ORIGINAL ARTICLE
Evaluating Repeatability of RTK (GPS and Galileo/GPS) performance in the analysis of points located in areas with and without obstructions
 
 
More details
Hide details
1
Department of Geomatic Engineering, Division of Surveying Techniques, Yildiz Technical University, 34220 Esenler, Istanbul –, Turkiye
 
2
Department of Geomatics Engineering, Canakkale Onsekiz Mart University, Canakkale, Turkey
 
 
Submission date: 2022-01-27
 
 
Acceptance date: 2022-03-24
 
 
Online publication date: 2022-06-06
 
 
Publication date: 2022-06-01
 
 
Reports on Geodesy and Geoinformatics 2022;113:11-20
 
KEYWORDS
ABSTRACT
Galileo is Europe’s Global Navigation Satellite System (GNSS), which provides improved positioning and timing data with significant benefits for many European services and users. Galileo enables users to know their exact location with greater precision than other available systems. Access to the Galileo signal in the obstructed and unobstructed environment provides benefits and opportunities for work, thanks to the improved performance and accuracy. The use of a Galileo-enabled receiver increases the number of satellites in view significantly. When compared to the performance of single-constellation receivers, this significantly reduces the time required to obtain a position with centimetre-level accuracy. The results indicate the current Galileo constellation’s suitability for high-precision RTK applications, as well as improved availability, accuracy, reliability, and time-to-fix in the obstructed and unobstructed environments. The results of RTK GPS and RTK GPS/Galileo obtained at different times of the same day by using two reference points were compared. The results of this study illustrate that integrating RTK GPS system with Galileo is favorable for surveying applications (cm accuracy). This study shows that in surveying applications requiring centimetre accuracy, the RTK GPS/Galileo method can replace other survey methods (Total Station).
REFERENCES (38)
1.
Andreas, H., Abidin, H. Z., Sarsito, D. A., and Pradipta, D. (2019). Study the capabilities of RTK Multi GNSS under forest canopy in regions of Indonesia. In E3S Web of Conferences, volume 94, page 01021. EDP Sciences.
 
2.
Angrisano, A., Gaglione, S., Gioia, C., Borio, D., and Fortuny-Guasch, J. (2013). Testing the test satellites: the Galileo IOV measurement accuracy. In 2013 International Conference on Localization and GNSS (ICL-GNSS), 25-27 June 2013, Turin, Italy, pages 1–6. IEEE, doi:10.1109/ICL-GNSS.2013.6577253.
 
3.
Borio, D., Senni, T., and Fernández-Hernández, I. (2020). Galileo’s High Accuracy Service—Field experimentation of data dissemination schemes. Inside GNSS, 15(4).
 
4.
Cai, C., He, C., Santerre, R., Pan, L., Cui, X., and Zhu, J. (2016). A comparative analysis of measurement noise and multipath for four constellations: GPS, BeiDou, GLONASS and Galileo. Survey Review, 48(349):287–295, doi:10.1179/1752270615Y.0000000032.
 
5.
Cai, C., Luo, X., Liu, Z., and Xiao, Q. (2014). Galileo signal and positioning performance analysis based on four IOV satellites. The Journal of Navigation, 67(5):810–824, doi:10.1017/S037346331400023X.
 
6.
Carlin, L., Hauschild, A., and Montenbruck, O. (2021). Precise point positioning with GPS and Galileo broadcast ephemerides. GPS Solutions, 25(77):1–13, doi:10.1007/s10291-021-01111-4.
 
7.
Deckert, C. and Bolstad, P. V. (1996). Forest canopy, terrain, and distance effects on Global Positioning System point accuracy. Photogrammetric Engineering and Remote Sensing, 62(3):317–321.
 
8.
Diessongo, T. H., Schüler, T., and Junker, S. (2014). Precise position determination using a Galileo E5 single-frequency receiver. GPS solutions, 18(1):73–83, doi:10.1007/s10291-013-0311-2.
 
9.
Elmezayen, A. and El-Rabbany, A. (2019). Precise point positioning using world’s first dual-frequency GPS/GALILEO smartphone. Sensors, 19(11):2593, doi:10.3390/s19112593.
 
10.
ESA (2017). Galileo fact sheet, European Space Agency. https://esamultimedia.esa.int/.... Last accessed April 2022.
 
11.
ESA (2020). Galileo Services – Open Service Performance Report. https://www.gsc-europa.eu/site....
 
12.
ESA (2021). European GNSS (Galileo) Open Service. https://galileognss.eu/wp-cont.... Last accessed April 2022.
 
13.
Feng, Y. and Moody, M. (2006). Improved phase ambiguity resolution using three GNSS signals. PCT/AU2006/000492, Publication Number WO/2006/108227.
 
14.
Feng, Y. and Rizos, C. (2005). Three carrier approaches for future global, regional and local GNSS positioning services: concepts and performance perspectives. In Proceedings of the 18th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2005),Long Beach, CA, September 2005, pages 2277–2287.
 
15.
Gaglione, S., Angrisano, A., Castaldo, G., Freda, P., Gioia, C., Innac, A., Troisi, S., and Del Core, G. (2015). The first Galileo FOC satellites: from useless to essential. In 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 11 April 2019, Milan, Italy, pages 3667–3670. IEEE, doi:10.1109/IGARSS.2015.7326618.
 
16.
Hatch, R. R. (2006). A new three-frequency, geometry-free technique for ambiguity resolution. In Proceedings of the 19th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2006), September 26 - 29, 2006, Fort Worth, TX, pages 309–316.
 
17.
Hossam-E-Haider, M., Tabassum, A., Shihab, R. H., and Hasan, C. M. (2014). Comparative analysis of GNSS reliability: GPS, GALILEO and combined GPS-GALILEO. In 2013 International Conference on Electrical Information and Communication Technology (EICT), pages 1–6. IEEE.
 
18.
Kaartinen, H., Hyyppa, J., Vastaranta, M., Kukko, A., Jaakkola, A., Yu, X., Pyorala, J., Liang, X., Liu, J., Wang, Y., et al. (2015). Accuracy of kinematic positioning using Global Satellite Navigation Systems under forest canopies. Forests.
 
19.
Li, X., Ge, M., Dai, X., Ren, X., Fritsche, M., Wickert, J., and Schuh, H. (2015). Accuracy and reliability of multi-GNSS real-time precise positioning: GPS, GLONASS, BeiDou, and Galileo. Journal of geodesy, 89(6):607–635, doi:10.1007/s00190-015-0802-8.
 
20.
Lu, H. and Lian, B. (2016). New generation GNSS signal processing and evaluation technology. National Defense Industry Press, Beijing.
 
21.
Luo, X., Chen, J., and Richter, B. (2017). How Galileo benefits high-precision RTK. GPS World, pages 22–28.
 
22.
Meyer, T. H., Bean, J. E., Ferguson, C. R., and Naismith, J. M. (2002). The effect of broadleaf canopies on survey-grade horizontal gps/glonass measurements.
 
23.
Montenbruck, O., Steigenberger, P., Prange, L., Deng, Z., Zhao, Q., Perosanz, F., Romero, I., Noll, C., Stürze, A., Weber, G., Schmid, R., MacLeod, K., and Schaer, S. (2017). The Multi-GNSS Experiment (MGEX) of the International GNSS Service (IGS)–achievements, prospects and challenges. Advances in space research, 59(7):1671–1697, doi:10.1016/j.asr.2017.01.011.
 
24.
Odijk, D., Teunissen, P. J., and Huisman, L. (2012). First results of mixed GPS+ GIOVE single-frequency RTK in Australia. Journal of spatial science, 57(1):3–18, doi:10.1080/14498596.2012.679247.
 
25.
Odijk, D., Teunissen, P. J., and Khodabandeh, A. (2014). Galileo IOV RTK positioning: standalone and combined with GPS. Survey Review, 46(337):267–277, doi:10.1179/1752270613Y.0000000084.
 
26.
Odolinski, R., Teunissen, P., and Odijk, D. (2015). Combined GPS+ BDS for short to long baseline RTK positioning. Measurement Science and Technology, 26(4):045801.
 
27.
Ogundipe, O., Ince, S., and Bonenberg, K. (2014). GNSS positioning under forest canopy. Disponível:< https://www.researchgate.net.
 
28.
O’Donnell, T., Fisher, J. W., Simposon, S., Brodin, G., Bryant, E., and Walsh, D. (2003). Galileo performance. GPS World, pages 38–45.
 
29.
Pan, L., Cai, C., Santerre, R., and Zhang, X. (2017). Performance evaluation of single-frequency point positioning with GPS, GLONASS, BeiDou and Galileo. Survey Review, 49(354):197–205, doi:10.1080/00396265.2016.1151628.
 
30.
Pirti, A., Arslan, N., Deveci, B., Aydin, O., Erkaya, H., and Hosbas, R. (2009). Real-time kinematic GPS for cadastral surveying. Survey Review, 41(314):339–351, doi:10.1179/003962609X451582.
 
31.
Pirti, A., Gümüş, K., Erkaya, H., and Hoşbaş, R. G. (2010). Evaluating repeatability of RTK GPS/GLONASS near/under forest environment. Croatian Journal of Forest Engineering: Journal for Theory and Application of Forestry Engineering, 31(1):23–33.
 
32.
Pirti, A., Yucel, M. A., and Gumus, K. (2013). Testing Real Time Kinematic GNSS (GPS and GPS/GLONASS) methods in obstructed and unobstructed sites. Geodetski vestnik, 57(3):498–512.
 
33.
Sigrist, P., Coppin, P., and Hermy, M. (1999). Impact of forest canopy on quality and accuracy of GPS measurements. International journal of remote sensing, 20(18):3595–3610.
 
34.
Simsky, A., Sleewaegen, J.-M., Hollreiser, M., and Crisci, M. (2006). Performance assessment of Galileo ranging signals transmitted by GSTB-V2 satellites. In Proceedings of the 19th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2006), September 26 - 29, 2006, Fort Worth, TX, pages 1547–1559.
 
35.
Steigenberger, P., Hugentobler, U., Loyer, S., Perosanz, F., Prange, L., Dach, R., Uhlemann, M., Gendt, G., and Montenbruck, O. (2015). Galileo orbit and clock quality of the IGS Multi-GNSS Experiment. Advances in Space Research, 55(1):269–281, doi:10.1016/j.asr.2014.06.030.
 
36.
Steigenberger, P. and Montenbruck, O. (2017). Galileo status: orbits, clocks, and positioning. GPS solutions, 21(2):319–331.
 
37.
Wu, W., Guo, F., and Zheng, J. (2020). Analysis of Galileo signal-in-space range error and positioning performance during 2015–2018. Satellite Navigation, 1(6):1–13, doi:10.1186/s43020-019-0005-1.
 
38.
Zaminpardaz, S. and Teunissen, P. J. (2017). Analysis of Galileo IOV+ FOC signals and E5 RTK performance. GPS Solutions, 21(4):1855–1870, doi:10.1007/s10291-017-0659-9.
 
eISSN:2391-8152
ISSN:2391-8365
Journals System - logo
Scroll to top