ORIGINAL ARTICLE
Methodology for the measurement and 3D modelling of cultural heritage: a case study of the Monument to the Polish Diaspora Bond with the Homeland
 
More details
Hide details
1
Faculty of Civil Engineering, Environmental and Geodetic Sciences, Koszalin University of Technology, Śniadeckich 2, 75-453, Koszalin, Poland
 
2
Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1, 10-719, Olsztyn, Poland
 
 
Submission date: 2023-04-24
 
 
Acceptance date: 2023-07-03
 
 
Online publication date: 2023-08-08
 
 
Publication date: 2023-12-01
 
 
Reports on Geodesy and Geoinformatics 2023;116:1-8
 
KEYWORDS
ABSTRACT
The documentation of cultural heritage objects requires a special approach, as does the collection of materials describing a monument over a period of time. With the development of measurement and information technologies, such documentation can be supplemented by a digital model of the object, a 3D visualization in a computer environment, or a miniature, scaled 3D printout. This paper presents a methodology for developing the 3D documentation of the Monument to the Polish Diaspora Bond with the Homeland, a sculpture located in Koszalin, Poland. In the study, terrestrial laser scanning supplemented with photos was used for non-invasive measurements, and existing free software was used to generate a 3D model. The results of the study can supplement the technical documentation of an object so as to preserve its characteristic features and ease the conservation of monuments. The proposed approach to modelling 3D monuments can be used to create HBIM documentation.
REFERENCES (45)
1.
Al Khalil, O. (2020). Structure from motion (SfM) photogrammetry as alternative to laser scanning for 3D modelling of historical monuments. Open Science Journal, 5(2), doi:10.23954/osj.v5i2.2327.
 
2.
Balletti, C., Beltrame, C., Costa, E., Guerra, F., and Vernier, P. (2016). 3D reconstruction of marble shipwreck cargoes based on underwater multi-image photogrammetry. Digital Applications in Archaeology and Cultural Heritage, 3(1):1–8, doi:10.1016/j.daach.2015.11.003.
 
3.
Błaszczak-Bąk, W., Suchocki, C., and Mrówczyńska, M. (2022). Optimization of point clouds for 3D bas-relief modeling. Automation in Construction, 140:104352, doi:10.1016/j.autcon.2022.104352.
 
4.
Bocheńska, A., Markiewicz, J., and Łapiński, S. (2019). The combination of the image and range-based 3D acquisition in archaeological and architectural research in the royal castle in Warsaw. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42(2/W15):177–184, doi:10.5194/isprs-archives-XLII-2-W15-177-2019.
 
5.
Cheng, L., Chen, S., Liu, X., Xu, H., Wu, Y., Li, M., and Chen, Y. (2018). Registration of laser scanning point clouds: A review. Sensors, 18(5):1641, doi:10.3390/s18051641.
 
6.
Du, X. and Zhuo, Y. (2009). A point cloud data reduction method based on curvature. In 2009 IEEE 10th International Conference on Computer-Aided Industrial Design & Conceptual Design, pages 914–918. IEEE, doi:10.1109/CAIDCD.2009.5375038.
 
7.
Favre, K., Pressigout, M., Marchand, E., and Morin, L. (2021). A plane-based approach for indoor point clouds registration. In 2020 25th International Conference on Pattern Recognition (ICPR), pages 7072–7079. IEEE, doi:10.1109/ICPR48806.2021.9412379.
 
8.
GharehTappeh, Z. S. and Peng, Q. (2021). Simplification and unfolding of 3D mesh models: review and evaluation of existing tools. Procedia CIRP, 100:121–126, doi:10.1016/j.procir.2021.05.023.
 
9.
Guidi, G. (2014). Terrestrial optical active sensors – theory & applications. In 3D recording and modelling in archaeology and cultural heritage: theory and best practices, pages 39–62.
 
10.
Heok, T. K. and Daman, D. (2004). A review on level of detail. In International Conference on Computer Graphics, Imaging and Visualization, 2004, CGIV 2004, pages 70–75. IEEE, doi:10.1109/CGIV.2004.1323963.
 
11.
https://polska-org.pl (2023). Description of the monument. Retrieved from https://polska-org.pl/8980295,.... Last accessed April 2023.
 
12.
Hui, Z., Cheng, P., Guan, Y., and Nie, Y. (2019). Review on airborne LiDAR point cloud filtering. Laser & Optoelectronics Progress, 55(6):060001, doi:10.3788/LOP55.060001.
 
13.
Jandyal, A., Chaturvedi, I., Wazir, I., Raina, A., and Haq, M. I. U. (2022). 3D printing–a review of processes, materials and applications in industry 4.0. Sustainable Operations and Computers, 3:33–42, doi:10.1016/j.susoc.2021.09.004.
 
14.
Kadhim, I., Abed, F. M., Vilbig, J. M., Sagan, V., and DeSilvey, C. (2023). Combining remote sensing approaches for detecting marks of archaeological and demolished constructions in Cahokia’s Grand Plaza, Southwestern Illinois. Remote Sensing, 15(4):1057, doi:10.3390/rs15041057.
 
15.
Kazhdan, M., Chuang, M., Rusinkiewicz, S., and Hoppe, H. (2020). Poisson surface reconstruction with envelope constraints. In Computer graphics forum, volume 39, pages 173–182. Wiley Online Library, doi:10.1111/cgf.14077.
 
16.
Klapa, P. and Gawronek, P. (2022). Synergy of geospatial data from TLS and UAV for Heritage Building Information Modeling (HBIM). Remote Sensing, 15(1):128, doi:10.3390/rs15010128.
 
17.
Li, H., Yamada, T., Jolivet, P., Furuta, K., Kondoh, T., Izui, K., and Nishiwaki, S. (2021). Full-scale 3D structural topology optimization using adaptive mesh refinement based on the level-set method. Finite Elements in Analysis and Design, 194:103561, doi:10.1016/j.finel.2021.103561.
 
18.
Lubis, A. R., Lubis, M., and Al, K. (2020). Optimization of distance formula in K-Nearest Neighbor method. Bulletin of Electrical Engineering and Informatics, 9(1):326–338, doi:10.11591/eei.v9i1.1464.
 
19.
Mara, H. and Krömker, S. (2017). Visual computing for archaeological artifacts with integral invariant filters in 3D. In GCH 2017 – Eurographics Workshop on Graphics and Cultural Heritage, pages 37–47. doi:10.2312/gch.20171290.
 
20.
Maturana, D. and Scherer, S. (2015). Voxnet: A 3D convolutional neural network for real-time object recognition. In IEEE/RSJ International Conference on Intelligent Robots and Systems. doi:10.1109/IROS.2015.7353481.
 
21.
McCarthy, J. (2014). Multi-image photogrammetry as a practical tool for cultural heritage survey and community engagement. Journal of Archaeological Science, 43:175–185, doi:10.1016/j.jas.2014.01.010.
 
22.
Mistretta, F., Sanna, G., Stochino, F., and Vacca, G. (2019). Structure from motion point clouds for structural monitoring. Remote Sensing, 11(16):1940, doi:10.3390/rs11161940.
 
23.
Montuori, R., Gilabert-Sansalvador, L., and Rosado-Torres, A. L. (2020). 3D printing for dissemination of Maya architectural heritage: The Acropolis of La Blanca (Guatemala). The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 44(M-1):481–488, doi:10.5194/isprs-archives-XLIV-M-1-2020-481-2020.
 
24.
Murtiyoso, A., Grussenmeyer, P., Landes, T., and Macher, H. (2021). First assessments into the use of commercial-grade solid state lidar for low cost heritage documentation. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 43(B2):599–604, doi:10.5194/isprs-archives-XLIII-B2-2021-599-2021.
 
25.
Neumüller, M., Reichinger, A., Rist, F., and Kern, C. (2014). 3D printing for cultural heritage: Preservation, accessibility, research and education. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 8355, pages 119–134. Springer, doi:10.1007/978-3-662-44630-0_9.
 
26.
Nezhadarya, E., Taghavi, E., Razani, R., Liu, B., and Luo, J. (2020). Adaptive hierarchical down-sampling for point cloud classification. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 12956–12964. doi:10.1109/CVPR42600.2020.01297.
 
27.
Nowak, R., Orłowicz, R., and Rutkowski, R. (2020). Use of TLS (LiDAR) for building diagnostics with the example of a historic building in Karlino. Buildings, 10(2):24, doi:10.3390/buildings10020024.
 
28.
Rodríguez-Gonzálvez, P., Jimenez Fernandez-Palacios, B., Muñoz-Nieto, Á. L., Arias-Sanchez, P., and Gonzalez-Aguilera, D. (2017). Mobile LiDAR system: New possibilities for the documentation and dissemination of large cultural heritage sites. Remote Sensing, 9(3):189, doi:10.3390/rs9030189.
 
29.
Salwierz, A. and Szymczyk, T. (2020). Methods of creating realistic spaces–3D scanning and 3D modelling. Journal of Computer Sciences Institute, 14:101–108, doi:10.35784/jcsi.1584.
 
30.
Sammartano, G., Avena, M., Fillia, E., and Spanò, A. (2023). Integrated HBIM-GIS models for multi-scale seismic vulnerability assessment of historical buildings. Remote Sensing, 15(3):833, doi:10.3390/rs15030833.
 
31.
Shahrubudin, N., Lee, T. C., and Ramlan, R. (2019). An overview on 3D printing technology: Technological, materials, and applications. Procedia Manufacturing, 35:1286–1296, doi:10.1016/j.promfg.2019.06.089.
 
32.
Shih, N.-J. and Chen, Y. (2020). LiDAR-and AR-Based monitoring of evolved building facades upon zoning conflicts. Sensors, 20(19):5628, doi:10.3390/s20195628.
 
33.
Suchocki, C., Błaszczak-Bąk, W., Damięcka-Suchocka, M., Jagoda, M., and Masiero, A. (2020a). On the use of the OptD method for building diagnostics. Remote Sensing, 12(11):1806, doi:10.3390/rs12111806.
 
34.
Suchocki, C., Błaszczak-Bąk, W., Janicka, J., and Dumalski, A. (2021). Detection of defects in building walls using modified OptD method for down-sampling of point clouds. Building Research & Information, 49(2):197–215, doi:10.1080/09613218.2020.1729687.
 
35.
Suchocki, C., Damięcka-Suchocka, M., Katzer, J., Janicka, J., Rapiński, J., and Stałowska, P. (2020b). Remote detection of moisture and bio-deterioration of building walls by time-of-flight and phase-shift terrestrial laser scanners. Remote Sensing, 12(11):1708, doi:10.3390/rs12111708.
 
36.
Tan, K., Cheng, X., Ju, Q., and Wu, S. (2016). Correction of mobile TLS intensity data for water leakage spots detection in metro tunnels. IEEE geoscience and remote sensing letters, 13(11):1711–1715, doi:10.1109/LGRS.2016.2605158.
 
37.
Temizer, T., Nemli, G., Ekizce, E., Ekizce, A., Demir, S., Bayram, B., Askin, F., Cobanoglu, A., and Yilmaz, H. (2013). 3D documentation of a historical monument using terrestrial laser scanning case study: Byzantine Water Cistern, Istanbul. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 40:623–628, doi:10.5194/isprsarchives-XL-5-W2-623-2013.
 
38.
Teppati Losè, L., Spreafico, A., Chiabrando, F., and Giulio Tonolo, F. (2022). Apple LiDAR sensor for 3D surveying: Tests and results in the cultural heritage domain. Remote Sensing, 14(17):4157, doi:10.3390/rs14174157.
 
39.
Ðurić, I., Vasiljević, I., Obradović, M., Stojaković, V., Kićanović, J., and Obradović, R. (2021). Comparative analysis of open-source and commercial photogrammetry software for cultural heritage. In eCAADe 2021 International Scientific Conference, pages 8–10. doi:10.52842/conf.ecaade.2021.2.243.
 
40.
Wabiński, J. and Mościcka, A. (2019). Natural heritage reconstruction using full-color 3D printing: a case study of the valley of five Polish ponds. Sustainability, 11(21):5907, doi:10.3390/su11215907.
 
41.
Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., and Xiao, J. (2015). 3d shapenets: A deep representation for volumetric shapes. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1912–1920. doi:10.1109/CVPR.2015.7298801.
 
42.
Xu, Z., Wu, L., Shen, Y., Li, F., Wang, Q., and Wang, R. (2014). Tridimensional reconstruction applied to cultural heritage with the use of camera-equipped UAV and terrestrial laser scanner. Remote sensing, 6(11):10413–10434, doi:10.3390/rs61110413.
 
43.
Yan, W., Behera, A., and Rajan, P. (2010). Recording and documenting the chromatic information of architectural heritage. Journal of cultural heritage, 11(4):438–451, doi:10.1016/j.culher.2010.02.005.
 
44.
Youn, H.-C., Yoon, J.-S., and Ryoo, S.-L. (2021). HBIM for the characteristics of Korean traditional wooden architecture: bracket set modelling based on 3d scanning. Buildings, 11(11):506, doi:10.3390/buildings11110506.
 
45.
Zheng, J., Zhang, J., Li, J., Tang, R., Gao, S., and Zhou, Z. (2020). Structured3d: A large photo-realistic dataset for structured 3d modeling. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part IX 16, pages 519–535. Springer, doi:10.1007/978-3-030-58545-7_30.
 
eISSN:2391-8152
ISSN:2391-8365
Journals System - logo
Scroll to top