ORIGINAL ARTICLE
Accuracy assessment of high and ultra high-resolution combined GGMs, and recent satellite-only GGMs - Case studies of Poland and Ethiopia
Walyeldeen Godah 1,2, A-F
,
 
,
 
 
 
 
More details
Hide details
1
Centre for Geodesy and Geodynamics, Institute of Geodesy and Cartography, 27 Modzelewskiego St., 02-679, Warsaw, Poland
 
2
Department of Geological Sciences and Geological Engineering, Queen's University, Kingston, Ontario K7L 3N6, Canada
 
3
School of Civil and Environmental Engineering, Addis Ababa Institute of Technology, 2QR7+584, King George VI St, Addis Ababa 1000, Ethiopia
 
 
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article
 
 
Submission date: 2024-01-07
 
 
Final revision date: 2024-02-14
 
 
Acceptance date: 2024-02-19
 
 
Publication date: 2024-03-06
 
 
Corresponding author
Walyeldeen Godah   

Centre for Geodesy and Geodynamics, Institute of Geodesy and Cartography (IGiK), 27 Modzelewskiego St., 02-679, Warsaw, Poland
 
 
Reports on Geodesy and Geoinformatics 2024;117:38-44
 
KEYWORDS
TOPICS
ABSTRACT
The launch of dedicated satellite gravity missions (CHAMP, GRACE, GOCE, and GRACE-FO), as well as the availability of gravity data from satellite altimetry and terrestrial/airborne gravity measurements have led to a growing number of Global Geopotential Models (GGMs) developed. Thus, the evaluation of GGMs is necessary to ensure their accuracy in recovering the Earth's gravity field on local, regional, and global scales. The main objective of this research is to assess the accuracy of recent GGMs over Poland in Central Europe and Ethiopia in East Africa. Combined GGMs of high (degree and order (d/o) 2190) and ultra high-resolution (d/o 5540) as well as five satellite-only GGMs were evaluated using gravity data from absolute gravity measurements and airborne gravity surveys over Poland and Ethiopia, respectively. Based on this evaluation, the estimated accuracy of the high-resolution combined GGM is at the level of 2 mGal. The estimated accuracy for the ultra-high-resolution combined GGM is ~2.5 times lower. The satellite-only GGMs investigated recover the gravity signal at an accuracy level of 10 mGal and 26 mGal, for the areas of Poland and Ethiopia, respectively. When compensating for the omitted gravity signal using a high-resolution combined GGM and the topography model, an accuracy of 2 mGal can be achieved.
ACKNOWLEDGEMENTS
This work was supported by the Polish National Science Centre (NCN) within the research Grant No.2021/42/E/ST10/00218 and the statutory project of Institute of Geodesy and Cartography, Warsaw, Poland
REFERENCES (43)
1.
Alothman, A., Godah, W., and Elsaka, B. (2016). Gravity field anomalies from recent GOCE satellite-based geopotential models and terrestrial gravity data: a comparative study over Saudi Arabia. Arabian Journal of Geosciences, 9(5), doi:10.1007/s12517-016-2393-y.
 
2.
Barthelmes, F. (2009). Definition of functionals of the geopotential and their calculation from spherical harmonic models: theory and formulas used by the calculation service of the International Centre for Global Earth Models (ICGEM). Technical report, Deutsches GeoForschungsZentrum GFZ.
 
3.
Bedada, T. B. (2010). Absolute geopotential height system for Ethiopia. PhD thesis, The University of Edinburgh.
 
4.
Bennett, R. A. (2007). Instantaneous slip rates from geology and geodesy. Geophysical Journal International, 169(1):19–28, doi:10.1111/j.1365-246x.2007.03331.x.
 
5.
Brockmann, J. M., Schubert, T., and Schuh, W.-D. (2021). An improved model of the Earth’s static gravity field solely derived from reprocessed GOCE data. Surveys in Geophysics, 42:277–316, doi:10.1007/s10712-020-09626-0.
 
6.
Bruinsma, S. L., Förste, C., Abrikosov, O., Lemoine, J., Marty, J., Mulet, S., Rio, M., and Bonvalot, S. (2014). ESA’s satellite-only gravity field model via the direct approach based on all GOCE data. Geophysical Research Letters, 41(21):7508–7514, doi:10.1002/2014gl062045.
 
7.
Bucha, B. and Janák, J. (2014). A MATLAB-based graphical user interface program for computing functionals of the geopotential up to ultra-high degrees and orders: Efficient computation at irregular surfaces. Computers & Geosciences, 66:219–227, doi:10.1016/j.cageo.2014.02.005.
 
8.
Drinkwater, M. R., Floberghagen, R., Haagmans, R., Muzi, D., and Popescu, A. (2003). VII: Closing Session: GOCE: ESA’s first Earth explorer core mission. Space Science Reviews, 108(1/2):419–432, doi:10.1023/a:1026104216284.
 
9.
Dykowski, P., Krynski, J., and Sękowski, M. (2015). The A10 Gravimeter Total Uncertainty Budget Estimation: A Case Study Using the A10-020, pages 219–225. Springer International Publishing, doi:10.1007/1345_2015_98.
 
10.
Flechtner, F., Neumayer, K.-H., Dahle, C., Dobslaw, H., Fagiolini, E., Raimondo, J.-C., and Güntner, A. (2015). What can be expected from the GRACE-FO laser ranging interferometer for Earth science applications? Surveys in Geophysics, 37(2):453–470, doi:10.1007/s10712-015-9338-y.
 
11.
Forsberg, R. (1984). A study of terrain reductions, density anomalies and geophysical inversion methods in gravity field modelling. Technical Report 355, Ohio State University, Department of Geodetic Science and Surveying.
 
12.
Forsberg, R. and Olesen, A. V. (2010). Airborne Gravity Field Determination, pages 83–104. Springer Berlin Heidelberg, doi:10.1007/978-3-642-11741-1_3.
 
13.
Fukushima, T. (2012). Recursive computation of finite difference of associated Legendre functions. Journal of Geodesy, 86(9):745–754, doi:10.1007/s00190-012-0553-8.
 
14.
Förste, C., Bruinsma, S., Abrikosov, O., Lemoine, J.-M., Marty, J. C., Flechtner, F., Balmino, G., Barthelmes, F., and Biancale, R. (2014). EIGEN-6C4 The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse. GFZ Data Services.
 
15.
Godah, W. and Krynski, J. (2015). Comparison of GGMs based on one year GOCE observations with the EGM08 and terrestrial data over the area of Sudan. International Journal of Applied Earth Observation and Geoinformation, 35:128–135, doi:10.1016/j.jag.2013.11.003.
 
16.
Godah, W., Krynski, J., and Szelachowska, M. (2015). On the accuracy assessment of the consecutive releases of GOCE-based GGMs over the area of Poland. Newton’s Bulletin. Assessment of GOCE Geopotential Models, 5:49–62.
 
17.
Godah, W., Krynski, J., and Szelachowska, M. (2018a). The use of absolute gravity data for the validation of Global Geopotential Models and for improving quasigeoid heights determined from satellite-only Global Geopotential Models. Journal of Applied Geophysics, 152:38–47, doi:10.1016/j.jappgeo.2018.03.002.
 
18.
Godah, W. and Kryński, J. (2013). Evaluation of recent GOCE geopotential models over the area of Poland. Acta Geodynamica et Geomaterialia, 171(10):379–386, doi:10.13168/agg.2013.0037.
 
19.
Godah, W., Szelachowska, M., and Krynski, J. (2014). Accuracy assessment of GOCE-based geopotential models and their use for modelling the gravimetric quasigeoid - A case study for Poland. Geodesy and Cartography, 63(1):3–24, doi:10.2478/geocart-2014-0001.
 
20.
Godah, W. H., Gedamu, A. A., and Bedada, T. B. (2018b). On the contribution of dedicated gravity satellite missions to the modelling of the Earth gravity field – A case study of Ethiopia and Uganda in East Africa. Geoinformation Issues, 10(1):5–15, doi:10.34867/GI.2018.1.
 
21.
Goyal, R., Dikshit, O., and Balasubramania, N. (2019). Evaluation of global geopotential models: a case study for India. Survey review, 51(368):402–412, doi:10.1080/00396265.2018.1468537.
 
22.
Gruber, T., Bamber, J. L., Bierkens, M. F. P., Dobslaw, H., Murböck, M., Thomas, M., van Beek, L. P. H., van Dam, T., Vermeersen, L. L. A., and Visser, P. N. A. M. (2011). Simulation of the time-variable gravity field by means of coupled geophysical models. Earth System Science Data, 3(1):19–35, doi:10.5194/essd-3-19-2011.
 
23.
Heiskanen, W. A. and Moritz, H. (1967). Physical geodesy. W. H. Freeman & Co Ltd.
 
24.
Hirt, C., Gruber, T., and Featherstone, W. E. (2011). Evaluation of the first GOCE static gravity field models using terrestrial gravity, vertical deflections and EGM2008 quasigeoid heights. Journal of Geodesy, 85(10):723–740, doi:10.1007/s00190-011-0482-y.
 
25.
Ince, E. S., Barthelmes, F., Reißland, S., Elger, K., Förste, C., Flecht-ner, F., and Schuh, H. (2019). ICGEM – 15 years of successful collection and distribution of global gravitational models, associated services, and future plans. Earth System Science Data, 11(2):647–674, doi:10.5194/essd-11-647-2019.
 
26.
Krynski, J. and Kloch, G. (2009). Evaluation of the performance of the new EGM08 global geopotential model over Poland. Geoinformation Issues, 1(1):7–17.
 
27.
Lambeck, K. (1988). Geophysical geodesy – The slow deformations of the Earth. Research supported by CNES and Universite de Paris VI. Oxford and New York.
 
28.
Liang, W., Li, J., Xu, X., Zhang, S., and Zhao, Y. (2020). A high-resolution Earth’s gravity field model SGG-UGM-2 from GOCE, GRACE, satellite altimetry, and EGM2008. Engineering, 6(8):860–878, doi:10.1016/j.eng.2020.05.008.
 
29.
Moritz, H. (2000). Geodetic Reference System 1980. Journal of Geodesy, 74(1):128–133, doi:10.1007/s001900050278.
 
30.
Odera, P. A. (2020). Evaluation of the recent high-degree combined global gravity-field models for geoid modelling over Kenya. Geodesy and Cartography, 46(2):48–54, doi:10.3846/gac.2020.10453.
 
31.
Odera, P. A. and Fukuda, Y. (2017). Evaluation of GOCE-based global gravity field models over Japan after the full mission using free-air gravity anomalies and geoid undulations. Earth, Planets and Space, 69(1), doi:10.1186/s40623-017-0716-1.
 
32.
Pavlis, N. K., Holmes, S. A., Kenyon, S. C., and Factor, J. K. (2012). The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). Journal of Geophysical Research: Solid Earth, 117(B4), doi:10.1029/2011jb008916.
 
33.
Pham, H. T., Claessens, S., Kuhn, M., and Awange, J. (2023). Performance evaluation of high/ultra-high-degree global geopotential models over Vietnam using GNSS/leveling data. Geodesy and Geodynamics, doi:10.1016/j.geog.2023.03.002.
 
34.
Reigber, C., Lühr, H., and Schwintzer, P. (2002). CHAMP mission status. Advances in Space Research, 30(2):129–134, doi:10.1016/s0273-1177(02)00276-4.
 
35.
Rummel, R., Yi, W., and Stummer, C. (2011). GOCE gravitational gradiometry. Journal of Geodesy, 85(11):777–790, doi:10.1007/s00190-011-0500-0.
 
36.
Tapley, B. D., Bettadpur, S., Ries, J. C., Thompson, P. F., and Watkins, M. M. (2004). GRACE measurements of mass variability in the Earth system. Science, 305(5683):503–505, doi:10.1126/science.1099192.
 
37.
Tscherning, C. (1992). The GRAVSOFT package for geoid determination. In Proc 1st IAG Continental Workshop of the Geoid in Europe, Prague, 1992.
 
38.
Wu, Y., He, X., Luo, Z., and Shi, H. (2021). An assessment of recently released high-degree global geopotential models based on heterogeneous geodetic and ocean data. Frontiers in Earth Science, 9, doi:10.3389/feart.2021.749611.
 
39.
Xu, X., Li, J., Zhao, Y., and Wei, H. (2023). A GOCE only gravity model GOSG02S based on the SGG and SST observations. GFZ Data Services.
 
40.
Yuan, H., Wan, X., Wu, Y., Peng, Y., and Guo, Z. (2022). Evaluation of ultra-high degree gravity field models: a case study of Eastern Tibetan Plateau and Sichuan Province. Terrestrial, Atmospheric and Oceanic Sciences, 33(1), doi:10.1007/s44195-022-00014-2.
 
41.
Zhao, Y., Li, J., Xu, X., and Su, Y. (2023). WHU-SWPU-GOGR2022S: A combined gravity model of GOCE and GRACE. GFZ Data Services.
 
42.
Zingerle, P., Brockmann, J. M., Pail, R., Gruber, T., and Willberg, M. (2019). The polar extended gravity field model TIM_R6e. GFZ Data Services.
 
43.
Zingerle, P., Pail, R., Gruber, T., and Oikonomidou, X. (2020). The combined global gravity field model XGM2019e. Journal of Geodesy, 94(7), doi:10.1007/s00190-020-01398-0.
 
eISSN:2391-8152
ISSN:2391-8365
Journals System - logo
Scroll to top