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Abstract

Laser scanning systems are modern measurement techniques generating large datasets. Observations, usually collected as a point
cloud, present the general results that can be visualized using specialized software. While the final effect might be impressive from
a visualization point of view, it is inconvenient for modeling or extracting detailed information about, for example, terrain,
buildings, engineering structures, and deformations. Therefore, data from laser scanning systems require post-processing using
several methods reflecting different purposes or data processing stages: data segmentation, modeling, and filtration. Mg
estimation is one of the methods that has proved its effectiveness in laser scanning data processing and determination of terrain
profiles, deformation, or building shapes. Processing the complete datasets tends to only yield often inadequate results when
high-class computers are used, and it is time-consuming. Therefore, datasets tend to remain segmented. This paper explores a
range of several types of segmentation methods that can be used in Myg,;; estimation. It presents profile determination when data
cut out from the original point cloud are divided into intervals of the same length, or the sliding window algorithm is applied. In
comparison, the given examples show that the latter approach can provide more reliable results. The application of the sliding
window algorithm entails having to make assumptions concerning estimation parameters. The paper offers valuable guidance

about both the width of the window and the slide size.
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1 Introduction

The advanced measurement techniques contain novel systems of
data acquisition that often generate large datasets. Light Detection
and Ranging (LiDAR) is one of such systems that has gained popu-
larity and is applied to solve many engineering problems, includ-
ing surveying (Yang et al., 2017; Janicka et al., 2020; Wyszkowska
et al., 2020), geomatics (Lian and Hu, 2017; Zhao et al., 2019;
Blaszczak-Bak etal., 2020), civil engineering (Wang and Hsu, 2007;
Cabaleiro et al., 2015; Blaszczak-Bak et al., 2020; Wyszkowska and
Duchnowski, 2022), geosciences (Spaete et al., 2010), archeology
(Rodriguez-Gonzalvez et al., 2017), forestry (Crespo-Peremarch
et al., 2018; Arslan et al., 2021). LiDAR technology encompasses
three main types: Terrestrial Laser Scanning (TLS), Airborne Laser
Scanning (ALS), and Mobile Laser Scanning (MLS). The measure-

ments are usually grouped and presented in a set named a point
cloud (usually in 3D space), regardless of the technique applied. A
point cloud can provide valuable information about the scanned ob-
ject, for example, a building, or any engineering structures, terrain,
treetops, vegetation cover, or excavation. However, the raw data
usually only provide general information. To obtain more detailed
descriptions, data must undergo a process consisting of several
stages, including registration, segmentation, data cleaning, filtra-
tion, modelling, or estimation of parameters of geometrical primi-
tives such as surfaces, profiles (e.g., Forlani and Nardinocchi, 2007;
Tévari and Pfeifer, 2005; Nguyen and Le, 2013; Blaszczak-Bak et al.,
2015). Processing complete sets is sufficient and easy to perform
only when the relevant point clouds include a relatively small num-
ber of measurements and the object under study is simple. In other
cases, processing the whole sets is significantly time-consuming
and requires a high-class computer. Moreover, when processing
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the full sets, more detailed information about the object may be lost.
Therefore, the point clouds are usually divided into subsets to make
the processing more efficient. Observation segmentation concerns
usually complex objects like buildings, bridges, etc., where each
construction element might be modelled separately. However, seg-
mentation might also be applied to perform a more detailed analysis
to obtain a more comprehensive model.

Data processing also faces the problem of the choice of estima-
tion or modelling method. There is no doubt that the least-squares
method (LS estimation) is the most common. However, other ap-
proaches are also used, including M-estimation, robust estima-
tion, random sample consensus (RANSAC), and Mspm estimation
(e.g., Carrilho et al., 2018; Zhao et al., 2019). The latter method is
relatively new and has found interesting applications to survey-
ing engineering problems: finding unstable points in global nav-
igation satellite systems (GNSS) networks (Banimostafavi et al.,
2023), deformation analysis (e.g., Zienkiewicz, 2015; Duchnowski
and Wyszkowska, 2022b; Pleterski et al., 2025), similarity transfor-
mation (Nowel, 2018; Zhang et al., 2023), estimation with errors-in-
variables (EIV) models (Wisniewski, 2022), data processing with
the point cloud spatial expansion (PCSE) algorithm (Zienkiewicz
and Dabrowski, 2023), heterogeneous data fusion (Tao et al., 2024,
2025), direct identification of outliers (Li et al., 2013), robust estima-
tion (Wyszkowska and Duchnowski, 2022, 2024b), and coordinate
transformation (Janicka and Rapinski, 2013). Mspht estimation,
in different variants, was also successfully applied to process LI-
DAR data in the following problems: displacement analysis (Janicka
etal., 2020, 2023; Wyszkowska and Duchnowski, 2022), detection
and analysis of engineering structures (Janicka and Rapinski, 2013;
Janowski, 2018; Dabrowski and Zienkiewicz, 2022; Wyszkowska
and Duchnowski, 2024b), terrain modeling (Btaszczak-Bak et al.,
2015; Wyszkowska et al., 2020). The wide range of Mspﬁt estima-
tion applications mostly stems from its unique feature, namely,
it can estimate parameters within the split functional model. In
practice, it means that by processing one observation set, one can
determine two (or more) versions of parameters (in some sense,
the method is similar to cluster analysis; however, the algorithms,
assumptions, and data processing are dissimilar — the observa-
tion sets are not divided into clusters processed separately, in fact)
(Wisniewski, 2009, 2010). This unique feature also enables apply-
ing the method as an alternative to robust estimation, which might
overperform the classical approaches, including M-estimation or
R-estimation (Duchnowski and Wyszkowska, 2022a; Wyszkowska
and Duchnowski, 2022, 2024a).

Estimating two or more variants of functional model parameters
is the main advantage of Mgyt estimation. It isa unique property as
other methods have to process subsets separated in a specific way
to provide comparable results. Another advantage of the method is
its robustness against outliers. From the theoretical point of view,
the basic Mgp);; estimation variants cannot be classified as robust
against outliers (Duchnowski and Wisniewski, 2019; Duchnowski
and Wyszkowska, 2023); however, they can be used as alternatives
to robust methods like M-estimation. In such an application, the
method should generate regular observations from outliers. Dur-
ing the estimation process, location parameters of both groups are
estimated (Duchnowski and Wyszkowska, 2022a). Notably, robust
variants of Mgpjie estimation have also been derived (Wyszkowska
and Duchnowski, 2022, 2024a). Crucially, in robust applications,
Mgpj;¢ estimation can withstand a significantly high percentage of
outliers (even more than 50%), which conventional robust methods
fail to deliver (Wyszkowska and Duchnowski, 2022; Duchnowski
and Wyszkowska, 2023). Like every estimation method, Mgy esti-
mation has some disadvantages: Its algorithms are more complex
than the algorithms of M-estimation; in some applications, it is
also important to select sufficiently accurate starting points, which
requires some experience from analysts (Wyszkowska and Duch-
nowski, 2019, 2020). Nevertheless, the advantages of this method
outweigh the limitations in many surveying applications.
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This paper addresses processing LiDAR data by applying Mgpjit
estimation. It explores acquiring information from a point cloud
and examines several scenarios in which the observations are pro-
cessed. The data subsets are cut out from the whole point cloud and
become the basis for modelling characteristic elements of the object.
Each observation set can be processed as a whole or divided into sev-
eral subsets. Another option is the application of the sliding window
algorithm (e.g., Wang et al., 2016; Li et al., 2018). Wyszkowska and
Duchnowski (2025) applied the method to My;;; estimation; how-
ever, such an approach has never been examined in detail. There-
fore, this paper lists advantages and disadvantages of the sliding
window algorithm in relation to processing the whole observation
set or subsets mentioned when Mg.;;; estimation is used.

The paper is organized in the following way. The Section 2
presents the foundations of Mgpii estimation in two basic vari-
ants. Section 3 summarizes examples of modelling the wall profile
and the wall edge for different observation sets (also disturbed by
outliers). The final section discusses the results and presents con-
clusions regarding applying the sliding window algorithm to M,
estimation method in LiDAR data processing.

split

2 Mg estimation

The main assumption of Mgpiie estimation is that the observation
set is an unknown mixture of realizations of at least two different
random variables (the observation set consists, in fact, of at least
two subsets differing in location parameters; however, the set divi-
sion stays unknown). Therefore, the original functional model of
observations is split into at least two competitive models as follows:

Yy = AX() +V(y)

(1)
V= AX5) +V(3)

y:AX+V:>{

where: y — observation vector, A — full column rank coefficient
matrix, X — parameter vector, v — observation error vector, X ;) and
Xoy — competitive versions of parameter vector X, Vi) and Vi) —
competitive versions of observation error vector v. The first and
basic variant of Mgp);; estimation is the squared Mgpj;; estimation
(SMS), which was proposed in Wisniewski (2009). The objective
function ¢ (X(l),x(z)) , the influence functions 1 0 (vi(l), vi(z)),
and the weight functions w(l) (Vi(l)»"i(z)) (where [ = 1 0r 2) are
defined in the following way:
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The second variant, called the absolute My, ;; estimation (AMS),
was proposed in Wyszkowska and Duchnowski (2019), and its main
functions are as follows:
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The parameters of the functional models (1) are estimated in
the iterative process. SMS estimation uses the traditional iterative
process proposed in Wisniewski (2009):

=X i ax I 1)
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where: dX(l) — increment to parameter vector, H(,) (X(1)7X(2)) -

Hessians, 8(1) (X(l) , X(z)) — gradients. The Hessians and gradients
are defined as follows:
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where the matrices of the weight functions are recomputed in each
iterative step, in the following way:

Wy (Yaay Va) |

W) (V) V(z)) = diag F"a) (Vi) » (
Wy (V

W) ("(1)"’(2)) = diag [w(y) ("1(1)r"1(z)) ) n()1Vn(2)

(7)

where: diag (o) — diagonal matrix. Therefore, the weight matrices
depend on the weight functions and the values of the errors vy,
either v;.,y. This method is called mutual cross-weighting. The
iterative process ends for such j for whiph the necessary conditions
ga) ( (1) ,X](Z)l) =oand g, ( ](;) , (;)> = 0 are satisfied. Hence
X(l) (1) (1) ! and 2(2) (2) X}(z)l (Wiéniewski, 2000;
Wyszkowska and Duchnowski, 2019).

The traditional process is not applicable where the mutual cross-
weighting is not applied, for example, in AMS estimation (see
Equation 3), in which case a parallel iterative process proposed
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Figure 1. Data sets of the wall with cornice

in Wyszkowska and Duchnowski (2019) is applicable:
=X ledx =x1-

Xy = Xy + ¥y =Xy~ [Hoy (X »X’é)l)]__llgm (X %))
Xy = X5y + 405y = X = [Hoy (X, X0)) | 8y (X0 X(5))
(8)

The gradients and Hessians are defined as in Equations (5) and
(6), and the criterion for ending the iterative process is the same as
in the traditional iterative process.

3 Processing example TLS data

Examining the presented scenarios is performed on the example
object, a building placed at the campus of the University of Warmia
and Mazury in Olsztyn, Poland. The object was scanned using Leica
ScanStation C10 (terrestrial laser scanner). Several data subsets
were extracted from the whole point cloud to determine wall pro-
files or edges. The subsets were designed to demonstrate the basic
applications of Mgpi estimation, namely: the natural one, esti-
mating competitive versions of the parameters from the functional
model (1), or application of the method as an alternative to the
conventional robust estimations.

3.1 Extracting wall profiles

The section explores two observation sets (presented in Figure 1)
created to determine the wall profiles. The first one contains mea-
surements of the wall profile with a cornice around the middle. The
second subset consists of measurements of the profile parallel to
the first one, and it contains some outliers resulting from measur-
ing the window recess and the room behind (in the upper part).
The observations in the lower part of the subsets describe the door
recess; they should be regarded as regular ones, but they disturb
the profile’s linearity.
Here, five scenarios of data processing are proposed:

- Scenario A — each profile of a length of 3 m processed as a whole,

- Scenario B — 0.2 m intervals (from 1.1 m to 1.3 m, from 1.3 m to
1.5 m, etc.),

- Scenario C — 0.1 m intervals (from 1.05 m to 1.15 m, from 1.15 m
to 1.25 m, etc.),

+ Scenario D — 0.4 m sliding windows and the window slide of
0.2 m (from 1.0 m to 1.4 m, from 1.2 m to 1.6 m, etc.),

- Scenario E — 0.2 m sliding windows and the window slide of
0.1 m (from 1.0 m to 1.2 m, from 1.1 m to 1.3 m, etc.).

In all variants, the parameters from the models of Equation
(1) are regarded as the parameters of the linear function (the first-
degree polynomial). The estimated profiles from different scenarios
are presented in Figures 2 and 3, which also present profiles result-



70 |

Reports on Geodesy and Geoinformatics, 2025, Vol. 120, pp. 67—74

Scenario A Scenario B Scenario C
4.0 4.0 4.0 r
" ‘
3.5 \ 3.5 3.5 ‘
\ ,' )
3.0 ¥ 3.0 < 3.0 <
Y
— \ — \ —_ A
E s \ E s E s
= ‘\ = =
2.0 \ 2.0 2.0
\ |
\ |
1.5 \ 1.5 1.5
\ |
1.0 1.0 1.0
-24.5 -24.0 -235 -24.5 -24.0 -23.5 -24.5 -24.0 -23.5
X [m] X [m] X [m]
Scenario D Scenario E
4.0 4.0
3.5 35 Raw data
J “
3.0 ( 3.0 < LS
—_ ; —_ \
E2s | E2s ——sMs1
= =
20 20 - = =SMS2
15 15 | AMS1
\
10 10 AMS2
-24.5 -24.0 -235 -24.5 -24.0 -23.5
X [m] X [m]

Figure 2. Profile estimated from the first subset across different scenarios (solid lines — final solutions, dashed lines — alternative solutions)

ing from raw data interpolation. In the case of Mgpj¢ estimation,
two possible solutions are presented; the solid lines represent the
first solutions (SMS1 or AMS1), whereas the dashed lines represent
the second solutions (SMS2 or AMS2). SMS1 and AMS1 solutions
are the ones that describe the wall profiles (the others might be
regarded as describing outlying observations).

A simple graphical analysis yields conclusions: First, processing
the whole set might provide satisfactory results when no outliers
occur. However, even then some detailed information is lost (see the
first subset and the cornice). Second, as expected, the shorter the
intervals (or the sliding window and the slide), the more detailed
the profile can be obtained. However, it is hard to decide which
method of dividing the whole observation set provides better re-
sults. On the other hand, one can notice that Msplit estimations
outperform LS estimation, especially in the case of the second set.
Comparing the results obtained for that case in Scenarios C and D
with those of Scenarios E and F, one can see that the sliding window
algorithm provides slightly better results in the upper profile part.
For more detailed and informative analyses, a reference is neces-
sary, for example, a line or a surface determined with much higher
accuracy. This is not the case in that example because of the shape
of the profiles and the measurements performed. Therefore, we
introduce another example where such a surface can be defined.

3.2 Determining the wall edges

Two additional observation sets were created to determine the wall
edges. Since those parts of the object were scanned with the highest
resolution, it is possible to create the examined sets and the refer-
ence ones- four times bigger and with no outliers. Therefore, the
reference sets can determine the wall edges more precisely. All sets
are presented in Figures 4 and 5.

The data processing in the first case is a natural application of
Mgp);; estimation. Generally, that set consists of measurements of
both sides of the corner, and the estimation method mentioned
allows us to estimate parameters of two planes modelling the walls

from both sides in one iterative process. From such estimated pa-
rameters, one can compute the line that is the intersection of the
planes, and it is the model of the wall edge, meanwhile, the refer-
ence wall edge is computed from the separate reference subsets
using LS estimation. Each subset in question consists of measure-
ments of only one side of the corner; hence, it allows for the mod-
elling of that corner side.
The following are scenarios of data processing:

- Scenario A — data processed as a whole,

- Scenario B — 0.5 m intervals in relation to Z-axis (for Z from
3.595 m to 4.095 m, from 4.095 m to 4.595 m, etc., with the last
interval larger),

+ Scenario C — 0.25 m intervals in relation to Z-axis (for Z from
3.595 m to 3.845 m, from 3.845 m to 4.095 m, etc., with the last
interval larger),

- Scenario D — 0.5 m sliding windows in relation to Z-axis and
the window slide of 0.25 m (for Z from 3.595 m to 4.095 m, from
3.845 m to 3.435 m, etc., with the last sliding window is larger),

- Scenario E — 0.25 m sliding windows in relation to Z-axis and
the window slide of 0.125 m (for Z from 3.595 m to 3.845 m, from
3.720 m to 3.970 m, etc., with the last sliding window larger).

To compare the precision of the obtained wall edge from dif-
ferent scenarios, the root-mean-square deviation (RMSD) can be
applied, following a determination of the reference edge in each
interval using the reference set, then a determination of the point
of intersection of that wall edge with the horizontal plane at the
chosen heights. The same should be done for the examined sets.
The distance between such points, d;, is the base to compute RMSD
using the following formula:

n 42
=17
n

RMSD = (9)

where n is the number of distances between the points determined.
Crucially, computed RMSDs do not present the real accuracy of
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Figure 5. TLS point clouds for wall edge determination (the second case)

Table 1. RMSDs [mm] for different scenarios (the

first case)
Scenario SMS AMS
A 2.57 2.13
B 1.25 0.87
C 1.43 1.17
D 1.41 0.91
E 1.24 0.89

the data processing methods; however, they can be used to make
comparative analyses. Table 1 presents RMSDs obtained for all
scenarios in the first case. One can say that processing data divided
into subsets provides better results than processing the complete
set. At this point it remains unclear which strategy is more reliable:
the sliding window algorithm or dividing the complete set into
intervals in relation to Z-axis. With narrower intervals, the results
are of a similar accuracy (compare scenarios B and C). On the other
hand, assuming the narrower sliding window, one more accurate
results can be obtained.

In the second case, the examined set contains outliers (mea-
surements of the rain gutter; see right panel of Figure 5). Therefore,
the measurements concerning the wall’s left or right sides are pro-
cessed separately. It means that Mgp);; estimation is here a viable
alternative for the robust procedure.

The following are scenarios of data processing:

+ Scenario A — data processed as a whole,

+ Scenario B — 0.4 m intervals in relation to Z-axis (for Z from
£4.566 m to 4.966 m, from 4.966 m to 5.366 m, etc., with the last
interval larger),

+ Scenario C — 0.25 m intervals in relation to Z-axis (for Z from
4.566 m to 4.816 m, from 4.816 m to 5.066 m, etc., with the last
interval larger),

- Scenario D — 0.4 m sliding windows in relation to Z-axis and
the window slide of 0.2 m (for Z from 4.566 m to 4.966 m, from
4.766 m to0 5.166 m, etc., with the last sliding window larger),

+ Scenario E — 0.25 m sliding windows in relation to Z-axis and
the window slide of 0.125 m (for Z from 4.566 m to 4.816 m, from
£4.691m to 4.941 m, etc., with the last sliding window larger).

To compare results for those scenarios, RMSDs computed as
in the previous example can be used. The results are presented in
Table 2.

Processing the complete set at that time provided the least ac-
curate results. The sliding window algorithm and the processing
of the subsets provide similar results; however, the former method
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Table 2. RMSDs [mm] for different scenarios (the

second case)
Scenario SMS AMS
A 0.92 0.74
B 0.57 033
C 0.72 0.66
D 0.56 032
E 0.63 0.48

proved more accurate. Interestingly, narrowing the intervals (or
the sliding windows) deteriorates the precision of the wall edge
determination.

4, Discussion and conclusions

This paper investigates LiDAR data processing using Mgpii estima-
tion for modeling engineering structures across various scenarios.
A central distinction among the processing approaches lies in how
the data are partitioned. Specifically, the dataset may be processed
as a whole, divided into mutually exclusive subsets, or analyzed
using a sliding window algorithm.

The examples presented demonstrate that processing the entire
dataset without segmentation can yield satisfactory results only
when the modelled surface or profile is geometrically simple — such
as those that can be effectively described by polynomials or other ba-
sic functions. In such cases, the data typically contains few outliers,
allowing for accurate and efficient modelling. However, when these
conditions are not met — particularly in the presence of complex
geometries or significant noise — this approach may lead to unsatis-
factory or inaccurate outcomes. Therefore, selecting an appropriate
data partitioning strategy is crucial for ensuring robust and reliable
modelling performance in diverse engineering contexts.

Comparing the approaches based on processing the subsets or
the sliding window method provides ambiguous outcomes. In the
first example, the results of both approaches seem almost identical;
for both methods, assuming narrower intervals or sliding windows,
respectively, yields more precise results. In the second example, the
conclusions are different. The more accurate models usually come
from wider intervals or sliding windows, which reflects the charac-
teristics of the observation set under investigation and the object
model. At that time, one tries to model the wall edge; hence, 3D sets
are processed. Therefore, narrowing intervals or sliding windows
might result in processing subsets whose dimensions along three
axes are significantly different (the subsets become elongated along



the wall faces). In that case, modelling the planes becomes more
sensitive to the local fluctuations of the wall surfaces. The second
example shows that the sliding window algorithm mostly provides
better results.

Considering the results presented, one can suggest the appli-
cation of the sliding window algorithm when modelling long en-
gineering structures, such as profiles or wall edges. However, it is
more time-consuming than processing data in mutually exclusive
subsets; this approach can provide more reliable and accurate re-
sults. The outstanding problem is the selection of the size of the
sliding window and the slide itself (similarly to the size of subsets).
As shown, this size should reflect the modelled structure to describe
even small characteristic elements. On the other hand, a reduction
in size may compromise the final results. Therefore, the sliding
window size should be assumed for each observation set separately,
depending on the set size and its resolution. Finally, the paper also
shows that processing the complete observation sets only yields
acceptable accuracy when the shape under study is relatively simple
and easy to model.
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