CASE STUDY
A modified Distributed Scatterer InSAR method: A case study on potential landslide body detection in Faer Town, China
More details
Hide details
1
Geotechnical Engineering Laboratory, China Electric Power Research Institute, Beijing, 100192, China
2
State Grid Economic and Technology Research Institute of Anhui Electric Power Co., Ltd., Hefei 230006, China
3
State Grid Anhui Electric Power Co., Ltd., Hefei 230061, China
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article
Submission date: 2024-12-13
Final revision date: 2025-04-24
Acceptance date: 2025-04-25
Publication date: 2025-05-19
Corresponding author
Zhibo Nie
Geotechnical Engineering Laboratory, China Electric Power Research Institute, No. 15, Xiaoying East Road, Qinghe District, Haidi, 100192, Beijing, China
Reports on Geodesy and Geoinformatics 2025;119:99-108
KEYWORDS
TOPICS
ABSTRACT
Landslides near critical infrastructure, such as power transmission lines, represent significant safety and economic risks, especially in regions prone to geohazards. Early detection and monitoring are essential to mitigate potential damage. Interferometric Synthetic Aperture Radar (InSAR) technology has become a powerful tool for detecting slow-moving landslides and monitoring millimetre-scale ground displacements over time. Among the various satellite data sources, Sentinel-1 provides consistent and high-resolution data, advancing research in landslide kinematics and instability prediction. However, accurate delineation of landslide-affected areas remains particularly challenging in densely vegetated regions, where signal decorrelation limits traditional methods. To address these limitations, this study introduces a modified Distributed Scatterer InSAR (DSI) method designed to assess landslide velocity more effectively. The proposed approach incorporates a regularization technique into the covariance matrix estimation process, reducing phase estimation bias and improving the signal-to-noise ratio of displacement time series. The modified DSI method was applied to the Faer Town landslide in Guizhou Province, Southwest China. Results from synthetic and real-data experiments demonstrate significant improvements in the accuracy and reliability of landslide velocity detection, with a higher density of reliable measurement points compared to traditional approaches. These findings highlight the method's potential for enhancing landslide monitoring and risk mitigation in challenging environments.
ACKNOWLEDGEMENTS
We acknowledge Generic Mapping Tools 6.1.0 software (https://www.generic-mapping-tools.org/download/).
FUNDING
The study is supported by the Science and Technology Project of State Grid Corporation of China (Nos. 5200- 5200-202355156A-1-1-ZN).
CONFLICT OF INTEREST
The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.
DATA AVAILABILITY
Sentinel-1 data were freely provided by the European Space Agency (https://scihub.copernicus.eu/).
REFERENCES (36)
1.
Ansari Homa, De Zan Francesco, Bamler Richard. (2017). Sequential Estimator: Toward Efficient InSAR Time Series Analysis. IEEE Transactions on Geoscience and Remote Sensing. 55 (10): 5637-5652. doi:10.1109/tgrs.2017.2711037.
2.
Ansari Homa, De Zan Francesco, Bamler Richard. (2018). Efficient Phase Estimation for Interferogram Stacks. IEEE Transactions on Geoscience and Remote Sensing. 56 (7): 4109-4125. doi:10.1109/tgrs.2018.2826045.
3.
Bateson Luke, Cigna Francesca, Boon David, Sowter Andrew. (2015). The application of the Intermittent SBAS (ISBAS) InSAR method to the South Wales Coalfield, UK. International Journal of Applied Earth Observation and Geoinformation. 34: 249-257. doi:10.1016/j.jag.2014.08.018.
4.
Berardino P., Fornaro G., Lanari R., Sansosti E. (2002). A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Transactions on Geoscience and Remote Sensing. 40 (11): 2375-2383. doi:10.1109/tgrs.2002.803792.
5.
Dai Keren, Deng Jin, Xu Qiang, Li Zhenhong, Shi Xianlin, Hancock Craig, Wen Ningling, Zhang Lele, Zhuo Guanchen. (2022). Interpretation and sensitivity analysis of the InSAR line of sight displacements in landslide measurements. GIScience and Remote Sensing. 59 (1): 1226-1242. doi:10.1080/15481603.2022.2100054.
6.
Deledalle Charles-Alban, Denis Loic, Tupin Florence, Reigber Andreas, Jager Marc. (2015). NL-SAR: A Unified Nonlocal Framework for Resolution-Preserving (Pol)(In)SAR Denoising. IEEE Transactions on Geoscience and Remote Sensing. 53 (4): 2021-2038. doi:10.1109/tgrs.2014.2352555.
7.
Dong Jianhui, Qiu Mao, Zhao Jianjun, Li Haijun, Wu Qihong. (2022). Deformation instability mechanism of slope in Fa'er Town, Shuicheng County, Guizhou, China. Alexandria Engineering Journal. 61 (10): 8289-8295. doi:10.1016/j.aej.2022.01.042.
8.
Ferretti Aless, ro, Fumagalli Alfio, Novali Fabrizio, Prati Claudio, Rocca Fabio, Rucci Alessio. (2011). A New Algorithm for Processing Interferometric Data-Stacks: SqueeSAR. IEEE Transactions on Geoscience and Remote Sensing. 49 (9): 3460-3470. doi:10.1109/tgrs.2011.2124465.
9.
Ferretti A., Prati C., Rocca F. (2001). Permanent scatterers in SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing. 39 (1): 8-20. doi:10.1109/36.898661.
10.
Fobert Mary-Anne, Singhroy Vern, Spray John G. (2021). InSAR Monitoring of Landslide Activity in Dominica. Remote Sensing. 13 (4): 815-815. doi:10.3390/rs13040815.
11.
Fornaro Gianfranco, Verde Simona, Reale Diego, Pauciullo Antonio. (2015). CAESAR: An Approach Based on Covariance Matrix Decomposition to Improve Multibaseline–Multitemporal Interferometric SAR Processing. IEEE Transactions on Geoscience and Remote Sensing. 53 (4): 2050-2065. doi:10.1109/tgrs.2014.2352853.
12.
Guo Jian, Cui Yifei, Xu Wenjie, Yin Yanzhou, Li Yao, Jin Wen. (2022). Numerical investigation of the landslide-debris flow transformation process considering topographic and entrainment effects: a case study. Landslides. 19 (4): 773-788. doi:10.1007/s10346-021-01791-6.
13.
He Liming, Pei Panke, Zhang Xiangning, Qi Ji, Cai Jiuyang, Cao Wang, Ding Ruibo, Mao Yachun. (2023). Sensitivity Evaluation of Time Series InSAR Monitoring Results for Landslide Detection. Remote Sensing. 15 (15): 3906-3906. doi:10.3390/rs15153906.
14.
He Yi, Wang Wenhui, Zhang Lifeng, Chen Youdong, Chen Yi, Chen Baoshan, He Xu, Zhao Zhanao. (2023). An identification method of potential landslide zones using InSAR data and landslide susceptibility. Geomatics, Natural Hazards and Risk. 14 (1). doi:10.1080/19475705.2023.2185120.
15.
Hetland, E. A., Musé P., Simons M., Lin Y., Agram P., DiCaprio C. (2012). Multiscale InSAR Time Series (MInTS) analysis of surface deformation. Journal of Geophysical Research: Solid Earth. 117 (B2). doi:10.1029/2011jb008731.
16.
Hooper Andrew. (2008). A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophysical Research Letters. 35 (16). doi:10.1029/2008gl034654.
17.
Hu Kaiheng, Wu Chaohua, Tang Jinbo, Pasuto Aless, ro, Li Yanji, Yan Shuaixing. (2018). New understandings of the June 24th 2017 Xinmo Landslide, Maoxian, Sichuan, China. Landslides. 15 (12): 2465-2474. doi:10.1007/s10346-018-1073-2.
18.
Jia Hongying, Wang Yingjie, Ge Daqing, Deng Yunkai, Wang Robert. (2022). InSAR Study of Landslides: Early Detection, Three-Dimensional, and Long-Term Surface Displacement Estimation—A Case of Xiaojiang River Basin, China. Remote Sensing. 14 (7): 1759-1759. doi:10.3390/rs14071759.
19.
Jiao Yu-Yong, Wang Zi-Hao, Wang Xin-Zhi, Adoko Amoussou Coffi, Yang Zhen-Xing. (2013). Stability assessment of an ancient landslide crossed by two coal mine tunnels. Engineering Geology. 159: 36-44. doi:10.1016/j.enggeo.2013.03.021.
20.
Li Weile, Zhan Weiwei, Lu Huiyan, Xu Qiang, Pei Xiangjun, Wang Dong, Huang Runqiu, Ge Daqing. (2022). Precursors to large rockslides visible on optical remote-sensing images and their implications for landslide early detection. Landslides. 20 (1): 1-12. doi:10.1007/s10346-022-01960-1.
21.
Li Xiaoen, Zhou Liang, Su Fenzhen, Wu Wenzhou. (2021). Application of InSAR technology in landslide hazard: Progress and prospects. National Remote Sensing Bulletin. 25 (2): 614-629. doi:10.11834/jrs.20209297.
22.
Ma Zhang-Feng, Jiang Mi, Huang Teng. (2020). A sequential approach for Sentinel-1 TOPS time-series co-registration over low coherence scenarios. IEEE Transactions on Geoscience and Remote Sensing. 59 (6): 4818-4826. doi:10.1109/TGRS.2020.3009996.
23.
Ma Zhang-Feng, Jiang Mi, Khoshmanesh Mostafa, Cheng Xiao. (2021). Time series phase unwrapping based on graph theory and compressed sensing. IEEE Transactions on Geoscience and Remote Sensing. 60: 1-12. doi:10.1109/TGRS.2021.3066784.
24.
Ma Zhang-Feng, Jiang Mi, Zhao Yi, Malhotra Rakesh, Yong Bin. (2019). Minimum spanning tree co-registration approach for time-series Sentinel-1 TOPS data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 12 (8): 3004-3013. doi:10.1109/JSTARS.2019.2920717.
25.
Moretto Serena, Bozzano Francesca, Mazzanti Paolo. (2021). The Role of Satellite InSAR for Landslide Forecasting: Limitations and Openings. Remote Sensing. 13 (18): 3735-3735. doi:10.3390/rs13183735.
26.
Perissin Daniele, Wang Teng. (2011). Time-Series InSAR Applications Over Urban Areas in China. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 4 (1): 92-100. doi:10.1109/jstars.2010.2046883.
27.
Schmitt Michael, Schonberger Johannes L., Stilla Uwe. (2014). Adaptive Covariance Matrix Estimation for Multi-Baseline InSAR Data Stacks. IEEE Transactions on Geoscience and Remote Sensing. 52 (11): 6807-6817. doi:10.1109/tgrs.2014.2303516.
28.
van Natijne A.L., Bogaard T.A., van Leijen F.J., Hanssen R.F., Lindenbergh R.C. (2022). World-wide InSAR sensitivity index for landslide deformation tracking. International Journal of Applied Earth Observation and Geoinformation. 111: 102829-102829. doi:10.1016/j.jag.2022.102829.
29.
Vu Phan Viet Hoa, Breloy Arnaud, Brigui Frédéric, Yan Yajing, Ginolhac Guillaume. (2023). Robust Phase Linking in InSAR. IEEE Transactions on Geoscience and Remote Sensing. 61: 1-11. doi:10.1109/tgrs.2023.3289338.
30.
Wang Yuanyuan, Zhu Xiao Xiang. (2016). Robust Estimators for Multipass SAR Interferometry. IEEE Transactions on Geoscience and Remote Sensing. 54 (2): 968-980. doi:10.1109/tgrs.2015.2471303.
31.
Werner C., Wegmuller U., Wiesmann A., Strozzi T. (2003). Interferometric Point Target Analysis with JERS-1 L-band SAR data. IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477). 4359-4361. doi:10.1109/igarss.2003.1295515.
32.
Wu J J, Zhi Q Q, Li X. (2023). Loop source semi-airborne TEM system and its application in landslide detection (in Chinese). Chinese Journal of Geophysics. 66 (4): 1758-1770. doi:10.6038/cjg2022P0960.
33.
Yunjun Zhang, Fattahi Heresh, Amelung Falk. (2019). Small baseline InSAR time series analysis: Unwrapping error correction and noise reduction. Computers and Geosciences. 133: 104331-104331. doi:10.1016/j.cageo.2019.104331.
34.
Zhang Lele, Dai Keren, Deng Jin, Ge Daqing, Liang Rubing, Li Weile, Xu Qiang. (2021). Identifying Potential Landslides by Stacking-InSAR in Southwestern China and Its Performance Comparison with SBAS-InSAR. Remote Sensing. 13 (18): 3662-3662. doi:10.3390/rs13183662.
35.
Zhao Changjun, Dong Yunyun, Wu Wenhao, Tian Bangsen, Zhou Jianmin, Zhang Ping, Gao Shuo, Yu Yuechi, Huang Lei. (2023). A Modification to Phase Estimation for Distributed Scatterers in InSAR Data Stacks. Remote Sensing. 15 (3): 613-613. doi:10.3390/rs15030613.
36.
Zhou Chao, Cao Ying, Yin Kunlong, Wang Yang, Shi Xuguo, Catani Filippo, Ahmed Bayes. (2020). Landslide Characterization Applying Sentinel-1 Images and InSAR Technique: The Muyubao Landslide in the Three Gorges Reservoir Area, China. Remote Sensing. 12 (20): 3385-3385. doi:10.3390/rs12203385.