and
RGB images and achieved a best precision of 80.4% and a re-
call of 69.9% at low altitudes, while our single-sensor method
reached a precision of 86% and a recall of 90.4% under compa-
rable conditions. Meanwhile, Kalinowski et al. (2023) achieved
98.6% accuracy for wild boar detection using a thermal camera
mounted at an oblique angle, which allowed them to capture
side pro�les-essential for distinguishing wild boar from other

species. In our case, the thermal camera was mounted verti-
cally (nadir) at an altitude of 53m, which, together with the im-
age resolution, limits the ability to distinguish species reliably.
Instead, the method detects hoofed animals as a broader group.
Compared to Rančić et al. (2023), whose YOLOv4 approach on
RGB data yielded 86% precision and 75% recall, our pipeline re-
mains competitive and requires fewer labeled examples. More-
over, our method operates on thermal imagery alone and re-
lies on simpler reference data, without the need for bounding
box annotation. This reduces the time and e�ort required for
dataset preparation and makes the pipeline more practical in
large-scale or low-resource settings. Christiansen et al. (2014)
reported a balanced classi�cation accuracy of 84.7% at alti-
tudes below 10m for small-animal detection, which improved
to 93.3% when temporal tracking was applied. Above 10 m,
their performance dropped to approximately 75–78%. By con-
trast, our �ights were conducted at a �xed altitude of around
53 m and focused on larger animals. Despite the higher al-
titude (mostly due to safety reasons to keep su�cient height
over tree tops), our method maintained high accuracy. The
pipeline combines segment-based detection with a BRF classi-
�er enriched by CNN-derived features. This setup proved to be
computationally e�cient and well-suited for use with limited
training data while maintaining detection performance compa-
rable to more complex approaches. These comparisons suggest
that the proposed method is robust and adaptable, even when
data collection is limited or conditions vary between �ights.
A crucial step in the process was the initial segmentation to

detect potential animals in thermal images. Given the thermal
characteristics of the scene, animal detection relied on temper-
ature di�erences rather than structural or color-based features.
The applied segmentation method e�ectively identi�ed poten-
tial targets by leveraging temperature-based �ltering and con-
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tour analysis, ensuring that objects corresponding to animals
were correctly extracted while minimizing false detections of
static elements such as buildings or heated soil.
Lowering the decision threshold to 0.4 reduced false nega-

tives but increased false positives, particularly for objects with
similar thermal signatures. Swans, primarily detected on wa-
ter, were often classi�ed as class 1 due to the high temperature
contrast between their bodies and the cooler surface. Other
non-target animals, such as dogs and peacocks, were assigned
inconsistently, likely in�uenced by their size, posture, and par-
tial visibility. The minimum object size of �ve pixels ensured
the detection of partially visible animals but also contributed
to variability in classi�cation. While the model e�ectively dif-
ferentiates between animals and non-animal objects, its per-
formance decreases for smaller non-target animals.
When applied to an independent dataset from �ight 2, the

model achieved even higher accuracy than in �ight 1. This im-
provement was likely due to the lower presence of non-hoofed
animals, which reduced the number of false positives and im-
proved classi�cation precision. The ability of the model to
generalize e�ectively under similar environmental conditions
further supports its applicability for wildlife monitoring using
UAV thermal imagery. A supplementary test �ight conducted
in a forest area during late spring further con�rmed that the
method can perform under more natural and variable condi-
tions.
Moreover, the use of daytime thermal images provides an

additional advantage, as many hoofed animals were active dur-
ing the day. In contrast, images captured at night could make
it harder to detect them, as they might seek shelter or remain
hidden in dense vegetation. Although the low resolution of
thermal images is a drawback in comparison to high resolution
RGB images, it becomes an advantage in terms of the process-
ing speed.

7 Conclusions

The proposed method detects animals in UAV-acquired day-
time thermal images using minimal computational resources
and limited training data. It combines a straightforward image
segmentation routine with a Balanced Random Forest classi�er
augmented by convolutional features. The approach achieved
89.8% overall accuracy, a Cohen’s kappa of 65.9%, and an ROC
AUC of 93.4% on the primary test dataset. An additional �ight
con�rmed the method’s robustness under di�erent conditions,
with performancemetrics remaining consistent across datasets
collected at di�erent time of the day.
Although the use of low-resolution thermal images col-

lected during daytime was initially perceived as a limitation, it
ultimately proved advantageous: employing simple segmenta-
tion thresholds and a shallowmachine learningmodel achieved
robust performance, while the deep learning component (CNN)
was con�ned to feature extraction and did not require a large
dataset. This approach yielded results that could not have been
attained using solely the geometric and thermal features de-
rived from the segmented images.
This design eliminates the need for large labeled datasets

and enables real-time or near-real-time processing. The im-
age segmentation hyperparameters re�ect the ground sam-
pling distance and can be adapted for monitoring other animal
species or human presence.
One of the future research plans is to use the developed de-

tection method for an animal counting application. To avoid
multiple counting of the same animal visible in di�erent im-
ages, a photogrammetric processing may be executed to deter-
mine the image exterior and inner orientation. This will allow
to determine image overlaps and avoid redundancy in animal

counting. Another future research direction is animal detec-
tion with distinguishing species, making it suitable for more
detailed ecological monitoring. It should be possible by a si-
multaneous use of low-resolution thermal and high-resolution
RGB images. More broadly, the framework can be adapted to
other domains that rely on thermal imagery.

Funding

The APC/BPC is �nanced/co-�nanced by Wrocław University of
Environmental and Life Sciences.

References

Afshari, H., Gadsden, S., and Habibi, S. (2017). Gaussian �l-
ters for parameter and state estimation: A general review
of theory and recent trends. Signal Processing, 135:218–238,
doi:10.1016/j.sigpro.2017.01.001.

Baskin, L. and Danell, K. (2003). Ecology of ungulates: A hand-
book of species in Eastern Europe and Northern and Central Asia.
Springer Science and Business Media.

Browne, M. W. (2000). Cross-Validation Methods.
Journal of Mathematical Psychology, 44(1):108–132,
doi:10.1006/jmps.1999.1279.

Burton, A. C., Neilson, E., Moreira, D., Ladle, A., Steenweg,
R., Fisher, J. T., Bayne, E., and Boutin, S. (2015). REVIEW:
Wildlife camera trapping: a review and recommendations
for linking surveys to ecological processes. Journal of Applied
Ecology, 52(3):675–685, doi:10.1111/1365-2664.12432.

Chicco, D., Warrens, M. J., and Jurman, G. (2021). The
Matthews Correlation Coe�cient (MCC) is More Infor-
mative Than Cohen’s Kappa and Brier Score in Binary
Classi�cation Assessment. IEEE Access, 9:78368–78381,
doi:10.1109/access.2021.3084050.

Christiansen, P., Steen, K., Jørgensen, R., and Karstoft, H.
(2014). Automated Detection and Recognition of Wildlife
Using Thermal Cameras. Sensors, 14(8):13778–13793,
doi:10.3390/s140813778.

Crow, L. and Watts, S. J. (2024). Limits to classi�cation perfor-
mance by relating Kullback-Leibler divergence to Cohen’s
Kappa.

De Oliveira, D. C. and Wehrmeister, M. A. (2018). Using Deep
Learning and Low-Cost RGB and Thermal Cameras to Detect
Pedestrians in Aerial Images Captured by Multirotor UAV.
Sensors, 18(7):2244, doi:10.3390/s18072244.

Deng, G. and Cahill, L. (1993). An adaptive Gaussian �lter for
noise reduction and edge detection. In 1993 IEEE Conference
Record Nuclear Science Symposium and Medical Imaging Confer-
ence, NSSMIC-93. IEEE, doi:10.1109/nssmic.1993.373563.

Foley, C. J. and Sillero-Zubiri, C. (2020). Open-source,
low-cost modular GPS collars for monitoring and track-
ing wildlife. Methods in Ecology and Evolution, 11(4):553–558,
doi:10.1111/2041-210x.13369.

Ford, A. T., Clevenger, A. P., and Bennett, A. (2009).
Comparison of Methods of Monitoring Wildlife Crossing-
Structures on Highways. The Journal of Wildlife Management,
73(7):1213–1222, doi:10.2193/2008-387.

Hodgson, J. C., Baylis, S. M., Mott, R., Herrod, A., and
Clarke, R. H. (2016). Precision wildlife monitoring us-
ing unmanned aerial vehicles. Scienti�c Reports, 6(1),
doi:10.1038/srep22574.

Jeni, L. A., Cohn, J. F., and De La Torre, F. (2013). Facing
Imbalanced Data–Recommendations for the Use of Perfor-
mance Metrics. In 2013 Humaine Association Conference on
A�ective Computing and Intelligent Interaction, page 245–251.
IEEE, doi:10.1109/acii.2013.47.

http://dx.doi.org/10.1016/j.sigpro.2017.01.001
http://dx.doi.org/10.1006/jmps.1999.1279
http://dx.doi.org/10.1111/1365-2664.12432
http://dx.doi.org/10.1109/access.2021.3084050
http://dx.doi.org/10.3390/s140813778
http://dx.doi.org/10.3390/s18072244
http://dx.doi.org/10.1109/nssmic.1993.373563
http://dx.doi.org/10.1111/2041-210x.13369
http://dx.doi.org/10.2193/2008-387
http://dx.doi.org/10.1038/srep22574
http://dx.doi.org/10.1109/acii.2013.47


Włodarczyk and Jóźków, 2025 | 13

Jewell, Z. (2013). E�ect of Monitoring Technique on Quality of
Conservation Science. Conservation Biology, 27(3):501–508,
doi:10.1111/cobi.12066.

Kalinowski, P., Szczepaniak, P., Ułanowicz, L., and Sibilski, K.
(2023). Zastosowanie aerofotogrametrii w podczerwieni do
śledzenia dzików w ich naturalnym środowisku oraz identy-
�kacji osobników zarażonych afrykańskim pomorem świń.
cz. I – Architektura systemu i metodyka identy�kacji (Ap-
plication of aerophotogrammetry in infrared to track wild
boars in their natural environment and identify individu-
als infected with African swine fever. Part I – System archi-
tecture and identi�cation methodology). Mechanika w Lot-
nictwie, page 165–183, doi:10.15632/ml2022/165-183.

Lee, E. J., Shin, S. Y., Ko, B. C., and Chang, C. (2016). Early sink-
hole detection using a drone-based thermal camera and im-
age processing. Infrared Physics and Technology, 78:223–232,
doi:10.1016/j.infrared.2016.08.009.

Lee, S., Song, Y., and Kil, S.-H. (2021). Feasibility Analy-
ses of Real-Time Detection of Wildlife Using UAV-Derived
Thermal and RGB Images. Remote Sensing, 13(11):2169,
doi:10.3390/rs13112169.

Lyu, H., Qiu, F., An, L., Stow, D., Lewison, R., and Bohnett, E.
(2024). Deer survey from drone thermal imagery using en-
hanced faster R-CNN based on ResNets and FPN. Ecological
Informatics, 79:102383, doi:10.1016/j.ecoinf.2023.102383.

More, A. S. and Rana, D. P. (2017). Review of ran-
dom forest classi�cation techniques to resolve data imbal-
ance. In 2017 1st International Conference on Intelligent Sys-
tems and InformationManagement (ICISIM), page 72–78. IEEE,
doi:10.1109/icisim.2017.8122151.

Nyhus, P. J. (2016). Human–Wildlife Con�ict and Coexistence.
Annual Review of Environment and Resources, 41(1):143–171,
doi:10.1146/annurev-environ-110615-085634.

O’Shea, K. and Nash, R. (2015). An introduction to con-
volutional neural networks. arXiv preprint arXiv:1511.08458,
doi:10.48550/arXiv.1511.08458.

Pollock, K. H., Nichols, J. D., Simons, T. R., Farnsworth, G. L.,
Bailey, L. L., and Sauer, J. R. (2002). Large scale wildlife
monitoring studies: statistical methods for design and anal-
ysis. Environmetrics, 13(2):105–119, doi:10.1002/env.514.

Ramadhan, A. L. (2024). Understanding Human-Wildlife Inter-
actions in Urban Environments: Implications for Con�icts,
Disease Transmission, and Conservation. LawandEconomics,
18(2):99–109.

Rančić, K., Blagojević, B., Bezdan, A., Ivošević, B., Tubić,
B., Vranešević, M., Pejak, B., Crnojević, V., and Marko,
O. (2023). Animal Detection and Counting from UAV Im-
ages Using Convolutional Neural Networks. Drones, 7(3):179,
doi:10.3390/drones7030179.

Ridwan, Q., Wani, Z. A., Anjum, N., Bhat, J. A., Hanief, M.,
and Pant, S. (2023). Human-wildlife con�ict: A biblio-
metric analysis during 1991–2023. Regional Sustainability,
4(3):309–321, doi:10.1016/j.regsus.2023.08.008.

Tuia, D., Kellenberger, B., Beery, S., Costelloe, B. R., Zu�, S.,
Risse, B., Mathis, A., Mathis, M. W., van Langevelde, F.,
Burghardt, T., Kays, R., Klinck, H., Wikelski, M., Couzin,
I. D., van Horn, G., Crofoot, M. C., Stewart, C. V., and
Berger-Wolf, T. (2022). Perspectives in machine learn-
ing for wildlife conservation. Nature Communications, 13(1),
doi:10.1038/s41467-022-27980-y.

Verma, A., van der Wal, R., and Fischer, A. (2016). Imag-
ining wildlife: New technologies and animal cen-
suses, maps and museums. Geoforum, 75:75–86,
doi:10.1016/j.geoforum.2016.07.002.

Vujovic, Z. D. (2021). Classi�cation Model Evaluation Metrics.
International Journal of Advanced Computer Science and Applica-
tions, 12(6), doi:10.14569/ijacsa.2021.0120670.

Watanabe, S. (2023). Tree-structured parzen estimator: Un-derstanding its algorithm components and their roles for
better empirical performance. arXiv preprint arXiv:2304.11127,
doi:10.48550/arXiv.2304.11127.

Witczuk, J., Pagacz, S., Zmarz, A., and Cypel, M. (2017).
Exploring the feasibility of unmanned aerial vehicles and
thermal imaging for ungulate surveys in forests – pre-
liminary results. International Journal of Remote Sensing,
39(15–16):5504–5521, doi:10.1080/01431161.2017.1390621.

Witmer, G. W. (2005). Wildlife population monitoring:
some practical considerations. Wildlife Research, 32(3):259,
doi:10.1071/wr04003.

Woźniakowski, G., Pejsak, Z., and Jabłoński, A. (2021). Emer-
gence of African Swine Fever in Poland (2014–2021). Suc-
cesses and Failures in Disease Eradication. Agriculture,
11(8):738, doi:10.3390/agriculture11080738.

Yang, S., Gu, L., Li, X., Jiang, T., and Ren, R. (2020).
Crop Classi�cation Method Based on Optimal Feature Se-
lection and Hybrid CNN-RF Networks for Multi-Temporal
Remote Sensing Imagery. Remote Sensing, 12(19):3119,
doi:10.3390/rs12193119.

http://dx.doi.org/10.1111/cobi.12066
http://dx.doi.org/10.15632/ml2022/165-183
http://dx.doi.org/10.1016/j.infrared.2016.08.009
http://dx.doi.org/10.3390/rs13112169
http://dx.doi.org/10.1016/j.ecoinf.2023.102383
http://dx.doi.org/10.1109/icisim.2017.8122151
http://dx.doi.org/10.1146/annurev-environ-110615-085634
http://dx.doi.org/10.48550/arXiv.1511.08458
http://dx.doi.org/10.1002/env.514
http://dx.doi.org/10.3390/drones7030179
http://dx.doi.org/10.1016/j.regsus.2023.08.008
http://dx.doi.org/10.1038/s41467-022-27980-y
http://dx.doi.org/10.1016/j.geoforum.2016.07.002
http://dx.doi.org/10.14569/ijacsa.2021.0120670
http://dx.doi.org/10.48550/arXiv.2304.11127
http://dx.doi.org/10.1080/01431161.2017.1390621
http://dx.doi.org/10.1071/wr04003
http://dx.doi.org/10.3390/agriculture11080738
http://dx.doi.org/10.3390/rs12193119

	Introduction
	Related work
	Data
	Reference data

	Methodology
	Detection of image segments potentially showing animals
	Geometric and thermal feature extraction 
	Convolutional feature extraction
	Balanced Random Forest model building 
	Accuracy assessment

	Results
	Discussion
	Conclusions 

