ORIGINAL ARTICLE
Implementation of the dual quaternion algorithm for 3D similarity-based coordinate transformation between Ghana’s local geodetic datum and WGS84
More details
Hide details
1
Department of Geomatic Engineering, Faculty of Geosciences and Environmental Studies, University of Mines and Technology, P.O.Box 237, 00233, Tarkwa, Ghana
2
Department of Environment and Resource Studies, Simon Diedong Dombo University of Business and Integrated Studies, P. O. Box WA64, 00233, Bamahu, Wa, Ghana
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article
Submission date: 2024-09-03
Final revision date: 2024-10-29
Acceptance date: 2024-11-25
Publication date: 2024-12-20
Corresponding author
Yao Yevenyo Ziggah
Department of Geomatic Engineering, Faculty of Geosciences and Environmental Studies, University of Mines and Technology, P.O.Box 237, 00233, Tarkwa, Ghana
Reports on Geodesy and Geoinformatics 2024;118:127-135
KEYWORDS
TOPICS
ABSTRACT
Modern surveying practice has embraced the use of Global Navigation Satellite System (GNSS) technology due to its attainable precision and uncomplicated functionality. The adoption of this technology has therefore necessitated the transformation of coordinates between satellite-based and classical geodetic reference datums. It is known that the 3D similarity-based transformation models are the most widely used in the literature. However, one major limitation of such models is the representation of point rotations in space using Euler angles connected to X, Y, and Z-axes, which often leads to matrix singularities. To overcome this mathematical inconvenience, the dual quaternion is proposed. This paper implements the dual quaternion algorithm to transform coordinates between the World Geodetic System 1984 (WGS84) and Ghana War Office 1926. To perform the transformation, 31 common points were divided into two parts: reference and check points. The reference points, consisting of 24 common points that are evenly distributed across Ghana, were used to derive the transformation parameters. The remaining 7 points were used to evaluate the derived transformation parameters. The results confirmed that the coordinates transformed by the dual quaternion algorithm are in average agreement with the measured coordinates, with precision and accuracy levels of about 0.580 m and 1.023 m. The obtained results follow the Bursa-Wolf model that is already used by the Ghana Survey and Mapping Division to perform 3D transformations. Hence, the results satisfy cadastral applications, geographic information works, reconnaissance, land information system works and small-scale topographic surveys in Ghana.
REFERENCES (32)
1.
Ansari Kutubuddin, Corumluoglu Ozsen, Yetkin Mevlut. (2017). Projectivity, affine, similarity and euclidean coordinates transformation parameters from ITRF to EUREF in Turkey. Journal of Applied Geodesy. 11 (1): 53-61. doi:10.1515/jag-2016-0040.
2.
Ansari Kutubuddin, Gyawali Prabin, Pradhan Prach, Man, Park Kwan-Dong. (2019). Coordinate transformation parameters in Nepal by using neural network and SVD methods. Journal of Geodetic Science. 9 (1): 22-28. doi:10.1515/jogs-2019-0003.
3.
Bektas Sebahattin. (2022). A new algorithm for 3D similarity transformation with dual quaternion. Arabian Journal of Geosciences. 15 (14): 1273-1273. doi:10.1007/s12517-022-10457-z.
4.
Bektas Sebahattin. (2024). An expanded dual quaternion algorithm for 3D Helmert transformation and determination of the VCV matrix of the transformation’s parameters. Journal of Spatial Science. 69 (2): 665-680. doi:10.1080/14498596.2023.2274997.
5.
Doukas Ioannis D, Ampatzidis Dimitrios, Kampouris Vassileios. (2017). The validation of the transformation between an old geodetic reference frame and a modern reference frame, by using external space techniques sites: The case study of the hellenic geodetic reference system of 1987. Boletim de Ciências Geodésicas. 23 (3): 434-444. doi:10.1590/S1982-21702017000300029.
6.
Elshambaky HT, Kaloop Mosbeh R, Hu Jong Wan. (2018). A novel three-direction datum transformation of geodetic coordinates for Egypt using artificial neural network approach. Arabian Journal of Geosciences. 11: 1-14. doi:10.1007/s12517-018-3441-6.
7.
Hussain Ruba Y. (2022). Coordinate transformation from Karbala 1979 and World Geodetic System 1984 to Iraqi Geospatial Reference System. Journal of Engineering and Sustainable Development. 26 (3): 73-83. doi:10.31272/jeasd.26.3.8.
8.
Ioannidou Stefania, Pantazis George. (2020). Helmert transformation problem. From Euler angles method to quaternion algebra. ISPRS International Journal of Geo-Information. 9 (9): 494-494. doi:10.3390/ijgi9090494.
9.
Ioannidou Stefania, Pantazis George. (2022). 3D Coordinate Transformation by using Quaternion Algebra. In: Technological Innovation in Engineering Research. 1–24-1–24. Book Publisher International.
10.
Kalu Ikechukwu, Ndehedehe Christopher E, Okwuashi Onuwa, Eyoh Aniekan E. (2022). Estimating the seven transformational parameters between two geodetic datums using the steepest descent algorithm of machine learning. Applied Computing and Geosciences. 14: 100086-100086. doi:10.1016/j.acags.2022.100086.
11.
Kenwright Ben. (2012). A beginners guide to dual-quaternions: What they are, how they work, and how to use them for 3D character hierarchies. 20th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision 2012, Plzen, Czech Republic, June 26--28. 1-10.
12.
Kheloufi Noureddine, Dehni Abdellatif. (2023). Some mathematical assumptions for accurate transformation parameters between WGS84 and Nord Sahara geodetic systems. Journal of Geodetic Science. 13 (1): 20220160-20220160. doi:10.1515/jogs-2022-0160.
13.
Mercan HÜSEYIN, Akyilmaz O, Aydin Cüneyt. (2018). Solution of the weighted symmetric similarity transformations based on quaternions. Journal of geodesy. 92 (10): 1113-1130. doi:10.1007/s00190-017-1104-0.
14.
Mihajlović Dragan, Cvijetinović Željko. (2017). Weighted coordinate transformation formulated by standard least-squares theory. Survey review. 49 (356): 328-345. doi:10.1080/00396265.2016.1173329.
15.
Okiemute Eteje Sylvester, Oduyebo Olujimi Fatai, Olulade Sunday Adekunle. (2018). Comparative Analysis of Three Geodetic Datum Transformation Software for Application between WGS84 and Minna Datums. International Journal of Engineering Science and Computing. 8 (12): 19410-19417.
16.
Poku-Gyamfi Yaw. (2009). Establishment of GPS reference network in Ghana, phdthesis.
17.
Prasad KVC, Prasanna HMI. (2022). Determination of 3D Transformation Parameters for the Sri Lankan Geodetic Reference Network Using Ordinary and Total Least Squares. Journal of Geospatial Surveying. 2 (2): 11-21. doi:10.4038/jgs.v2i2.39.
18.
Ruffhead AC. (2021). Derivation of rigorously-conformal 7-parameter 3D geodetic datum transformations. Survey Review. 53 (376): 8-15. doi:10.1080/00396265.2019.1665614.
19.
Shen Y -Z, Chen Yi, Zheng D -H. (2006). A quaternion-based geodetic datum transformation algorithm. Journal of Geodesy. 80: 233-239. doi:10.1007/s00190-006-0054-8.
20.
Soler Tomás, Han Jen-Yu, Weston Neil D. (2016). Variance-covariance matrix of transformed GPS positions: Case study for the NAD 83 geodetic datum. Journal of Surveying Engineering. 142 (1): 04015004-04015004. doi:10.1061/(ASCE)SU.1943-5428.0000143.
21.
Uygur Süreyya Özgür, Aydin Cuneyt, Akyilmaz Orhan. (2022). Retrieval of Euler rotation angles from 3D similarity transformation based on quaternions. Journal of Spatial Science. 67 (2): 255-272. doi:10.1080/14498596.2020.1776170.
22.
Uygur Süreyya Özgür, Akyilmaz Orhan, Aydin Cüneyt. (2021). Solution of nine-parameter affine transformation based on quaternions. Journal of Surveying Engineering. 147 (3): 04021011-04021011. doi:10.1061/(ASCE)SU.1943-5428.0000364.
23.
Varga Matej, Grgić Marijan, Bašić Tomislav. (2017). Empirical comparison of the Geodetic Coordinate Transformation Models: A case study of Croatia. Survey Review. 49 (352): 15-27. doi:10.1080/00396265.2015.1104092.
24.
Wang Yongbo, Wang Yunjia, Wu Kan, Yang Huachao, Zhang Hua. (2014). A dual quaternion-based, closed-form pairwise registration algorithm for point clouds. ISPRS journal of photogrammetry and remote sensing. 94: 63-69. doi:10.1016/j.isprsjprs.2014.04.013.
25.
Yakubu I, Kumi-Boateng B. (2015). Ramification of datum and ellipsoidal parameters on post processed differential global positioning system (DGPS) data – A case study. Ghana Mining Journal. 15 (1): 1-9.
26.
Zeng Huaien, Chang Guobin, He Haiqing, Li Kezhao. (2020). WTLS iterative algorithm of 3D similarity coordinate transformation based on Gibbs vectors. Earth, Planets and Space. 72: 1-12. doi:10.1186/s40623-020-01179-1.
27.
Zeng Huaien, Chang Guobin, He Haiqing, Tu Yi, Sun Shuifa, Wu Yue. (2019). Iterative solution of Helmert transformation based on a unit dual quaternion. Acta geodaetica et geophysica. 54: 123-141. doi:10.1007/s40328-018-0241-0.
28.
Zeng Huaien, Fang Xing, Chang Guobin, Yang Ronghua. (2018). A dual quaternion algorithm of the Helmert transformation problem. Earth, Planets and Space. 70: 1-12. doi:10.1186/s40623-018-0792-x.
29.
Zeng Huaien, He Hongwei, Chen Legeng, Chang Guobin, He Haiqing. (2022). Extended WTLS iterative algorithm of 3D similarity transformation based on Gibbs vector. Acta Geodaetica et Geophysica. : 1-19. doi:10.1007/s40328-021-00363-3.
30.
Zeng Huaien, Wang Junjie, Wang Zhihao, Li Siyang, He Haiqing, Chang Guobin, Yang Ronghua. (2022). Analytical dual quaternion algorithm of the weighted three-dimensional coordinate transformation. Earth, Planets and Space. 74 (1): 170-170. doi:10.1186/s40623-022-01731-1.
31.
Zeng Huaien, Wang Zhihao, Li Junfeng, Li Siyang, Wang Junjie, Li Xi. (2024). Dual-quaternion-based iterative algorithm of the three dimensional coordinate transformation. Earth, Planets and Space. 76 (1): 20-20. doi:10.1186/s40623-024-01967-z.
32.
Zhao Zhisheng, Li Zengke, Wang Bin. (2024). A Novel Robust Quaternions-Based Algorithm for 3-D Symmetric Similarity Datum Transformation. IEEE Transactions on Instrumentation and Measurement. 73 (1003012): 1-12. doi:10.1109/TIM.2024.3370773.