ORIGINAL ARTICLE
Selected methods for determining inconclusively identifiable shorelines of watercourses and lakes
,
 
,
 
Artur Plichta 2, C-D
,
 
 
 
 
More details
Hide details
1
Faculty of Geographical and Geological Sciences, Adam Mickiewicz University in Poznań, B. Krygowskiego 10, 61-680 Poznań, Poland
 
2
Faculty of Civil and Transport Engineering, Poznan University of Technology, Piotrowo 3, 60-965 Poznań, Poland
 
 
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article
 
 
Submission date: 2023-12-17
 
 
Final revision date: 2024-01-21
 
 
Acceptance date: 2024-02-12
 
 
Publication date: 2024-03-01
 
 
Corresponding author
Grzegorz Borkowski   

Faculty of Geographical and Geological Sciences, Adam Mickiewicz University in Poznań, Krygowskiego 10, 61-680, Poznań, Poland
 
 
Reports on Geodesy and Geoinformatics 2024;117:30-37
 
KEYWORDS
TOPICS
ABSTRACT
The determination of a lake or natural watercourse shoreline is the subject of various administrative proceedings relating to, among others, the engineering of riverbeds, construction of hydro-technical facilities, remediation work, land division, or delimitation of parcels. The provisions of law, while laying out the rules for determining shorelines, do not explicitly specify the measurement method to follow. All the more so, as many shores of lakes and watercourses are among terrain details that are difficult to measure due to their varied accessibility, which depends on the terrain, vegetation, and water conditions. The purpose of this paper is to compare selected methods for determining the shoreline of watercourses and lakes in terms of their applicability under different environmental conditions under current legislation. This study comprises an assessment of the suitability of the applied methods of shoreline measurement under varying field conditions and their applicability in surveying work on shoreline determination. Surveys were conducted on 3 reservoirs and one watercourse using geodetic, photogrammetric, and remote sensing techniques, and the suitability of the various methods was evaluated with respect to the field conditions of the measurements.
ACKNOWLEDGEMENTS
The authors wish to thank anonymous reviewers for their valuable suggestions and corrections.
 
REFERENCES (46)
1.
Act (2017). Act of 20 July 2017 – Water Law. Act. Journal of Laws, 2022: items 2625, 2687; 2023: items 295, 412, 877; Poland.
 
2.
Astsatryan, H., Grigoryan, H., Abrahamyan, R., Asmaryan, S., Muradyan, V., Tepanosyan, G., Guigoz, Y., and Giuliani, G. (2022). Shoreline delineation service: using an Earth observation data Cube and Sentinel 2 images for coastal monitoring. Earth Science Informatics, 15(3):1587–1596, doi:10.1007/s12145-022-00806-7.
 
3.
Ayalke, Z. G., Şişman, A., and Akpinar, K. (2023). Shoreline extraction and analyzing the effect of coastal structures on shoreline changing with remote sensing and geographic information system: Case of Samsun, Turkey. Regional Studies in Marine Science, 61:102883, doi:10.1016/j.rsma.2023.102883.
 
4.
Ayalke, Z. G. and Sesli, F. A. (2022). Shoreline extraction and change analysis using remote sensing and geographic information system: Case of Lake Tana, Ethiopia. OMU Journal of Engineering Sciences and Technology, 2(1):83–108.
 
5.
Bieda, A. (2012). Zmiany konfiguracji użytków gruntowych w działkach pod rzekami (Changes in land use configurations in parcels under rivers). Infrastruktura i Ekologia Terenów Wiejskich, (1/III):97–107.
 
6.
Bieda, A. and Parzych, P. (2012). Wpływ zmian linii brzegowych na konfiguracje granic ewidencyjnych (Impact of shoreline changes on configurations of evidentiary boundaries). Studia i Materiały Towarzystwa Naukowego Nieruchomości, 20(4):67–76.
 
7.
Boak, E. H. and Turner, I. L. (2005). Shoreline definition and detection: a review. Journal of coastal research, 21(4):688–703, doi:10.2112/03-0071.1.
 
8.
Borkowski, G. (2014). Funkcjonowanie jezior w holocenie na przykładzie Jeziora Zbąszyńskiego (Functioning of lakes in the Holocene on the example of Zbąszyńskie Lake). Poznań, Bogucki Wydawnictwo Naukowe.
 
9.
Borkowski, G. and Młynarczyk, A. (2019). Remote sensing using unmanned aerial vehicles for tourist-recreation lake evaluation and development. Quaestiones Geographicae, 38(1):5–14, doi:10.2478/quageo-2019-0012.
 
10.
Burdziakowski, P., Specht, C., Dabrowski, P. S., Specht, M., Lewicka, O., and Makar, A. (2020). Using UAV photogrammetry to analyse changes in the coastal zone based on the Sopot Tombolo (Salient) measurement project. Sensors, 20(14):4000, doi:10.3390/s20144000.
 
11.
Carrivick, J. L. and Smith, M. W. (2018). Fluvial and aquatic applications of Structure from Motion photogrammetry and unmanned aerial vehicle/drone technology. WIREs Water, 6(1), doi:10.1002/wat2.1328.
 
12.
Choiński, A. and Kijowski, A. (2015). Fotolimnologia (Photolimnology). Wydawnictwo Naukowe UAM.
 
13.
Dąbrowska, J., Kempa, O., and Markowska, J. (2012). Regulacja stanów prawnych gruntów zajętych przez rzeki na przykładzie zlewni Białej Lądeckiej (Regulation of the legal status of land occupied by rivers on the example of the Biała Lądecka catchment area). Infrastruktura i Ekologia Terenów Wiejskich, (3/IV):69–77.
 
14.
Dąbrowski, P. S., Specht, C., Specht, M., Burdziakowski, P., Makar, A., and Lewicka, O. (2021). Integration of multi-source geospatial data from GNSS receivers, terrestrial laser scanners, and unmanned aerial vehicles. Canadian Journal of Remote Sensing, 47(4):621–634, doi:10.1080/07038992.2021.1922879.
 
15.
Dereli, M. A. and Tercan, E. (2020). Assessment of shoreline changes using historical satellite images and geospatial analysis along the Lake Salda in Turkey. Earth Science Informatics, 13(3):709–718, doi:10.1007/s12145-020-00460-x.
 
16.
Doskocz, A. (2008). Analiza dokładności pomiarów sytuacyjnych wykonywanych metodą biegunową oraz domiarów prostokątnych (Analysis of the precision of situational surveys made with the polar method and rectangular measurements). Acta Scientiarum Polonorum. Geodesia et Descriptio Terrarum, 7(3):47–70.
 
17.
Gonçalves, G., Andriolo, U., Pinto, L., and Bessa, F. (2020). Mapping marine litter using UAS on a beach-dune system: a multidisciplinary approach. Science of The Total Environment, 706:135742, doi:10.1016/j.scitotenv.2019.135742.
 
18.
Jańczak, J. (1996). Atlas jezior Polski (Atlas of Polish lakes). Poznań, Bogucki Wydawnictwo Naukowe.
 
19.
Jiang, S., Jiang, C., and Jiang, W. (2020). Efficient structure from motion for large-scale UAV images: A review and a comparison of SfM tools. ISPRS Journal of Photogrammetry and Remote Sensing, 167:230–251, doi:10.1016/j.isprsjprs.2020.04.016.
 
20.
Kaamin, M., Fadzil, M. A. F. M., Razi, M. A. M., Daud, M. E., Abdullah, N. H., Nor, A. H. M., and Ahmad, N. F. A. (2020). The shoreline bathymetry assessment using unmanned aerial vehicle (UAV) photogrammetry. Journal of Physics: Conference Series, 1529(3):032109, doi:10.1088/1742-6596/1529/3/032109.
 
21.
Kowalczyk, K. (2011). Analiza błędów generowanych podczas pomiaru szczegółów sytuacyjnych metodą GPS RTK (Analysis of errors generated during measurement of situational details by the GPS RTK method). Acta Scientiarum Polonorum. Geodesia et Descriptio Terrarum, 10(1):5–21.
 
22.
Kucharzak, S. and Kowalski, K. (2009). Geodezyjny aspekt ustalania linii brzegu (Geodetic aspect of shoreline determination). Gospodarka wodna, (9):357–363.
 
23.
Ławniczak, R. and Kubiak, J. (2016). Geometric accuracy of topographical objects at Polish topographic maps. Geodesy and Cartography, 65(1):55–66, doi:10.1515/geocart-2016-0003.
 
24.
Luo, W., Shao, M., Che, X., Hesp, P. A., Bryant, R. G., Yan, C., and Xing, Z. (2020). Optimization of UAVs-SfM data collection in aeolian landform morphodynamics: a case study from the Gonghe Basin, China. Earth Surface Processes and Landforms, 45(13):3293–3312, doi:10.1002/esp.4965.
 
25.
Makar, A. (2018). Determination of inland areas coastlines. In 18th International Multidisciplinary Scientific GeoConference SGEM2018, Informatics, Geoinformatics and Remote Sensing, SGEM2018. Stef92 Technology, doi:10.5593/sgem2018/2.2/s09.088.
 
26.
Marszelewski, M. and Marszelewski, W. (2014). Prawo powszechnego dostępu do wód publicznych i problemy z jego wykonywaniem ze szczególnym uwzględnieniem jezior (The right of universal access to public waters and the problems of its implementation with special attention to lakes). Przegląd Prawa Ochrony Środowiska, (4):131, doi:10.12775/ppos.2014.045.
 
27.
Merlino, S., Paterni, M., Berton, A., and Massetti, L. (2020). Unmanned aerial vehicles for debris survey in coastal areas: Long-term monitoring programme to study spatial and temporal accumulation of the dynamics of Beached Marine Litter. Remote Sensing, 12(8):1260, doi:10.3390/rs12081260.
 
28.
Michałowska, K. and Hejmanowska, B. (2008). Możliwości wykorzystania wieloczasowych obrazów znormalizowanego indeksu wegetacji (NDVI) i archiwalnych orofotomap do badania zmiennosci wybranych elementów środowiska (Possibilities of using multi-temporal normalized vegetation index (NDVI) images and archival orthophotos to study the variability of selected environmental elements). Archiwum Fotogrametrii, Kartografii i Teledetekcji, 18:1–23.
 
29.
Mika, M., Siejka, M., and Leń, P. (2016). Dynamika linii brzegowej rzeki górskiej w aspekcie aktualizacji mapy ewidencyjnej studium przypadku (Dynamics of the shoreline of a mountain river in the aspect of updating the cadastral map – a case study). Infrastruktura i Ekologia Terenów Wiejskich, (II/1):247–260, doi:10.14597/infraeco.2016.2.1.017.
 
30.
Młynarczyk, A., Królewicz, S., and Rutkowski, P. (2019). Badanie możliwości wykorzystania zobrazowań dynamicznych (wideo) z niskiego pułapu lotniczego (BSP) do opracowań fotogrametrycznych (Investigating the possibility of using dynamic (video) low-altitude aerial imagery (BSP) for photogrammetric studies). Badania Fizjograficzne Seria A - Geografia Fizyczna, (10(70)):53–64, doi:10.14746/bfg.2019.10.4.
 
31.
Nowak, B. (2016). Wyznaczanie linii brzegowej jezior w Polsce – zapisy w ustawie a uwarunkowania przyrodnicze i gospodarcze (Determination of the shoreline of lakes in Poland – provisions in the law vs. natural and economic conditions). Gospodarka Wodna, (10):345–350.
 
32.
Ordinance (2020). Ordinance of the Minister of Development of 18 August 2020 on technical standards for geodetic on-site and elevation measurements, and the development and transmission of these measurements to the state geodetic and cartographic resources. Act. Journal of Laws, 2020, item 1429, Poland.
 
33.
Rosińska, J. (2017). Reakcja ekosystemu wodnego na zabiegi rekultywacyjne na przykładzie Jeziora Swarzędzkiego (Response of the aquatic ecosystem to reclamation treatments on the example of Swarzędzkie Lake). PhD thesis, Adam Mickiewicz University in Poznań.
 
34.
Rupasinghe, P. A., Simic Milas, A., Arend, K., Simonson, M. A., Mayer, C., and Mackey, S. (2018). Classification of shoreline vegetation in the Western Basin of Lake Erie using airborne hyperspectral imager HSI2, Pleiades and UAV data. International Journal of Remote Sensing, 40(8):3008–3028, doi:10.1080/01431161.2018.1539267.
 
35.
Shumack, S., Farebrother, W., and Hesse, P. (2022). Quantifying vegetation and its effect on aeolian sediment transport: A UAS investigation on longitudinal dunes. Aeolian Research, 54:100768, doi:10.1016/j.aeolia.2021.100768.
 
36.
Specht, C. and Specht, M. (2020). Mapy portu jachtowego Narodowego Centrum Żeglarstwa Akademii Wychowania Fizycznego i Sportu w Gdańsku (Maps of the marina of the National Sailing Center of the Academy of Physical Education and Sports in Gdansk). Technical report, Uniwersytet Morski w Gdyni.
 
37.
Specht, M., Specht, C., Lewicka, O., Makar, A., Burdziakowski, P., and Dąbrowski, P. (2020). Study on the coastline evolution in Sopot (2008–2018) based on Landsat satellite imagery. Journal of Marine Science and Engineering, 8(6):464, doi:10.3390/jmse8060464.
 
38.
Templin, T., Popielarczyk, D., and Kosecki, R. (2018). Application of low-cost fixed-wing UAV for inland lakes shoreline investigation. Pure and Applied Geophysics, 175(9):3263–3283, doi:10.1007/s00024-017-1707-7.
 
39.
Tritt, R., Graf, R., Borkowski, G., Jawgiel, K., and Abramowicz, A. (2022). Charakterystyka morfometryczna zbiorników poeksploatacyjnych w zlewni Junikowskiego Strumienia (Morphometric characteristics of post-mining reservoirs in the Junikowski Stream catchment area). In Mazurek, M. and Abramowicz, D., editors, Środowisko geograficzne zlewni Junikowskiego Strumienia, pages 103–121. Poznań, Bogucki Wydawnictwo Naukowe.
 
40.
Vélez-Nicolás, M., García-López, S., Barbero, L., Ruiz-Ortiz, V., and Sánchez-Bellón, n. (2021). Applications of Unmanned Aerial Systems (UASs) in hydrology: A review. Remote Sensing, 13(7):1359, doi:10.3390/rs13071359.
 
41.
Warren, C., DuPont, J., Abdel-Moati, M., Hobeichi, S., Palandro, D., and Purkis, S. (2015). Toward the development of a remote sensing and field data framework to aid management decisions in the state of Qatar coastal environment. In Qatar University Life Science Symposium-QULSS 2015 Global Changes: The Arabian Gulf Ecosystem. Hamad bin Khalifa University Press (HBKU Press), doi:10.5339/qproc.2015.qulss2015.13.
 
42.
Westoby, M., Brasington, J., Glasser, N., Hambrey, M., and Reynolds, J. (2012). ‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology, 179:300–314, doi:10.1016/j.geomorph.2012.08.021.
 
43.
Wyczałek, I., Mrówczyńska, M., and Plichta, A. (2018). Pomiary sytuacyjne w praktyce inżynierskiej (Situational measurements in engineering practice). Poznań, Wydawnictwo Politechnika Poznańska.
 
44.
Wyczałek, I. and Plichta, A. (2020). Mapa w praktyce inżynierskiej (Map in engineering practice). Poznań, Wydawnictwo Politechnika Poznańska.
 
45.
Xiang, T.-Z., Xia, G.-S., and Zhang, L. (2019). Mini-unmanned aerial vehicle-based remote sensing: Techniques, applications, and prospects. IEEE Geoscience and Remote Sensing Magazine, 7(3):29–63, doi:10.1109/mgrs.2019.2918840.
 
46.
Xing, Q., An, D., Zheng, X., Wei, Z., Wang, X., Li, L., Tian, L., and Chen, J. (2019). Monitoring seaweed aquaculture in the Yellow Sea with multiple sensors for managing the disaster of macroalgal blooms. Remote Sensing of Environment, 231:111279, doi:10.1016/j.rse.2019.111279.
 
eISSN:2391-8152
ISSN:2391-8365
Journals System - logo
Scroll to top