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Abstract
Laser scanning systems are modern measurement techniques generating large datasets. Observations, usually collected as a pointcloud, present the general results that can be visualized using specialized software. While the final effect might be impressive froma visualization point of view, it is inconvenient for modeling or extracting detailed information about, for example, terrain,buildings, engineering structures, and deformations. Therefore, data from laser scanning systems require post-processing usingseveral methods reflecting different purposes or data processing stages: data segmentation, modeling, and filtration. Msplitestimation is one of the methods that has proved its effectiveness in laser scanning data processing and determination of terrainprofiles, deformation, or building shapes. Processing the complete datasets tends to only yield often inadequate results whenhigh-class computers are used, and it is time-consuming. Therefore, datasets tend to remain segmented. This paper explores arange of several types of segmentation methods that can be used in Msplit estimation. It presents profile determination when datacut out from the original point cloud are divided into intervals of the same length, or the sliding window algorithm is applied. Incomparison, the given examples show that the latter approach can provide more reliable results. The application of the slidingwindow algorithm entails having to make assumptions concerning estimation parameters. The paper offers valuable guidanceabout both the width of the window and the slide size.
Key words: sliding window algorithm, Msplit estimation, laser scanning

1 Introduction

The advanced measurement techniques contain novel systems ofdata acquisition that often generate large datasets. Light Detectionand Ranging (LiDAR) is one of such systems that has gained popu-larity and is applied to solve many engineering problems, includ-ing surveying (Yang et al., 2017; Janicka et al., 2020; Wyszkowskaet al., 2020), geomatics (Lian and Hu, 2017; Zhao et al., 2019;Błaszczak-Bąk et al., 2020), civil engineering (Wang and Hsu, 2007;Cabaleiro et al., 2015; Błaszczak-Bąk et al., 2020; Wyszkowska andDuchnowski, 2022), geosciences (Spaete et al., 2010), archeology(Rodríguez-Gonzálvez et al., 2017), forestry (Crespo-Peremarchet al., 2018; Arslan et al., 2021). LiDAR technology encompassesthree main types: Terrestrial Laser Scanning (TLS), Airborne LaserScanning (ALS), and Mobile Laser Scanning (MLS). The measure-

ments are usually grouped and presented in a set named a pointcloud (usually in 3D space), regardless of the technique applied. Apoint cloud can provide valuable information about the scanned ob-ject, for example, a building, or any engineering structures, terrain,treetops, vegetation cover, or excavation. However, the raw datausually only provide general information. To obtain more detaileddescriptions, data must undergo a process consisting of severalstages, including registration, segmentation, data cleaning, filtra-tion, modelling, or estimation of parameters of geometrical primi-tives such as surfaces, profiles (e.g., Forlani and Nardinocchi, 2007;Tóvári and Pfeifer, 2005; Nguyen and Le, 2013; Błaszczak-Bąk et al.,2015). Processing complete sets is sufficient and easy to performonly when the relevant point clouds include a relatively small num-ber of measurements and the object under study is simple. In othercases, processing the whole sets is significantly time-consumingand requires a high-class computer. Moreover, when processing
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the full sets, more detailed information about the object may be lost.Therefore, the point clouds are usually divided into subsets to makethe processing more efficient. Observation segmentation concernsusually complex objects like buildings, bridges, etc., where eachconstruction element might be modelled separately. However, seg-mentation might also be applied to perform a more detailed analysisto obtain a more comprehensive model.Data processing also faces the problem of the choice of estima-tion or modelling method. There is no doubt that the least-squaresmethod (LS estimation) is the most common. However, other ap-proaches are also used, including M-estimation, robust estima-tion, random sample consensus (RANSAC), and Msplit estimation(e.g., Carrilho et al., 2018; Zhao et al., 2019). The latter method isrelatively new and has found interesting applications to survey-ing engineering problems: finding unstable points in global nav-igation satellite systems (GNSS) networks (Banimostafavi et al.,2023), deformation analysis (e.g., Zienkiewicz, 2015; Duchnowskiand Wyszkowska, 2022b; Pleterski et al., 2025), similarity transfor-mation (Nowel, 2018; Zhang et al., 2023), estimation with errors-in-variables (EIV) models (Wiśniewski, 2022), data processing withthe point cloud spatial expansion (PCSE) algorithm (Zienkiewiczand Dąbrowski, 2023), heterogeneous data fusion (Tao et al., 2024,2025), direct identification of outliers (Li et al., 2013), robust estima-tion (Wyszkowska and Duchnowski, 2022, 2024b), and coordinatetransformation (Janicka and Rapinski, 2013). Msplit estimation,in different variants, was also successfully applied to process LI-DAR data in the following problems: displacement analysis (Janickaet al., 2020, 2023; Wyszkowska and Duchnowski, 2022), detectionand analysis of engineering structures (Janicka and Rapinski, 2013;Janowski, 2018; Dąbrowski and Zienkiewicz, 2022; Wyszkowskaand Duchnowski, 2024b), terrain modeling (Błaszczak-Bąk et al.,2015; Wyszkowska et al., 2020). The wide range of Msplit estima-tion applications mostly stems from its unique feature, namely,it can estimate parameters within the split functional model. Inpractice, it means that by processing one observation set, one candetermine two (or more) versions of parameters (in some sense,the method is similar to cluster analysis; however, the algorithms,assumptions, and data processing are dissimilar – the observa-tion sets are not divided into clusters processed separately, in fact)(Wiśniewski, 2009, 2010). This unique feature also enables apply-ing the method as an alternative to robust estimation, which mightoverperform the classical approaches, including M-estimation orR-estimation (Duchnowski and Wyszkowska, 2022a; Wyszkowskaand Duchnowski, 2022, 2024a).Estimating two or more variants of functional model parametersis the main advantage of Msplit estimation. It is a unique property asother methods have to process subsets separated in a specific wayto provide comparable results. Another advantage of the method isits robustness against outliers. From the theoretical point of view,the basic Msplit estimation variants cannot be classified as robust
against outliers (Duchnowski and Wiśniewski, 2019; Duchnowskiand Wyszkowska, 2023); however, they can be used as alternativesto robust methods like M-estimation. In such an application, themethod should generate regular observations from outliers. Dur-ing the estimation process, location parameters of both groups areestimated (Duchnowski and Wyszkowska, 2022a). Notably, robustvariants of Msplit estimation have also been derived (Wyszkowskaand Duchnowski, 2022, 2024a). Crucially, in robust applications,Msplit estimation can withstand a significantly high percentage ofoutliers (even more than 50%), which conventional robust methodsfail to deliver (Wyszkowska and Duchnowski, 2022; Duchnowskiand Wyszkowska, 2023). Like every estimation method, Msplit esti-mation has some disadvantages: Its algorithms are more complexthan the algorithms of M-estimation; in some applications, it isalso important to select sufficiently accurate starting points, whichrequires some experience from analysts (Wyszkowska and Duch-nowski, 2019, 2020). Nevertheless, the advantages of this methodoutweigh the limitations in many surveying applications.

This paper addresses processing LiDAR data by applying Msplitestimation. It explores acquiring information from a point cloudand examines several scenarios in which the observations are pro-cessed. The data subsets are cut out from the whole point cloud andbecome the basis for modelling characteristic elements of the object.Each observation set can be processed as a whole or divided into sev-eral subsets. Another option is the application of the sliding windowalgorithm (e.g., Wang et al., 2016; Li et al., 2018). Wyszkowska andDuchnowski (2025) applied the method to Msplit estimation; how-ever, such an approach has never been examined in detail. There-fore, this paper lists advantages and disadvantages of the slidingwindow algorithm in relation to processing the whole observationset or subsets mentioned when Msplit estimation is used.The paper is organized in the following way. The Section 2presents the foundations of Msplit estimation in two basic vari-ants. Section 3 summarizes examples of modelling the wall profileand the wall edge for different observation sets (also disturbed byoutliers). The final section discusses the results and presents con-clusions regarding applying the sliding window algorithm to Msplitestimation method in LiDAR data processing.

2 Msplit estimation

The main assumption of Msplit estimation is that the observationset is an unknown mixture of realizations of at least two differentrandom variables (the observation set consists, in fact, of at leasttwo subsets differing in location parameters; however, the set divi-sion stays unknown). Therefore, the original functional model ofobservations is split into at least two competitive models as follows:

y = AX + v ⇒ {
y = AX(1) + v(1)
y = AX(2) + v(2) (1)

where: y – observation vector, A – full column rank coefficientmatrix, X – parameter vector, v – observation error vector, X(1), and
X(2) – competitive versions of parameter vector X, v(1) and v(2) –competitive versions of observation error vector v. The first andbasic variant of Msplit estimation is the squared Msplit estimation
(SMS), which was proposed in Wiśniewski (2009). The objectivefunctionφ(
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The second variant, called the absolute Msplit estimation (AMS),was proposed in Wyszkowska and Duchnowski (2019), and its mainfunctions are as follows:
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(3)
The parameters of the functional models (1) are estimated inthe iterative process. SMS estimation uses the traditional iterativeprocess proposed in Wiśniewski (2009):
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where: dX(l) – increment to parameter vector, H(l)
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are defined as follows:
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where the matrices of the weight functions are recomputed in eachiterative step, in the following way:
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(7)

where: diag (◦) – diagonal matrix. Therefore, the weight matricesdepend on the weight functions and the values of the errors vi(1)either vi(2). This method is called mutual cross-weighting. Theiterative process ends for such j for which the necessary conditions
g(1)

(
Xj–1(1) , Xj–1(2)

) = 0 and g(2)
(

Xj–1(1) , Xj–1(2)
) = 0 are satisfied. Hence

X̂(1) = Xj(1) = Xj–1(1) and X̂(2) = Xj(2) = Xj–1(2) (Wiśniewski, 2009;
Wyszkowska and Duchnowski, 2019).The traditional process is not applicable where the mutual cross-weighting is not applied, for example, in AMS estimation (seeEquation 3), in which case a parallel iterative process proposed

Figure 1. Data sets of the wall with cornice

in Wyszkowska and Duchnowski (2019) is applicable:
Xj(1) = Xj–1(1) + dXj(1) = Xj–1(1) – [
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The gradients and Hessians are defined as in Equations (5) and(6), and the criterion for ending the iterative process is the same asin the traditional iterative process.

3 Processing example TLS data

Examining the presented scenarios is performed on the exampleobject, a building placed at the campus of the University of Warmiaand Mazury in Olsztyn, Poland. The object was scanned using LeicaScanStation C10 (terrestrial laser scanner). Several data subsetswere extracted from the whole point cloud to determine wall pro-files or edges. The subsets were designed to demonstrate the basicapplications of Msplit estimation, namely: the natural one, esti-mating competitive versions of the parameters from the functionalmodel (1), or application of the method as an alternative to theconventional robust estimations.
3.1 Extracting wall profiles

The section explores two observation sets (presented in Figure 1)created to determine the wall profiles. The first one contains mea-surements of the wall profile with a cornice around the middle. Thesecond subset consists of measurements of the profile parallel tothe first one, and it contains some outliers resulting from measur-ing the window recess and the room behind (in the upper part).The observations in the lower part of the subsets describe the doorrecess; they should be regarded as regular ones, but they disturbthe profile’s linearity.Here, five scenarios of data processing are proposed:
• Scenario A – each profile of a length of 3 m processed as a whole,• Scenario B – 0.2 m intervals (from 1.1 m to 1.3 m, from 1.3 m to1.5 m, etc.),• Scenario C – 0.1 m intervals (from 1.05 m to 1.15 m, from 1.15 mto 1.25 m, etc.),• Scenario D – 0.4 m sliding windows and the window slide of0.2 m (from 1.0 m to 1.4 m, from 1.2 m to 1.6 m, etc.),• Scenario E – 0.2 m sliding windows and the window slide of0.1 m (from 1.0 m to 1.2 m, from 1.1 m to 1.3 m, etc.).

In all variants, the parameters from the models of Equation(1) are regarded as the parameters of the linear function (the first-degree polynomial). The estimated profiles from different scenariosare presented in Figures 2 and 3, which also present profiles result-
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Figure 2. Profile estimated from the first subset across different scenarios (solid lines – final solutions, dashed lines – alternative solutions)

ing from raw data interpolation. In the case of Msplit estimation,two possible solutions are presented; the solid lines represent thefirst solutions (SMS1 or AMS1), whereas the dashed lines representthe second solutions (SMS2 or AMS2). SMS1 and AMS1 solutionsare the ones that describe the wall profiles (the others might beregarded as describing outlying observations).A simple graphical analysis yields conclusions: First, processingthe whole set might provide satisfactory results when no outliersoccur. However, even then some detailed information is lost (see thefirst subset and the cornice). Second, as expected, the shorter theintervals (or the sliding window and the slide), the more detailedthe profile can be obtained. However, it is hard to decide whichmethod of dividing the whole observation set provides better re-sults. On the other hand, one can notice that Msplit estimationsoutperform LS estimation, especially in the case of the second set.Comparing the results obtained for that case in Scenarios C and Dwith those of Scenarios E and F, one can see that the sliding windowalgorithm provides slightly better results in the upper profile part.For more detailed and informative analyses, a reference is neces-sary, for example, a line or a surface determined with much higheraccuracy. This is not the case in that example because of the shapeof the profiles and the measurements performed. Therefore, weintroduce another example where such a surface can be defined.
3.2 Determining the wall edges

Two additional observation sets were created to determine the walledges. Since those parts of the object were scanned with the highestresolution, it is possible to create the examined sets and the refer-ence ones- four times bigger and with no outliers. Therefore, thereference sets can determine the wall edges more precisely. All setsare presented in Figures 4 and 5.The data processing in the first case is a natural application ofMsplit estimation. Generally, that set consists of measurements ofboth sides of the corner, and the estimation method mentionedallows us to estimate parameters of two planes modelling the walls

from both sides in one iterative process. From such estimated pa-rameters, one can compute the line that is the intersection of theplanes, and it is the model of the wall edge, meanwhile, the refer-ence wall edge is computed from the separate reference subsetsusing LS estimation. Each subset in question consists of measure-ments of only one side of the corner; hence, it allows for the mod-elling of that corner side.The following are scenarios of data processing:
• Scenario A – data processed as a whole,• Scenario B – 0.5 m intervals in relation to Z-axis (for Z from3.595 m to 4.095 m, from 4.095 m to 4.595 m, etc., with the lastinterval larger),• Scenario C – 0.25 m intervals in relation to Z-axis (for Z from3.595 m to 3.845 m, from 3.845 m to 4.095 m, etc., with the lastinterval larger),• Scenario D – 0.5 m sliding windows in relation to Z-axis andthe window slide of 0.25 m (for Z from 3.595 m to 4.095 m, from3.845 m to 3.435 m, etc., with the last sliding window is larger),• Scenario E – 0.25 m sliding windows in relation to Z-axis andthe window slide of 0.125 m (for Z from 3.595 m to 3.845 m, from3.720 m to 3.970 m, etc., with the last sliding window larger).

To compare the precision of the obtained wall edge from dif-ferent scenarios, the root-mean-square deviation (RMSD) can beapplied, following a determination of the reference edge in eachinterval using the reference set, then a determination of the pointof intersection of that wall edge with the horizontal plane at thechosen heights. The same should be done for the examined sets.The distance between such points, di, is the base to compute RMSDusing the following formula:

RMSD =
√∑n

i=1 d2
i

n (9)
where n is the number of distances between the points determined.Crucially, computed RMSDs do not present the real accuracy of
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Figure 3. Profile estimated from the second subset across different scenarios (solid lines – final solutions, dashed lines – alternative solutions)

Figure 4. TLS point clouds for wall edge determination (the first case)
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Figure 5. TLS point clouds for wall edge determination (the second case)

Table 1. RMSDs [mm] for different scenarios (thefirst case)
Scenario SMS AMS

A 2.57 2.13B 1.25 0.87C 1.43 1.17D 1.41 0.91E 1.24 0.89

the data processing methods; however, they can be used to makecomparative analyses. Table 1 presents RMSDs obtained for allscenarios in the first case. One can say that processing data dividedinto subsets provides better results than processing the completeset. At this point it remains unclear which strategy is more reliable:the sliding window algorithm or dividing the complete set intointervals in relation to Z-axis. With narrower intervals, the resultsare of a similar accuracy (compare scenarios B and C). On the otherhand, assuming the narrower sliding window, one more accurateresults can be obtained.In the second case, the examined set contains outliers (mea-surements of the rain gutter; see right panel of Figure 5). Therefore,the measurements concerning the wall’s left or right sides are pro-cessed separately. It means that Msplit estimation is here a viablealternative for the robust procedure.The following are scenarios of data processing:
• Scenario A – data processed as a whole,• Scenario B – 0.4 m intervals in relation to Z-axis (for Z from4.566 m to 4.966 m, from 4.966 m to 5.366 m, etc., with the lastinterval larger),• Scenario C – 0.25 m intervals in relation to Z-axis (for Z from4.566 m to 4.816 m, from 4.816 m to 5.066 m, etc., with the lastinterval larger),• Scenario D – 0.4 m sliding windows in relation to Z-axis andthe window slide of 0.2 m (for Z from 4.566 m to 4.966 m, from4.766 m to 5.166 m, etc., with the last sliding window larger),• Scenario E – 0.25 m sliding windows in relation to Z-axis andthe window slide of 0.125 m (for Z from 4.566 m to 4.816 m, from4.691 m to 4.941 m, etc., with the last sliding window larger).

To compare results for those scenarios, RMSDs computed asin the previous example can be used. The results are presented inTable 2.Processing the complete set at that time provided the least ac-curate results. The sliding window algorithm and the processingof the subsets provide similar results; however, the former method

Table 2. RMSDs [mm] for different scenarios (thesecond case)
Scenario SMS AMS

A 0.92 0.74B 0.57 0.33C 0.72 0.66D 0.56 0.32E 0.63 0.48

proved more accurate. Interestingly, narrowing the intervals (orthe sliding windows) deteriorates the precision of the wall edgedetermination.

4 Discussion and conclusions

This paper investigates LiDAR data processing using Msplit estima-tion for modeling engineering structures across various scenarios.A central distinction among the processing approaches lies in howthe data are partitioned. Specifically, the dataset may be processedas a whole, divided into mutually exclusive subsets, or analyzedusing a sliding window algorithm.The examples presented demonstrate that processing the entiredataset without segmentation can yield satisfactory results onlywhen the modelled surface or profile is geometrically simple – suchas those that can be effectively described by polynomials or other ba-sic functions. In such cases, the data typically contains few outliers,allowing for accurate and efficient modelling. However, when theseconditions are not met – particularly in the presence of complexgeometries or significant noise – this approach may lead to unsatis-factory or inaccurate outcomes. Therefore, selecting an appropriatedata partitioning strategy is crucial for ensuring robust and reliablemodelling performance in diverse engineering contexts.Comparing the approaches based on processing the subsets orthe sliding window method provides ambiguous outcomes. In thefirst example, the results of both approaches seem almost identical;for both methods, assuming narrower intervals or sliding windows,respectively, yields more precise results. In the second example, theconclusions are different. The more accurate models usually comefrom wider intervals or sliding windows, which reflects the charac-teristics of the observation set under investigation and the objectmodel. At that time, one tries to model the wall edge; hence, 3D setsare processed. Therefore, narrowing intervals or sliding windowsmight result in processing subsets whose dimensions along threeaxes are significantly different (the subsets become elongated along
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the wall faces). In that case, modelling the planes becomes moresensitive to the local fluctuations of the wall surfaces. The secondexample shows that the sliding window algorithm mostly providesbetter results.Considering the results presented, one can suggest the appli-cation of the sliding window algorithm when modelling long en-gineering structures, such as profiles or wall edges. However, it ismore time-consuming than processing data in mutually exclusivesubsets; this approach can provide more reliable and accurate re-sults. The outstanding problem is the selection of the size of thesliding window and the slide itself (similarly to the size of subsets).As shown, this size should reflect the modelled structure to describeeven small characteristic elements. On the other hand, a reductionin size may compromise the final results. Therefore, the slidingwindow size should be assumed for each observation set separately,depending on the set size and its resolution. Finally, the paper alsoshows that processing the complete observation sets only yieldsacceptable accuracy when the shape under study is relatively simpleand easy to model.
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