ORIGINAL ARTICLE
Improving TerraClimate hydroclimatic data accuracy with XGBoost for regions with sparse gauge networks: A case study of the Meknes plateau and the Middle Atlas Causse, Morocco
More details
Hide details
1
Centre of Water, Natural Resources, Environment, and Sustainable Development (CERNE2D), Faculty of Sciences, Mohammed V University, 4 Avenue Ibn Batouta BP 1014 RP, Rabat, Morocco
These authors had equal contribution to this work
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article
Submission date: 2024-08-21
Final revision date: 2025-03-12
Acceptance date: 2025-03-19
Publication date: 2025-04-25
Corresponding author
Yassine Hammoud
Centre of Water, Natural Resources, Environment, and Sustainable Development (CERNE2D), Faculty of Sciences, Mohammed V University, 4 Avenue Ibn Batouta BP 1014 RP, Rabat, Morocco
Reports on Geodesy and Geoinformatics 2025;119:85-98
KEYWORDS
TOPICS
ABSTRACT
Access to reliable hydroclimatic data, including precipitation, temperature, evapotranspiration, and runoff is crucial for effective water resource management, especially in water-stressed regions like Morocco. However, the scarcity of meteorological stations makes data collection difficult. Satellite products offer a promising alternative to these stations for monitoring and forecasting hydroclimatic trends. This study focuses on the Meknes Plateau and the Middle Atlas Causse to assess the reliability of TerraClimate data and explore their optimization using the XGBoost Machine Learning algorithm. Comparative evaluation between measured data and raw TerraClimate data reveals a satisfactory correlation, though data accuracy imperfections persist. Applying the XGBoost algorithm significantly improves the raw TerraClimate data, reducing the average Mean Absolute Error (MAE) across all parameters from 3.08 to 0.29, and the average Root Mean Square Error (RMSE) from 4.84 to 0.46, and increasing the average Nash-Sutcliffe Efficiency (NSE) from 0.82 to 0.99. These improvements validate this approach in enhancing hydroclimatic data quality in the studied region. In conclusion, this study highlights the potential of satellite products, especially TerraClimate, combined with optimization techniques, for example, the XGBoost algorithm, to address hydroclimatic data shortages in water-stressed regions. The results constitute a robust foundation for future initiatives aimed at improving water resource management and resilience to water challenges in Morocco.
ACKNOWLEDGEMENTS
We would like to extend our sincere gratitude to the TerraClimate team for providing their dataset, which was essential for the completion of this study. Additionally, we wish to thank the members of the Research Team and our Supervisor for their invaluable support and guidance throughout this project.
FUNDING
This study did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
CONFLICT OF INTEREST
The authors declare that there is no conflict of interest regarding the publication of this paper.
DATA AVAILABILITY
The data used in this study were accessed from two primary sources: (1) observed hydroclimatic data (precipitation, temperature, evapotranspiration, and runoff) collected from eight meteorological stations in the Meknes Plateau and Middle Atlas Causse, provided by the Sebou Hydraulic Basin Agency (ABHS) and the Provincial Directorate of Agriculture (DPA) of Meknes, and (2) TerraClimate satellite data, which were made available by the TerraClimate dataset. The observed station data are available upon request from the respective agencies, while the TerraClimate dataset can be accessed online at https://www.climatologylab.org/terraclimate.html or through Google Earth Engine. Processed data and scripts used for analysis in this study are available from the corresponding author upon reasonable request.
REFERENCES (66)
1.
Abatzoglou John T., Dobrowski Solomon Z., Parks Sean A., Hegewisch Katherine C. (2018). TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Scientific data. 5: 1–12-1–12. doi:10.1038/sdata.2017.191.
2.
Abdullah Mukhalad, Al-Ansari Nadhir. (2022). Missing rainfall data estimation—an approach to investigate different methods: case study of Baghdad. Arabian Journal of Geosciences. 15: 1740-1740. doi:10.1007/s12517-022-10995-6.
3.
Adnan R. M., Mirboluki A., Mehraein M., et al. (2024). Improved prediction of monthly streamflow in a mountainous region by Metaheuristic-Enhanced deep learning and machine learning models using hydroclimatic data. Theoretical and Applied Climatology. 155: 205–228-205–228. doi:10.1007/s00704-023-04624-9.
4.
Aguilar Enric, Auer Inge, Brunet Manola, Peterson Thomas C., Wieringa Jon. (2003). Guidance on metadata and homogenization. Wmo Td. 1186: 1–53-1–53.
5.
Aguilar Enrico, Peterson T. C., Ob, o P. Ramı́rez, Frutos Ramón, Retana José Alberto, Solera M., Soley J., Garcia I. González, Araujo R. M., Santos A. Rosa, others. (2005). Changes in precipitation and temperature extremes in Central America and northern South America, 1961–2003. Journal of Geophysical Research: Atmospheres. 110. doi:10.1029/2005jd006119.
6.
Aieb Amir, Madani Khodir, Scarpa Marco, Bonaccorso Brunella, Lefsih Khalef. (2019). A new approach for processing climate missing databases applied to daily rainfall data in Soummam watershed, Algeria. Heliyon. 5: e01247-e01247. doi:10.1016/j.heliyon.2019.e01247.
7.
Alexandris Stavros. (2013). Evapotranspiration: An overview.
8.
Ali Shoaib, Liu Dong, Fu Qiang, Cheema Muhammad Jehanzeb Masud, Pal Subodh Ch, ra, Arshad Arfan, Pham Quoc Bao, Zhang Liangliang. (2022). Constructing high-resolution groundwater drought at spatio-temporal scale using GRACE satellite data based on machine learning in the Indus Basin. Journal of Hydrology. 612: 128295-128295. doi:10.1016/j.jhydrol.2022.128295.
9.
Allen Richard G., Pereira Luis S., Raes Dirk, Smith Martin, others. (1998). Crop evapotranspiration -- Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao, Rome. 300: D05109-D05109.
10.
Amiri Mohammad Arab, Mesgari Mohammad Saadi. (2017). Modeling the spatial and temporal variability of precipitation in northwest Iran. Atmosphere. 8: 254-254. doi:10.3390/atmos8120254.
11.
Amraoui Fouad. (2005). Contribution à la connaissance des aquifères karstiques: Cas du Lias de la plaine du Sais et du Causse Moyen Atlasique tabulaire (Maroc), phdthesis.
12.
Amri Rim. (2013). Estimation régionale de l'évapotranspiration sur la plaine de Kairouan (Tunisie) à partir de données satellites multi-capteurs, phdthesis.
13.
Ashouri Hamed, Hsu Kuo-Lin, Sorooshian Soroosh, Braithwaite Dan K., Knapp Kenneth R., Cecil L. Dewayne, Nelson Brian R., Prat Olivier P. (2015). PERSIANN-CDR: Daily precipitation climate data record from multisatellite observations for hydrological and climate studies. Bulletin of the American Meteorological Society. 96: 69–83-69–83. doi:10.1175/bams-d-13-00068.1.
14.
Beaulieu Claudie, Ouarda Taha B. M. J., Seidou Ousmane. (2007). Synthèse des techniques d'homogénéisation des séries climatiques et analyse d'applicabilité aux séries de précipitations. Hydrological sciences journal. 52: 18–37-18–37. doi:10.1623/hysj.52.1.18.
15.
Beck Hylke E., Vergopolan Noemi, Pan Ming, Levizzani Vincenzo, Dijk Albert I. J. M. Van, Weedon Graham P., Brocca Luca, Pappenberger Florian, Huffman George J., Wood Eric F. (2017). Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling. Hydrology and Earth System Sciences. 21: 6201–6217-6201–6217. doi:10.5194/hess-21-6201-2017.
16.
Bentayeb A., Leclerc C. (1977). Le Causse moyen atlasique. Ressources en Eaux du Maroc, Tome3, Domaines Atlasiques et Sud-Atlasiques. : 37–66-37–66.
17.
Bonnet O. (1970). Calcul automatique des" bilans d'eau" mensuels et annuels par les méthodes de Thornthwaite et de Turc. BRGM; Orleans-la Source.
18.
Brandsma Theo, Buishand, T. Adri. (1998). Simulation of extreme precipitation in the Rhine basin by nearest-neighbour resampling. Hydrology and Earth System Sciences. 2: 195–209-195–209. doi:10.5194/hess-2-195-1998.
19.
Castellani Céline. (1986). Régionalisation des précipitations annuelles par la méthode de la régression linéaire simple: l'exemple des Alpes du Nord. Revue de géographie alpine. 74: 393–403-393–403. doi:10.3406/rga.1986.2658.
20.
Chen Hui, Liu Hailong, Chen Xi, Qiao Yina. (2020). Analysis on impacts of hydro-climatic changes and human activities on available water changes in Central Asia. Science of the Total Environment. 737: 139779-139779. doi:10.1016/j.scitotenv.2020.139779.
21.
Chen Tianqi, Guestrin Carlos. (2016). Xgboost: A scalable tree boosting system. Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining. 785–794-785–794. Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining. doi:10.1145/2939672.2939785.
22.
Cherif Moez, Diaz-Cassou Javier, Megev, Carole. (2023). Climate Change and Development in Morocco. Morocco’s Quest for Stronger and Inclusive Growth. : 121-121.
23.
Chowdhury Rezaul, Mohamed Mohamad M. A., Murad Ahmed. (2016). Variability of extreme hydro-climate parameters in the North-Eastern Region of United Arab Emirates. Procedia Engineering. 154: 639–644-639–644. doi:10.1016/j.proeng.2016.07.563.
24.
Daguin Fern. (1927). Contribution à l'étude de la région prérifaine (Maroc occidental).
25.
Ebert Elizabeth E. (2007). Methods for verifying satellite precipitation estimates. 345–356-345–356. Springer. doi:10.1007/978-1-4020-5835-6ES_DASH27.
26.
Eddif Aâtika, Ouazzani Hassane, Sadkaoui Idris, Tajdi Amina, Aghbal Ahmed, Hamid Ahmed. (2018). La chaine volcanique du Moyen Atlas au Maroc: patrimoine géologique encore peu connu. International Journal of Innovation and Applied Studies. 24: 117–129-117–129.
27.
Er-Raki S., Chehbouni Abdelghani, Guemouria N., Duchemin Benoı̂t, Ezzahar J., Hadria R. (2007). Combining FAO-56 model and ground-based remote sensing to estimate water consumptions of wheat crops in a semi-arid region. Agricultural water management. 87: 41–54-41–54. doi:10.1016/j.agwat.2006.02.004.
28.
Ezzaouini Mohamed Abdellah, Mahé Gil, Kacimi Ilias, Bilali Ali El, Zerouali Abdelaziz, Nafii Ayoub. (2022). Predicting daily suspended sediment load using machine learning and NARX hydro-climatic inputs in semi-arid environment. Water. 14: 862-862. doi:10.3390/w14060862.
29.
Fan Junliang, Wang Xiukang, Wu Lifeng, Zhou Hanmi, Zhang Fucang, Yu Xiang, Lu Xianghui, Xiang Youzhen. (2018). Comparison of Support Vector Machine and Extreme Gradient Boosting for predicting daily global solar radiation using temperature and precipitation in humid subtropical climates: A case study in China. Energy conversion and management. 164: 102–111-102–111. doi:10.1016/j.enconman.2018.02.087.
30.
Faraj H., Beaudet G., Combes M., Couvreur G., Ionesco T., Martin J., Missante G., Naciri M., Smeyers F., Watteeuw R. (1966). Le Sais.
31.
Ghozat Ali, Sharafati Ahmad, Hosseini Seyed Abbas. (2021). Long-term spatiotemporal evaluation of CHIRPS satellite precipitation product over different climatic regions of Iran. Theoretical and applied climatology. 143: 211–225-211–225. doi:10.1007/s00704-020-03428-5.
32.
Han Dongmei, Wang Guoqiang, Liu Tingxi, Xue Bao-Lin, Kuczera George, Xu Xinyi. (2018). Hydroclimatic response of evapotranspiration partitioning to prolonged droughts in semiarid grassland. Journal of Hydrology. 563: 766–777-766–777. doi:10.1016/j.jhydrol.2018.06.048.
33.
Hanchane Mohamed, Kessabi Ridouane, Krakauer Nir Y., Sadiki Abderrazzak, Kassioui Jaafar El, Aboubi Imane. (2023). Performance Evaluation of TerraClimate Monthly Rainfall Data after Bias Correction in the Fes-Meknes Region (Morocco). Climate. 11: 120-120. doi:10.3390/cli11060120.
34.
Hao Ruonan, Bai Zhixu. (2023). Comparative study for daily streamflow simulation with different machine learning methods. Water. 15: 1179-1179. doi:10.3390/w15061179.
35.
Hastie Trevor, Tibshirani Robert, Friedman Jerome H., Friedman Jerome H. (2009). The elements of statistical learning: data mining, inference, and prediction. Springer. doi:10.1007/978-0-387-21606-5.
36.
Herrera-Puebla Julián, Meneses-Peralta Jesús, Duarte-Diaz Carmen, González-Robaina Felicita, Hervis-Gr, a Guillermo. (2020). Determination of Crop Coefficients for Estimating Evapotranspiration in a Paddy Field in Cuba. Revista Ciencias Técnicas Agropecuarias. 29: 05–20-05–20.
37.
Karmouda Nourelhouda, Kacimi Ilias, ElKharrim Mohamed, Brirhet Hassan, Hamidi Maryem. (2022). Geo-statistical and hydrological assessment of three satellite precipitation products over Ouergha basin (Northern Morocco). Arabian Journal of Geosciences. 15: 235-235. doi:10.1007/s12517-021-09124-6.
38.
Kessabi Ridouane, Hanchane Mohamed, Caloiero Tommaso, Pellicone Gaetano, Addou Rachid, Krakauer Nir Y. (2023). Analyzing Spatial Trends of Precipitation Using Gridded Data in the Fez-Meknes Region, Morocco. Hydrology. 10: 37-37. doi:10.3390/hydrology10020037.
39.
Kinouchi Tsuyoshi, Sayama Takahiro, others. (2021). A comprehensive assessment of water storage dynamics and hydroclimatic extremes in the Chao Phraya River Basin during 2002–2020. Journal of Hydrology. 603: 126868-126868. doi:10.1016/j.jhydrol.2021.126868.
40.
Kofidou Maria, Stathopoulos Stavros, Gemitzi Alex, ra. (2023). Review on spatial downscaling of satellite derived precipitation estimates. Environmental Earth Sciences. 82: 424-424. doi:10.1007/s12665-023-11115-7.
41.
Kohavi Ron. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. Ijcai. 1137–1145-1137–1145. Ijcai.
42.
Kohler Max A. (1949). On the use of double-mass analysis for testing the consistency of meteorological records and for making required adjustments. Bulletin of the American Meteorological Society. 30: 188–195-188–195. doi:10.1175/1520-0477-30.5.188.
43.
Koppen Wladimir. (1936). Das geographische System de Klimate. Handbuch der klimatologie.
44.
Laurent H., Jobard I., Toma A. (1998). Validation of satellite and ground-based estimates of precipitation over the Sahel. Atmospheric Research. 47: 651–670-651–670. doi:10.1016/s0169-8095(98)00051-9.
45.
Lettenmaier Dennis P., Wood Eric F. (1993). Hydrologic forecasting.
46.
Li Peng, Stuart Elizabeth A., Allison David B. (2015). Multiple imputation: a flexible tool for handling missing data. Jama. 314: 1966–1967-1966–1967. doi:10.1001/jama.2015.15281.
47.
Mjejra Mustapha, Dubreuil Vincent, Hénia Latifa. (2014). Evaluation de l’évapotranspiration maximale par télédétection à moyenne résolution spatiale: cas du bassin versant de la Mejerda en Tunisie. Actes du 27ème colloque de l’Association Internationale de Climatologie. 54–60-54–60. Actes du 27ème colloque de l’Association Internationale de Climatologie.
48.
Niazkar Majid, Menapace Andrea, Brentan Bruno, Piraei Reza, Jimenez David, Dhawan Pranav, Righetti Maurizio. (2024). Applications of XGBoost in water resources engineering: A systematic literature review (Dec 2018–May 2023). Environmental Modelling and Software. : 105971-105971. doi:10.1016/j.envsoft.2024.105971.
49.
Ouatiki Hamza, Boudhar Abdelghani, Chehbouni Abdelghani. (2021). The Suitability of Eight Spatial Rainfall Products to Simulate Daily Streamflow in Semi-Arid Watersheds using the HBV model. EGU General Assembly Conference Abstracts. EGU21–7428-EGU21–7428. EGU General Assembly Conference Abstracts. doi:10.5194/egusphere-egu21-7428.
50.
Rachdane Mariame, Khalki El Mahdi El, Saidi Mohamed Elmehdi, Nehmadou Mohamed, Ahbari Abdellatif, Tramblay Yves. (2022). Comparison of high-resolution satellite precipitation products in sub-saharan Morocco. Water. 14: 3336-3336. doi:10.3390/w14203336.
51.
Rachdane Mariame, Khalki Mahdi El El, Saidi Mohamed Elmehdi, Nehmadou Mohamed, Ahbari Abdellatif, Tramblay Yves. (2023). Assessment of six satellite precipitation products in a Moroccan arid area. EGU General Assembly Conference Abstracts. EGU–1808-EGU–1808. EGU General Assembly Conference Abstracts. doi:10.5194/egusphere-egu23-1808.
52.
Rachidi Said, Mazoudi El, Houssine E. L., Alami Jamila El, Jadoud Mourad, Er-Raki Salah. (2023). Assessment and comparison of satellite-based rainfall products: validation by hydrological modeling using ANN in a semi-arid zone. Water. 15: 1997-1997. doi:10.3390/w15111997.
53.
Runtunuwu Eleonora. (2007). Penentuan koefisien tanaman menggunakan data pengamatan iklim dan index vegetasi dari setelit NOAA/AVHRR. Jurnal Ilmu-Ilmu Pertanian Indonesia. 9: 165–171-165–171. doi:10.31186/jipi.9.2.165-171.
54.
Saeedi Mohammad, Sharafati Ahmad, Brocca Luca, Tavakol Ameneh. (2022). Estimating rainfall depth from satellite-based soil moisture data: A new algorithm by integrating SM2RAIN and the analytical net water flux models. Journal of Hydrology. 610: 127868-127868. doi:10.1016/j.jhydrol.2022.127868.
55.
(2024). Nappe des Causses moyens Atlasiques.
56.
Shepard Donald. (1968). A two-dimensional interpolation function for irregularly-spaced data. Proceedings of the 1968 23rd ACM national conference. 517–524-517–524. Proceedings of the 1968 23rd ACM national conference. doi:10.1145/800186.810616.
57.
Shrestha N. K., Shukla S. (2015). Support vector machine based modeling of evapotranspiration using hydro-climatic variables in a sub-tropical environment. Agricultural and forest meteorology. 200: 172–184-172–184. doi:10.1016/j.agrformet.2014.09.025.
58.
Tabyaoui F. (2005). Contribution à l’étude hydrogéochimique des eaux de la nappe phréatique du plateau de Meknès (MAROC). : 53-62.
59.
Tan Mou Leong, Gassman Philip W., Cracknell Arthur P. (2017). Assessment of three long-term gridded climate products for hydro-climatic simulations in tropical river basins. Water. 9: 229-229. doi:10.3390/w9030229.
60.
Thornthwaite Charles Warren. (1948). An approach toward a rational classification of climate. Geographical review. 38: 55–94-55–94. doi:10.2307/210739.
61.
Vörösmarty Charles J., Federer C. Anthony, Schloss Annette L. (1998). Potential evaporation functions compared on US watersheds: Possible implications for global-scale water balance and terrestrial ecosystem modeling. Journal of Hydrology. 207: 147–169-147–169. doi:10.1016/s0022-1694(98)00109-7.
62.
Wang Han, Xuan Yunqing. (2022). A spatial pattern extraction and recognition toolbox supporting machine learning applications on large hydroclimatic datasets. Remote Sensing. 14: 3823-3823. doi:10.3390/rs14153823.
63.
(2022). Rapport Climat et Développements.
64.
(2022). Note Technique Pénurie d’eau et sécheresses.
65.
Xu Tianfang, Deines Jillian M., Kendall Anthony D., Basso Bruno, Hyndman David W. (2019). Addressing challenges for mapping irrigated fields in subhumid temperate regions by integrating remote sensing and hydroclimatic data. Remote Sensing. 11: 370-370. doi:10.4211/hs.3766845be72d45969fca21530a67bb2d.
66.
Yu Siyi, Chen Zuoqi, Yu Bailang, Wang Lei, Wu Bin, Wu Jianping, Zhao Feng. (2020). Exploring the relationship between 2D/3D landscape pattern and land surface temperature based on explainable eXtreme Gradient Boosting tree: A case study of Shanghai, China. Science of the total environment. 725: 138229-138229. doi:10.1016/j.scitotenv.2020.138229.