ORIGINAL ARTICLE
Testing impact of the strategy of VLBI data analysis on the estimation of Earth Orientation Parameters and station coordinates
 
More details
Hide details
1
Department of Planetary Geodesy, Space Research Centre Polish Academy of Sciences, Warsaw, Poland
 
2
Department of Geodesy and Geodetic Astronomy, Faculty of Geodesy and Cartography, Warsaw University of Technology, Warsaw, Poland
 
 
Online publication date: 2016-07-14
 
 
Publication date: 2016-06-01
 
 
Reports on Geodesy and Geoinformatics 2016;101:1-15
 
KEYWORDS
ABSTRACT
Very Long Baseline Interferometry (VLBI) is the only space geodetic technique capable to realise the Celestial Reference Frame and tie it with the Terrestrial Reference Frame. It is also the only technique, which measures all the Earth Orientation Parameters (EOP) on a regular basis, thus the role of VLBI in determination of the universal time, nutation and polar motion and station coordinates is invaluable. Although geodetic VLBI has been providing observations for more than 30 years, there are no clear guidelines how to deal with the stations or baselines having significantly bigger post-fit residuals than the other ones. In our work we compare the common weighting strategy, using squared formal errors, with strategies involving exclusion or down-weighting of stations or baselines. For that purpose we apply the Vienna VLBI Software VieVS with necessary additional procedures. In our analysis we focus on statistical indicators that might be the criterion of excluding or down-weighting the inferior stations or baselines, as well as on the influence of adopted strategy on the EOP and station coordinates estimation. Our analysis shows that in about 99% of 24-hour VLBI sessions there is no need to exclude any data as the down-weighting procedure is sufficiently efficient. Although results presented here do not clearly indicate the best algorithm, they show strengths and weaknesses of the applied methods and point some limitations of automatic analysis of VLBI data. Moreover, it is also shown that the influence of the adopted weighting strategy is not always clearly reflected in the results of analysis.
REFERENCES (19)
1.
Bachmann, S., Lösler, M., Messerschmitt, L., Schmid, R., Bloßfeld, M., & Thaller, D. (2012). IVS Combination Center at BKG - Robust Outlier Detection and Weighting Strategies. In International VLBI Service for Geodesy and Astrometry 2012 General Meeting Proceedings (p. 266-270).
 
2.
Böckmann, S., Artz, T., & Nothnagel, A. (2010). VLBI terrestrial reference frame contributions to ITRF2008. Journal of Geodesy, 84(3), 201-219. doi: 10.1007/s00190-009-0357-7.
 
3.
Böhm, J., Böhm, S., Nilsson, T., Pany, A., Plank, L., Spicakova, H., . . . Schuh, H. (2012). The new Vienna VLBI Software VieVS. In S. Kenyon, C. M. Pacino, & U. Marti (Eds.), Proceedings of IAG Scientific Assembly 2009, International Association of Geodesy Symposia Series (Vol. 136, p. 1007-1011). Springer Berlin Heidelberg.
 
4.
Böhm, J., Werl, B., & Schuh, H. (2006). Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data. Journal of Geophysical Research: Solid Earth (1978-2012), 111(B2).
 
5.
Fey, A., Gordon, D., & Jacobs, C. (Eds.). (2009). The second realization of the international celestial reference frame by very long baseline interferometry. IERS Technical Note 35, Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main, Germany.
 
6.
IVS. (2013). International VLBI Service for Geodesy and Astrometry. Retrieved from http://ivscc.gsfc.nasa.gov/ind....
 
7.
Krasna, H. (2013). Estimation of solid Earth tidal parameters and FCN with VLBI (Doctoral dissertation, Department of Geodesy and Geoinformation). Retrieved from http://www.ub.tuwien.ac.at/dis....
 
8.
Kutterer, H., Heinkelmann, R., & Tesmer, V. (2003). Robust outlier detection in VLBI data analysis. In W. Schwegmann & V. Thorandt (Eds.), Proceedings of the 16th Working Meeting on European VLBI for Geodesy and Astrometry (p. 247-255). Bundesamt für Kartographie und Geodäsie, Leipzig/Frankfurt am Main, Germany.
 
9.
Lyard, F., Lefevre, F., Letellier, T., & Francis, O. (2006). Modelling the global ocean tides: modern insights from FES2004. Ocean Dynamics, 56(5-6), 394-415. doi: 10.1007/s10236-006-0086-x.
 
10.
Nilsson, T., Heinkelmann, R., Karbon, M., Raposo-Pulido, V., Soja, B., & Schuh, H. (2014). Earth orientation parameters estimated from VLBI during the CONT11 campaign. Journal of Geodesy, 88(5), 491-502. doi: 10.1007/s00190-014-0700-5.
 
11.
Petit, G., & Luzum, B. (Eds.). (2010). IERS Conventions (2010). IERS Technical Note 36, Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main, Germany.
 
12.
Petrachenko, W., Behrend, D., Hase, H., Ma, C., Niell, A., Schuh, H., & Whitney, A. (2013). The VLBI2010 Global Observing System (VGOS). In EGU General Assembly Conference Abstracts (Vol. 15, p. 12867).
 
13.
Saastamoinen, J. (1972). Atmospheric Correction for the Troposphere and Stratosphere in Radio Ranging Satellites. In The Use of Artificial Satellites for Geodesy (p. 247-251). American Geophysical Union. Retrieved from http://dx.doi.org/10.1029/GM01....
 
14.
Schuh, H., & Behrend, D. (2012). VLBI: a fascinating technique for geodesy and astrometry. Journal of Geodynamics, 61, 68-80. doi: 10.1016/j.jog.2012.07.007.
 
15.
Schuh, H., & Tesmer, V. (2000). Considering A Priori Correlations in VLBI Data Analysis. In N. R. Vandenberg & K. D. Baver (Eds.), International VLBI Service for Geodesy and Astrometry 2000 General Meeting Proceedings (p. 237-242).
 
16.
Sovers, O. J., Fanselow, J. L., & Jacobs, C. S. (1998). Astrometry and geodesy with radio interferometry: experiments, models, results. Reviews of Modern Physics, 70(4), 1393-1454. doi: 10.1103/RevModPhys.70.1393.
 
17.
Tesmer, V. (2003). Refinement of the stochastic VLBI model: first results. In W. Schwegmann & V. Thorandt (Eds.), Proceedings of the 16th Working Meeting on European VLBI for Geodesy and Astrometry (p. 207-218). Bundesamt für Kartographie und Geodäsie, Leipzig/Frankfurt am Main, Germany .
 
18.
Tesmer, V., & Kutterer, H. (2004). An advanced stochastic model for VLBI observations and its application to VLBI data analysis. In N. R. Vandenberg & K. D. Baver (Eds.), International vlbi service for geodesy and astrometry 2004 general meeting proceedings (p. 296-300).
 
19.
Zubko, N., Poutanen, M., Böhm, J., & Nilsson, T. (2012). Analysis of VLBI data with different stochastic models. In D. Behrend & K. Baver (Eds.), International VLBI Service for Geodesy and Astrometry 2012 General Meeting Proceedings (p. 236-240).
 
eISSN:2391-8152
ISSN:2391-8365
Journals System - logo
Scroll to top