CASE STUDY
Site-specific efficient management of soil resources using GIS and BIM technologies
Anna Bielska 2, A,D-F
,
 
 
 
More details
Hide details
1
Department of Spatial Planning and Environmental Sciences, Faculty of Geodesy and Cartography, Warsaw University of Technology, Pl. Politechniki 1, 00-661, Warsaw, Poland
 
2
Department of Cadastre and Land Management, Faculty of Geodesy and Cartography, Warsaw University of Technology, Pl. Politechniki 1, 00-661, Warsaw, Poland
 
 
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article
 
 
Submission date: 2023-12-18
 
 
Final revision date: 2024-04-25
 
 
Acceptance date: 2024-05-07
 
 
Publication date: 2024-06-04
 
 
Corresponding author
Anna Bielska   

Department of Cadastre and Land Management, Faculty of Geodesy and Cartography, Warsaw University of Technology, Pl. Politechniki 1, 00-661, Warsaw, Poland
 
 
Reports on Geodesy and Geoinformatics 2024;117:89-98
 
KEYWORDS
TOPICS
ABSTRACT
The spatial data sets of soil resources are essential for the interpretation of the site-specific ecosystems, not only concerning process investigations, but also for sustainable soil management The objective of the study was to attempt identification of the primary parameters influencing the rational management of soils available without the necessity of carrying out time-consuming and costly field and laboratory research. The research was carried out in the Pawłów commune (north-eastern part of the Świętokrzyskie Voivodeship, Poland). The research included the application of different methods and interpretation of source materials, including (i) digital soil-agricultural map, (ii) annex to the soil-agricultural map at a scale of 1:5000, (iii) soil quality contours, (iv) digital terrain model, and (v) orthophotomaps. Obtaining data concerning soil type and/or agricultural usefulness complexes would require conducting a generalisation process. Publicly available ortophotomaps and cartographic materials in the form of topographic maps and a numerical terrain model were analysed to determine the extent of soils to be protected. The rational management of space and soil resources can be visualised and documented using BIM technology; however, relying on GIS data is not the most straightforward task due to the lack of integration on the BIM-GIS line. This paper presents the current state of the art and attempts to address selected problems in this area.
REFERENCES (64)
1.
Act (1995). Act of 3 February 1995 on Protection of Agricultural and Forest Land. Act. Journal of Laws, 2004, no. 121, item 1266, Poland.
 
2.
Act (2003). Act of 27 March 2003 on Spatial Planning and Land Development. Act. Journal of Laws, 2023, item 977, 1506, 1597, 1688, 1890, 2029, 2739, Poland.
 
3.
APSVI (2023). Agricultural Production Space Valorization Index. http://www.onw.iung.pulawy.pl/..., Access 23 October 2023.
 
4.
Ayele, G. T., Demissie, S. S., Jemberrie, M. A., Jeong, J., and Hamilton, D. P. (2019). Terrain effects on the spatial variability of soil physical and chemical properties. Soil Systems, 4(1):1, doi:10.3390/soilsystems4010001.
 
5.
Baude, M., Meyer, B. C., and Schindewolf, M. (2019). Land use change in an agricultural landscape causing degradation of soil based ecosystem services. Science of The Total Environment, 659:1526–1536, doi:10.1016/j.scitotenv.2018.12.455.
 
6.
Baveye, P. C., Baveye, J., and Gowdy, J. (2016). Soil “ecosystem” services and natural capital: Critical appraisal of research on uncertain ground. Frontiers in Environmental Science, 4, doi:10.3389/fenvs.2016.00041.
 
7.
Behrens, T. and Scholten, T. (2006). Digital soil mapping in Germany – a review. Journal of Plant Nutrition and Soil Science, 169(3):434–443, doi:10.1002/jpln.200521962.
 
8.
Bielska, A. and Jaroszewicz, J. (2012). Przegląd metod wykorzystujących funkcje rozmyte i analizy wielokryterialne do opracowania cyfrowych map glebowo-rolniczych (A review of methods using fuzzy functions and multi-criteria analyzes to develop digital soil and agricultural maps). Acta Scientiarum Polonorum. Geodesia et Descriptio Terrarum, 11(2):5–15.
 
9.
Biggs, E. M., Bruce, E., Boruff, B., Duncan, J. M., Horsley, J., Pauli, N., McNeill, K., Neef, A., Van Ogtrop, F., Curnow, J., Haworth, B., Duce, S., and Imanari, Y. (2015). Sustainable development and the water–energy–food nexus: A perspective on livelihoods. Environmental Science & Policy, 54:389–397, doi:10.1016/j.envsci.2015.08.002.
 
10.
Blum, W. E. H. (2005). Functions of soil for society and the environment. Reviews in Environmental Science and Bio/Technology, 4(3):75–79, doi:10.1007/s11157-005-2236-x.
 
11.
Borkowski, A. and Łuczkiewicz, N. (2023). Landscape Information Model (LIM): A case study of Ołtarzew Park in Ożarów Mazowiecki municipality. Budownictwo i Architektura, 22(2):041–056, doi:10.35784/bud-arch.3547.
 
12.
Borkowski, A. S. (2019). File hygiene and BIM models restrictions. Trends in Civil Engineering and its Architecture, 3(3), doi:10.32474/tceia.2019.03.000164.
 
13.
Borkowski, A. S., Kochański, Ł., and Wyszomirski, M. (2022). A case study on Building Information (BIM) and Land Information (LIM) Models including geospatial data. Geomatics and Environmental Engineering, 17(1):19–34, doi:10.7494/geom.2023.17.1.19.
 
14.
Borkowski, A. S. and Wyszomirski, M. (2021). Landscape Information Modelling: an important aspect of BIM modelling, examples of cubature, infrastructure, and planning projects. Geomatics, Landmanagement and Landscape, (1):7–22, doi:10.15576/GLL/2021.1.7.
 
15.
Carré, F., McBratney, A. B., Mayr, T., and Montanarella, L. (2007). Digital soil assessments: Beyond DSM. Geoderma, 142(1-2):69–79, doi:10.1016/j.geoderma.2007.08.015.
 
16.
Du Preez, C. C., Van Huyssteen, C. W., and Mnkeni, P. N. (2011). Land use and soil organic matter in South Africa 1: A review on spatial variability and the influence of rangeland stock production. South African Journal of Science, 107(5/6), doi:10.4102/sajs.v107i5/6.354.
 
17.
El Baroudy, A. (2016). Mapping and evaluating land suitability using a GIS-based model. CATENA, 140:96–104, doi:10.1016/j.catena.2015.12.010.
 
18.
European Commission (2023). Proposal for a Directive of the European Parliament and of the Council on Soil Monitoring and Resilience (Soil Monitoring Law). COM(2023) 416 final 2023/0232 (COD), Brussels.
 
19.
European Environment Agency (2000). Down to earth: Soil degradation and sustainable development in Europe. A challenge for the 21st century. Environmental issue series, No 16, https://www.eea.europa.eu/publ....
 
20.
Florinsky, I. V., McMahon, S., and Burton, D. L. (2004). Topographic control of soil microbial activity: A case study of denitrifiers. Geoderma, 119(1-2):33–53, doi:10.1016/S0016-7061(03)00224-6.
 
21.
Gawronski, K., Kuryltsiv, R., and Hernik, J. (2013). Racjonalne użytkowanie oraz ochrona gruntów rolnych w Polsce i na Ukrainie (Rational usage and protection of farmlands in Poland and Ukraine). Infrastruktura i Ekologia Terenów Wiejskich, (3/III):17–30.
 
22.
Henry, A., Mabit, L., Jaramillo, R. E., Cartagena, Y., and Lynch, J. P. (2012). Land use effects on erosion and carbon storage of the Río Chimbo watershed, Ecuador. Plant and Soil, 367(1–2):477–491, doi:10.1007/s11104-012-1478-y.
 
23.
Holling, C. S. (1973). Resilience and stability of ecological systems. Annual review of ecology and systematics, 4(1):1–23, doi:10.1146/annurev.es.04.110173.000245.
 
24.
IUSS Working Group World Reference Base (2021). World Reference Base for Soil Resources. International soil classification system for naming soils and creating legends for soil maps. 4th edition International Union of Soil Sciences (IUSS), Vienna, Austria.
 
25.
Jadczyszyn, J. and Smreczak, B. (2017). Mapa glebowo-rolnicza w skali 1:25 000 i jej wykorzystanie na potrzeby współczesnego rolnictwa (Soil and agricultural map on a scale of 1: 25,000 and its use for the needs of modern agriculture). Studia i raporty IUNG-PIB, 51(5):9–27.
 
26.
Jónsson, J. Ö. G., Davíðsdóttir, B., Jónsdóttir, E. M., Kristinsdóttir, S. M., and Ragnarsdóttir, K. V. (2016). Soil indicators for sustainable development: A transdisciplinary approach for indicator development using expert stakeholders. Agriculture, ecosystems & environment, 232:179–189, doi:10.1016/j.agee.2016.08.009.
 
27.
Kabała, C. (2019). Chernozem (czarnoziem) – soil of the year 2019 in Poland. Origin, classification and use of chernozems in Poland. Soil Science Annual, 70(3):184–192, doi:10.2478/ssa-2019-0016.
 
28.
Krasowicz, S., Oleszek, W., Horabik, J., Dębicki, R., Jankowiak, J., Stuczyński, T., and Jadczyszyn, J. (2011). Racjonalne gospodarowanie środowiskiem glebowym polski (Rational management of the soil environment in Poland). Polish Journal of Agronomy, 7:43–58.
 
29.
Kwiatkowska-Malina, J. (2018). Qualitative and quantitative soil organic matter estimation for sustainable soil management. Journal of soils and sediments, 18:2801–2812, doi:10.1007/s11368-017-1891-1.
 
30.
Kwiatkowska-Malina, J., Bielska, A., and Borkowski, A. S. (2016). Use of data of the geostatistics portal in sustainable rural land de-velopment: Two case studies in Poland. Fresenius environmental bulletin, 25(3):775–782.
 
31.
Kwiatkowska-Malina, J., Bielska, A., and Borkowski, A. S. (2019). Soil maps at a scale of 1: 5000 as a source of soil databases taking soil variability into consideration: A case study from Czermin commune, S Poland. Soil Science Annual, 70(1).
 
32.
Lal, R. (2014). Soil conservation and ecosystem services. International soil and water conservation research, 2(3):36–47, doi:10.1016/S2095-6339(15)30021-6.
 
33.
Li, X., McCarty, G. W., Du, L., and Lee, S. (2020). Use of topographic models for mapping soil properties and processes. Soil Systems, 4(2):32, doi:10.3390/soilsystems4020032.
 
34.
Lourenço, I. B., Guimarães, L. F., Alves, M. B., and Miguez, M. G. (2020). Land as a sustainable resource in city planning: The use of open spaces and drainage systems to structure environmental and urban needs. Journal of Cleaner Production, 276:123096, doi:10.1016/j.jclepro.2020.123096.
 
35.
Ludwig, M., Wilmes, P., and Schrader, S. (2018). Measuring soil sustainability via soil resilience. Science of The Total Environment, 626:1484–1493, doi:10.1016/j.scitotenv.2017.10.043.
 
36.
Ma, Y., Minasny, B., Malone, B. P., and Mcbratney, A. B. (2019). Pedology and Digital Soil Mapping (DSM). European Journal of Soil Science, 70(2):216–235, doi:10.1111/ejss.12790.
 
37.
Mandal, U. K. (2013). Soil suitability analysis for sustainable land use planning in Maheshkhola Watershed, Central Mountain Region, Nepal. The Himalayan Review, 44:71–82.
 
38.
Martensen, L. (2021). City Information Modeling: The Real-World SimCity. Technical report, https://onekeyresources.milwau..., access: May 2024.
 
39.
McKenzie, N. and Austin, M. (1993). A quantitative australian approach to medium and small scale surveys based on soil stratigraphy and environmental correlation. Geoderma, 57(4):329–355, doi:10.1016/0016-7061(93)90049-q.
 
40.
McKenzie, N. J. and Ryan, P. J. (1999). Spatial prediction of soil properties using environmental correlation. Geoderma, 89(1–2):67–94, doi:10.1016/s0016-7061(98)00137-2.
 
41.
Nowak, A. and Tokarczyk, N. (2013). Evaluation of soil resilience to anthropopressure in Łosie village (Lower Beskids Mts) – preliminary results. Ekologia, 32(1), doi:10.2478/eko-2013-0012.
 
42.
Pham, T. G., Nguyen, H. T., and Kappas, M. (2018). Assessment of soil quality indicators under different agricultural land uses and topographic aspects in Central Vietnam. International Soil and Water Conservation Research, 6(4):280–288, doi:10.1016/j.iswcr.2018.08.001.
 
43.
Pimm, S. L. (1984). The complexity and stability of ecosystems. Nature, 307(5949):321–326, doi:10.1038/307321a0.
 
44.
Pindral, S., Kot, R., and Hulisz, P. (2022). The influence of city development on urban pedodiversity. Scientific Reports, 12(1), doi:10.1038/s41598-022-09903-5.
 
45.
Pindral, S. and Świtoniak, M. (2017). The usefulness of soil-agricultural maps to identify classes of soil truncation. Soil Science Annual, 68(1):2–10, doi:10.1515/ssa-2017-0001.
 
46.
Rabia, A. H., Neupane, J., Lin, Z., Lewis, K., Cao, G., and Guo, W. (2022). Principles and applications of topography in precision agriculture, pages 143–189. Elsevier, doi:10.1016/bs.agron.2021.08.005.
 
47.
Radziuk, H. and Świtoniak, M. (2021). Soil erodibility factor (k) in soils under varying stages of truncation. Soil Science Annual, doi:10.37501/soilsa/134621.
 
48.
Rao, M. N., Waits, D. A., and Neilsen, M. L. (2000). A GIS-based modeling approach for implementation of sustainable farm management practices. Environmental Modelling & Software, 15(8):745–753, doi:10.1016/S1364-8152(00)00032-3.
 
49.
Rega, C. and Bonifazi, A. (2020). The rise of resilience in spatial planning: A journey through disciplinary boundaries and contested practices. Sustainability, 12(18):7277, doi:10.3390/su12187277.
 
50.
Rehman, Z. u., Khalid, U., Ijaz, N., Mujtaba, H., Haider, A., Farooq, K., and Ijaz, Z. (2022). Machine learning-based intelligent modeling of hydraulic conductivity of sandy soils considering a wide range of grain sizes. Engineering Geology, 311:106899, doi:10.1016/j.enggeo.2022.106899.
 
51.
Roostaie, S., Nawari, N., and Kibert, C. J. (2019). Sustainability and resilience: A review of definitions, relationships, and their integration into a combined building assessment framework. Building and Environment, 154:132–144, doi:10.1016/j.buildenv.2019.02.042.
 
52.
Shahid, S., Taha, F., and Abdelfattah, M. (2013). Developments in Soil Classification, Land Use Planning and Policy Implications: Innovative Thinking of Soil Inventory for Land Use Planning and Management of Land Resources. Springer Netherlands, doi:10.1007/978-94-007-5332-7.
 
53.
Shevtsova, L., Romanenkov, V., Sirotenko, O., Smith, P., Smith, J. U., Leech, P., Kanzyvaa, S., and Rodionova, V. (2003). Effect of natural and agricultural factors on long-term soil organic matter dynamics in arable soddy-podzolic soils—modeling and observation. Geoderma, 116(1–2):165–189, doi:10.1016/s0016-7061(03)00100-9.
 
54.
Skłodowski, P. (2014). Kształtowanie i ewolucja gleb (Soil formation and evolution). In Skłodowski, P., editor, Podstawy gleboznawstwa z elementami kartografii gleb (Basics of soil science with elements of soil cartography), pages 22–77. Warsaw University of Technology Publishing House.
 
55.
Statistics Poland (2021). Statistical Yearbook of Agriculture. Warsaw 2021, https://stat.gov.pl/obszary-te....
 
56.
Strzemski, M., Siuta, J., and Witek, T. (1973). Przydatność rolnicza gleb Polski (Agricultural suitability of Polish soils). Państ. Wydaw. Rolnicze i Leśne.
 
57.
Warra, H. H., Ahmed, M. A., and Nicolau, M. D. (2015). Impact of land cover changes and topography on soil quality in the Kasso catchment, Bale Mountains of southeastern Ethiopia. Singapore Journal of Tropical Geography, 36(3):357–375, doi:10.1111/sjtg.12124.
 
58.
Witek, T. and Górski, T. (1977). Przyrodnicza bonitacja rolniczej przestrzeni produkcyjnej w Polsce (Natural assessment of agricultural production space in Poland). Wydawnictwa Geologiczne.
 
59.
WRB, I.W.G (2014). World Reference Base for Soil Resources 2014. International Soil Classification System For Naming Soils And Creating Legends For Soil Maps. World Soil Resources Report No. 106. FAO, Rome.
 
60.
Zhang, Y., Ji, W., Saurette, D. D., Easher, T. H., Li, H., Shi, Z., Adamchuk, V. I., and Biswas, A. (2020). Three-dimensional digital soil mapping of multiple soil properties at a field-scale using regression kriging. Geoderma, 366:114253, doi:10.1016/j.geoderma.2020.114253.
 
61.
Zhu, J., Wright, G., Wang, J., and Wang, X. (2018). A critical review of the integration of geographic information system and building information modelling at the data level. ISPRS International Journal of Geo-Information, 7(2):66, doi:10.3390/ijgi7020066.
 
62.
Zhu, Q. and Lin, H. (2011). Influences of soil, terrain, and crop growth on soil moisture variation from transect to farm scales. Geoderma, 163(1–2):45–54, doi:10.1016/j.geoderma.2011.03.015.
 
63.
Zieliński, M. and Sobierajewska, J. (2021). The importance of agriculture from areas with especially unfavorable natural conditions in Poland in the context of the European Green Deal. Annals of the Polish Association of Agricultural and Agribusiness Economists, XXIII(3):156–168, doi:10.5604/01.3001.0015.2585.
 
64.
Świtoniak, M., Mroczek, P., and Bednarek, R. (2016). Luvisols or Cambisols? Micromorphological study of soil truncation in young morainic landscapes – Case study: Brodnica and Chełmno Lake Districts (North Poland). CATENA, 137:583–595, doi:10.1016/j.catena.2014.09.005.
 
eISSN:2391-8152
ISSN:2391-8365
Journals System - logo
Scroll to top