In navigation practice, there are various navigational architecture and integration strategies of measuring instruments that affect the choice of the Kalman filtering algorithm. The analysis of different methods of Kalman filtration and associated smoothers applied in object tracing was made on the grounds of simulation tests of algorithms designed and presented in this paper. EKF (Extended Kalman Filter) filter based on approximation with (jacobians) partial derivations and derivative-free filters like UKF (Unscented Kalman Filter) and CDKF (Central Difference Kalman Filter) were implemented in comparison. For each method of filtration, appropriate smoothers EKS (Extended Kalman Smoother), UKS (Unscented Kalman Smoother) and CDKS (Central Difference Kalman Smoother) were presented as well. Algorithms performance is discussed on the theoretical base and simulation results of two cases are presented.
REFERENCES(24)
1.
Andersen, B. D. O., Moore, J. B. (1979). „Filtracja optymalna.” WNT, Warszawa, 1984. (oryg. Andersen B.D.O., Moore J. B. „Optimal filtering” Prentice-Hall Inc., Englewood Cliffs, New Jersey, USA, 1979).
Grejner-Brzezinska, D. A., Toth C. K., and Yi Y. (2005) „On Improving Navigation Accuracy of GPS/INS Systems.” Photogrammetric Engineering and Remote Sensing, Vol. 71, No. 4, 377–389.
Kwiecień, J., Malinowski, M., Bujnowski, S., Bujarkiewicz, B. (2006) „ATR TRACK III: The real-time GPS for public security.” Reports on Geodesy, No. 2(77), 179-185.
Nørgaard M., Poulsen N., Ravn O., (1998) „Advances in Derivative-Free State Estimation for Nonlinear Systems”, Technical Report IMM-REP-1998-15, Department of Mathematical Modelling, DTU, (revised Oct. 2004).
Rogers, R.M. (2007). „Applied Mathematics in Integrated Navigation Systems.” 3rd ed. Blacksburg, VA, USA: American Institute of Aeronautics and Astronautics, Inc.
Särkkä, S. (2006) „Recursive Bayesian Inference on Stochastic Differential Equations.” Doctoral dissertation, Helsinki University of Technology Laboratory of Computational Engineering Publications Raport B54, Espoo.
Särkkä S., Vehtari A., and Lampinen J., (2007) „Prediction of ESTSP Competition Time Series by Unscented Kalman Filter and RTS Smoother”, In Proceedings of ESTSP 2007, Espoo.
Shin E, El-Sheimy N., (2005) „Backward Smoothing for Pipeline Surveying Applications” in Proceedings of ION NTM, pp. 921-927, U. S. Institute of Navigation, Fairfax VA, 24-26 January, San Diego CA.
Shin E., (2005) „Estimation Techniques for Low-Cost Inertial Navigation”, PhD Thesis, Department of Geomatics Engineering, University of Calgary, UCGE Report No. 20219, Canada.
van der Merwe, R., Wan, E.A. (2001) „The square-root unscented kalman filter for state and parameter-estimation.” In Proceedings of the International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Salt Lake City, Utah.
van der Merwe. R., Wan. E.A., Julier. S.J. (2004). „Sigma-Point Kalman Filters for Nonlinear Estimation and Sensor-Fusion:Applications to Integrated Navigation.” In Proceedings of the AIAA Guidance, Navigation and Control Conference, Providence, RI.
We process personal data collected when visiting the website. The function of obtaining information about users and their behavior is carried out by voluntarily entered information in forms and saving cookies in end devices. Data, including cookies, are used to provide services, improve the user experience and to analyze the traffic in accordance with the Privacy policy. Data are also collected and processed by Google Analytics tool (more).
You can change cookies settings in your browser. Restricted use of cookies in the browser configuration may affect some functionalities of the website.