ORIGINAL ARTICLE
3D Building documentation using portable LiDAR systems – functionality analysis
More details
Hide details
1
Faculty of Geoengineering, Mining and Geology, Wrocław University of Science and Technology, Wybrzeże Stanisława Wyspiańskiego 27, 50-370 Wrocław, Poland
2
Faculty of Geodesy and Cartography, Warsaw University of Technology, 1 Politechniki Square, 00-661 Warsaw, Poland
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article
Submission date: 2025-11-27
Final revision date: 2025-12-15
Acceptance date: 2025-12-19
Publication date: 2025-12-23
Corresponding author
Kinga Wawrzyniak
Faculty of Geoengineering, Mining and Geology, Wrocław University of Science and Technology, Wybrzeże Stanisława Wyspiańskiego 27, 50-370 Wrocław, Poland
Reports on Geodesy and Geoinformatics 2025;120:109-119
KEYWORDS
TOPICS
ABSTRACT
Contemporary building documentation increasingly relies on laser scanning technologies that provide rapid and precise spatial data acquisition. Portable LiDAR systems such as the Leica BLK360, as well as mobile devices like the iPad, offer modern tools for efficient documentation of interior spaces, including office rooms. With dedicated applications (e.g., Leica Cyclone Field 360, Leica Cyclone 3DR, MagicPlan, BIMx, AutoCAD Mobile), users can record measurements, create sketches, and generate 3D models and photographic documentation within a single digital environment. The purpose of this study is to assess the dimensional accuracy in the documentation of an office space using portable LiDAR systems. The experiments showed that, for most analysed dimensions, the results agreed within several centimetres, which is sufficient for architectural inventory work. However, the issue of rounded corners was identified, which may significantly influence measurement results depending on the distance-measurement method applied. Reliable accuracy analysis required proper mutual alignment (common georeferencing) of the scans acquired with the selected instruments. To achieve this, point cloud classification was performed to identify surfaces suitable for cloud-to-cloud alignment. A predefined AI-based classification model dedicated to indoor environments was used. The findings confirm that portable LiDAR systems significantly reduce the time required to complete inventory tasks and enable more comprehensive visualisation of interior spaces. This technology serves as an effective tool supporting the design, modernisation, and management of office environments in a digital workflow, although its accuracy-related limitations must be considered.
REFERENCES (29)
1.
(1994). Act of 7 July 1994 -- Construction Law. Act. Journal of Laws, 2025, item 418, Poland.
2.
Abbas Sahar F., Abed Fanar M. (2024). Evaluating the Accuracy of iPhone Lidar Sensor for Building Facades Conservation. In: Recent Research on Geotechnical Engineering, Remote Sensing, Geophysics and Earthquake Seismology. 141–144-141–144. Springer Nature Switzerland. doi:10.1007/978-3-031-48715-6_31.
3.
Atencio Edison, Muñoz Andrea, Lozano Fidel, González-Arteaga Jesús, Lozano-Galant José Antonio. (2024). Calibration of iPad Pro LiDAR Scanning Parameters for the Scanning of Heritage Structures Using Orthogonal Arrays. Applied Sciences. 14 (24): 11814-11814. doi:10.3390/app142411814.
4.
Caffarri Caterina, Chirico Sara, De Falco Anna. (2025). The Use of iPad Pro’s Built-in LiDAR Sensor in the Scan-to-BIM Workflow for Cultural Heritage Buildings Digitization. In: The Future of Heritage Science and Technologies II. 302–316-302–316. Springer Nature Switzerland. doi:10.1007/978-3-031-98379-5_23.
5.
Clini Paolo, Angeloni Renato, D’Alessio Mirco, Coppetta Laura, Galli Irene. (2025). Digital Representation and AI-driven Virtual Experience for Historic Houses. The Case Study of Borgo Storico Seghetti Panichi. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. XLVIII-M-9–2025: 337–344-337–344. doi:10.5194/isprs-archives-xlviii-m-9-2025-337-2025.
6.
Feng Yong, Zhang Xiao-Lei, Feng Shi-Jin, Zhao Yong, Kong Qing-Zhao, Zhu Shu-Lin. (2025). Metro tunnel deformation detection based on laser scanning robot and point cloud semantic segmentation. Tunnelling and Underground Space Technology. 166: 106966-106966. doi:10.1016/j.tust.2025.106966.
7.
Fretes Hector, Gomez-Redondo Marcos, Paiva Enrique, Rodas Jorge, Gregor Raul. (2019). A Review of Existing Evaluation Methods for Point Clouds Quality. 2019 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED UAS). 247–252-247–252. doi:10.1109/reduas47371.2019.8999725.
8.
Gollob Christoph, Ritter Tim, Kraßnitzer Ralf, Tockner Andreas, Nothdurft Arne. (2021). Measurement of Forest Inventory Parameters with Apple iPad Pro and Integrated LiDAR Technology. Remote Sensing. 13 (16): 3129-3129. doi:10.3390/rs13163129.
9.
Guerriero Luigi, Annibali Corona Mariagiulia, Di Martire Diego, Francioni Mirko, Limongiello Miriam, Tufano Rita, Calcaterra Domenico. (2024). Rockfall susceptibility analysis of the “San Michele Arcangelo” historic trail (Central Italy) based on virtual outcrops and multiple propagation models. Bulletin of Engineering Geology and the Environment. 83 (7). doi:10.1007/s10064-024-03764-0.
10.
Javaheri Alireza, Brites Catarina, Pereira Fern, o, Ascenso Joao. (2017). Subjective and objective quality evaluation of 3D point cloud denoising algorithms. 2017 IEEE International Conference on Multimedia & Expo Workshops (ICMEW). 1–6-1–6. doi:10.1109/icmew.2017.8026263.
11.
Kottner Sören, Thali Michael J., Gascho Dominic. (2023). Using the iPhone’s LiDAR technology to capture 3D forensic data at crime and crash scenes. Forensic Imaging. 32: 200535-200535. doi:10.1016/j.fri.2023.200535.
12.
Krausková Dominika, Mikita Tomáš, Hrůza Petr, Kudrnová Barbora. (2025). Accuracy Assessment of iPhone LiDAR for Mapping Streambeds and Small Water Structures in Forested Terrain. Sensors. 25 (19): 6141-6141. doi:10.3390/s25196141.
13.
Martinenko Anastasija, Pejić Marko, Obradović Marija, Ristić Nevena Debljović. (2025). Advancing 3D reconstruction: Evaluating surveying techniques for medium-sized heritage objects. Measurement. 256: 118596-118596. doi:10.1016/j.measurement.2025.118596.
14.
Mokroš Martin, Mikita Tomáš, Singh Arunima, Tomaštík Julián, Chudá Juliána, Wężyk Piotr, Kuželka Karel, Surový Peter, Klimánek Martin, Zięba-Kulawik Karolina, Bobrowski Rogerio, Liang Xinlian. (2021). Novel low-cost mobile mapping systems for forest inventories as terrestrial laser scanning alternatives. International Journal of Applied Earth Observation and Geoinformation. 104: 102512-102512. doi:10.1016/j.jag.2021.102512.
15.
Muszyński Zbigniew, Rybak Jarosław. (2021). Application of Geodetic Measuring Methods for Reliable Evaluation of Static Load Test Results of Foundation Piles. Remote Sensing. 13 (16): 3082-3082. doi:10.3390/rs13163082.
16.
Mêda Pedro, Calvetti Diego, Sousa Hipólito. (2023). Exploring the Potential of iPad-LiDAR Technology for Building Renovation Diagnosis: A Case Study. Buildings. 13 (2): 456-456. doi:10.3390/buildings13020456.
17.
Ordóñez Christian, Calvopiña Jhosimar, Toapanta Santiago, Carranco Andrés, González Josué. (2024). Integrating lidar technology in artisanal and small-scale mining: A comparative study of iPad Pro LiDAR sensor and traditional surveying methods in Ecuador’s artisanal gold mine. Journal of Geodetic Science. 14 (1). doi:10.1515/jogs-2022-0181.
18.
(2022). PN-ISO 9836:2022-07: Performance standards in building -- Calculation of area and volume (in Polish).
19.
Riquelme A, Tomás R, Cano M, Pastor J L, Jordá-Bordehore L. (2021). Extraction of discontinuity sets of rocky slopes using iPhone-12 derived 3DPC and comparison to TLS and SfM datasets. IOP Conference Series: Earth and Environmental Science. 833 (1): 012056-012056. doi:10.1088/1755-1315/833/1/012056.
20.
Rizali M. I., Idris A. N., Rizali M. H., Syafuan W. M. (2022). Quality Assessment of 3D Point Clouds on the Different Surface Materials Generated from iPhone LiDAR Sensor. International Journal of Geoinformatics. : 51–59-51–59. doi:10.52939/ijg.v18i4.2259.
21.
Saptari Asep Yusup, Widyastuti Ratri, Suhari Ketut Tomy, Suseno Afnan Dwi, Hern, i Andri, Haris Rizqi Abdul, Nurmaulia Sella Lestari. (2024). The Use of iPad LiDAR to Build a Digital Elevation Model in Defining Customary Zones (Case Study of Panglipuran, Bali). The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. XLVIII-2/W8-2024: 411–418-411–418. doi:10.5194/isprs-archives-xlviii-2-w8-2024-411-2024.
22.
Sirmacek B., Lindenbergh R. (2014). Accuracy assessment of building point clouds automatically generated from iphone images. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. XL–5: 547–552-547–552. doi:10.5194/isprsarchives-xl-5-547-2014.
23.
Tatsumi Shinichi, Yamaguchi Keiji, Furuya Naoyuki. (2022). ForestScanner: A mobile application for measuring and mapping trees with LiDAR -equipped iPhone and iPad. Methods in Ecology and Evolution. 14 (7): 1603–1609-1603–1609. doi:10.1111/2041-210x.13900.
24.
Teppati Losè Lorenzo, Spreafico Aless, ra, Chiabr, o Filiberto, Giulio Tonolo Fabio. (2022). Apple LiDAR Sensor for 3D Surveying: Tests and Results in the Cultural Heritage Domain. Remote Sensing. 14 (17): 4157-4157. doi:10.3390/rs14174157.
25.
Ulvi Ali, Hamal Seda Nur Gamze. (2025). Fusion of IPAD Pro LiDAR and SfM-Based Photogrammetry for 3D Documentation of Cultural Heritage. Iranian Journal of Science and Technology, Transactions of Civil Engineering. doi:10.1007/s40996-025-01936-w.
26.
Vogt Maximilian, Rips Adrian, Emmelmann Claus. (2021). Comparison of iPad Pro®’s LiDAR and TrueDepth Capabilities with an Industrial 3D Scanning Solution. Technologies. 9 (2): 25-25. doi:10.3390/technologies9020025.
27.
Wyjadłowski Marek, Muszyński Zbigniew, Kujawa Paulina. (2021). Application of Laser Scanning to Assess the Roughness of the Diaphragm Wall for the Estimation of Earth Pressure. Sensors. 21 (21): 7275-7275. doi:10.3390/s21217275.
28.
Zaczek-Peplinska J., Kowalska M. E. (2022). Evaluation of the LiDAR in the Apple iPhone 13 Pro for use in Inventory Work. FIG Peer Review Journal. : 1-19.
29.
Zhuang Zhiyun, Zhi Zhiyang, Han Ting, Chen Yiping, Chen Jun, Wang Cheng, Cheng Ming, Zhang Xinchang, Qin Nannan, Ma Lingfei. (2024). A Survey of Point Cloud Completion. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 17: 5691–5711-5691–5711. doi:10.1109/jstars.2024.3362476.