ORIGINAL ARTICLE
Fuzzy Similarity and Fuzzy Inclusion Measures in Polyline Matching: A Case Study of Potential Streams Identification for Archaeological Modelling in GIS
 
More details
Hide details
1
Department of Theoretical Geodesy, Faculty of Civil Engineering, Slovak University of Technology in Bratislava Radlinského 11, 810 05, Bratislava, Slovak Republic
 
 
Submission date: 2017-07-19
 
 
Acceptance date: 2017-12-20
 
 
Online publication date: 2018-01-23
 
 
Publication date: 2017-12-20
 
 
Reports on Geodesy and Geoinformatics 2017;104:115-130
 
KEYWORDS
ABSTRACT
When combining spatial data from various sources, it is often important to determine similarity or identity of spatial objects. Besides the differences in geometry, representations of spatial objects are inevitably more or less uncertain. Fuzzy set theory can be used to address both modelling of the spatial objects uncertainty and determining the identity, similarity, and inclusion of two sets as fuzzy identity, fuzzy similarity, and fuzzy inclusion. In this paper, we propose to use fuzzy measures to determine the similarity or identity of two uncertain spatial object representations in geographic information systems. Labelling the spatial objects by the degree of their similarity or inclusion measure makes the process of their identification more efficient. It reduces the need for a manual control. This leads to a more simple process of spatial datasets update from external data sources. We use this approach to get an accurate and correct representation of historical streams, which is derived from contemporary digital elevation model, i.e. we identify the segments that are similar to the streams depicted on historical maps.
 
REFERENCES (39)
1.
Alt, H. & Godau, M. (1995). Computing the Fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications, 5(1-2), 75-91. doi: 10.1142/S0218195995000064.
 
2.
Arnaud-Fassetta, G., Carcaud, N., Castanet, C. & Salvador, P.-G. (2010). Fluviatile palaeoenvironments in archaeological context: Geographical position, methodological approach and global change - Hydrological risk issues. Quaternary International, 216(1-2), 93-117. doi: 10.1016/j.quaint.2009.03.009.
 
3.
Bandemer, H.-W. (2006). Mathematics of Uncertainty - Ideas, Methods, Application Problems. Springer. doi: 10.1007/3-540-31228-5.
 
4.
Bátora, J. & Tóth, P. (2014). Settlement Strategies in the Early Bronze Age in South-Western Slovakia. In: Kienlin, T., Valde-Nowak, P., Korczynska, M., Cappenberg, K. & Ociepka, J. (eds.) Settlement, Communication and Exchange around the Western Carpathians, Archaeopress, 325-340.
 
5.
Bolten, A., Bubenzer, O. & Darius, F. (2006). A digital elevation model as a base for the reconstruction of Holocene land-use potential in arid regions. Geoarchaeology, 21(7), 751-762. doi: 10.1002/gea.20137.
 
6.
Chen, C.-C. & Knoblock, C. A. (2008). Conflation of Geospatial Data. In: Encyclopedia of GIS, S. Shekar and H. Xiong, Eds. Springer US, Boston, ch. Conflation, 133-140. doi: 10.1007/978-0-387-35973-1_182.
 
7.
Cobb, M. A., Chung, M. J., Foley III, H., Petry, F. E., Shaw, K. B. & Miller, H. V. (1998). No Title. Geoinformatica, 2(1), 7-35. doi: 10.1023/A:1009788905049.
 
8.
Dhar M. (2013). Cardinality of Fuzzy Sets: An Overview. International Journal of Energy, Information and Communications, 1, 15-22.
 
9.
Dice, L. R. (1945). Measures of the Amount of Ecologic Association Between Species. Ecology, 26(3), 297-302. doi: 10.2307/1932409.
 
10.
Ewing, G. M. (1985). Calculus of Variations with Applications. Dover Publications, New York.
 
11.
Ford, A., Clarke, K. C. & Raines, G. (2009). Modeling Settlement Patterns of the Late Classic Maya Civilization with Bayesian Methods and Geographic Information Systems. Annals of the Association of American Geographers, 99(3), 1-25. doi: 10.1080/00045600902931785.
 
12.
Gillings, M. (1995). GIS and the Tisza Flood-Plain: Landscape and Settlement Evolution in North-Eastern Hungary. In: The Impact of Geographic Information Systems on Archaeology: a European Perspective, G. Lock and Z. Stancic, Eds. Taylor & Francis, New York, 67-84.
 
13.
Goodchild, M. F. & Hunter, G. J. (1997) A simple positional accuracy measure for linear features. International Journal of Geographical Information Science 11(3), 299-306. doi: 10.1080/136588197242419.
 
14.
Harrower, M. J. (2009). Is the hydraulic hypothesis dead yet? Irrigation and social change in ancient Yemen. World Archaeology, 41(1), 58-72. doi: 10.1080/00438240802668354.
 
15.
Harrower, M. J. (2010). Geographic Information Systems (GIS) hydrological modeling in archaeology: an example from the origins of irrigation in Southwest Arabia (Yemen). Journal of Archaeological Science, 37(7), 1447-1452. doi: 10.1016/j.jas.2010.01.004.
 
16.
Hausdorff, F. (1914). Grundzüge der Mengenlehre. Veit, Leipzig.
 
17.
Heuvelink, G. B. M. & Brown, J. D. (2016). Uncertain Environmental Variables in GIS. In: Encyclopedia of GIS, S. Shekar and H. Xiong, Eds. Springer International Publishing, ch. Uncertain, 1-9. doi: 10.1007/978-3-319-23519-6_1422-2.
 
18.
Jaccard, P. (1901). Étude comparative de la distribution orale dans une portion des Alpes et des Jura. Bulletin de la Societe Vaudoise des Sciences Naturelles, 37, 547-579.
 
19.
Koukoletsos, T., Haklay, M. & Ellul, C. (2012). Assessing data completeness of VGI through an automated matching procedure for linear data. Transactions in GIS, 16(4), 477-498. Doi: 10.1111/j.1467-9671.2012.01304.x.
 
20.
Lieskovský, T. (2011). Využitie geografických informačných systémov v predikčnom modelovaní v archeológii (Unpublished doctoral dissertation), Slovak University of Technology.
 
21.
Longley, P. A., Goodchild, M. F., Maguire, D. J. & Rhind, D. W. (1999). Geographical Information Systems and Science. John Willey &Sons.
 
22.
Periman, R. D. (2005). Modeling landscapes and past vegetation patterns of New Mexico’s Rio del Oso Valley. Geoarchaeology, 20(2), 193-210. doi: 10.1002/gea.20043.
 
23.
Petry, F. E., Robinson, V. B. & Cobb, M. A.(2005). Fuzzy Modeling with Spatial Information for Geographic Problems. Springer Berlin Heidelberg, Berlin, Heidelberg. doi: 10.1007/b138243.
 
24.
Pilesjö, P. & Hasan, A. (2014) A Triangular Form-based Multiple Flow Algorithm to Estimate Overland Flow Distribution and Accumulation on a Digital Elevation Model. Transactions in GIS 18, 108-124. doi: 10.1111/tgis.12015.
 
25.
Samal, A., Seth, S. & Cueto, K. (2004). A feature-based approach to conflation of geospatial sources. International Journal of Geographical Information Science, 18(5), 459-489. doi: 10.1080/13658810410001658076.
 
26.
Schneider, M. (2008). Fuzzy Spatial Data Types for Spatial Uncertainty Management in Databases. In: Handbook of Research on Fuzzy Information Processing in Databases. IGI Global, 490-515. doi: 10.4018/978-1-59904-853-6.ch019.
 
27.
Seth, S. & Samal, A. (2016). Conflation of Features. In: Encyclopedia of GIS, S. Shekar and H. Xiong, Eds. Springer International Publishing, 1-7. doi: 10.1007/978-3-319-23519-6_181-2.
 
28.
Sørensen, T. (1948). A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on Danish commons. Kongelige Danske Videnskabernes Selskab, 5(4), 1-34.
 
29.
Tang, X., Fang, Y. & Kainz, W. (2006). Fuzzy Topological Relations between Fuzzy Spatial Objects. In: Fuzzy Systems and Knowledge Discovery, Proceedings, vol. 4223, 324-333. doi: 10.1007/11881599_37.
 
30.
Toomanian, A., Harrie, L., Mansourian, A. & Pilesjö, P. (2013). Automatic integration of spatial data in viewing services. Journal of Spatial Information Science, 6, 43-58. doi: 10.5311/JOSIS.2013.6.87.
 
31.
Van Leusen, M., Van Leusen, M., Deeben, J., Deeben, J., Hallewas, D., Hallewas, D., Kamermans, H., Kamermans, H., Verhagen, P., Verhagen, P., Zoetbrood, P. & Zoetbrood, P. (2005). A Baseline for Predictive Modelling in the Netherlands. Predictive Modelling for Archaeological Heritage Managment: A research agenda, Amersfoort, 25-92.
 
32.
Walter, V. & Fritsch, D. (1999). Matching spatial data sets: a statistical approach. International Journal of Geographical Information Science, 13(5), 445-473. doi: 10.1080/136588199241157.
 
33.
Wen-June, W. (1997). New similarity measures on fuzzy sets and on elements. Fuzzy Sets and Systems, 85(3), 305-309. doi: 10.1016/0165-0114(95)00365-7.
 
34.
Wilson, J. P., Aggett, G., Yongxin, D. & Lam, C. S. (2008). Water in the Landscape: A Review of Contemporary Flow Routing Algorithms. In: Advances in Digital Terrain Analysis. Springer Berlin Heidelberg, Berlin, Heidelberg, 213-236. doi: 10.1007/978-3-540-77800-4_12.
 
35.
Wygralak, M. (1983). Fuzzy inclusion and fuzzy equality of two fuzzy subsets, fuzzy operations for fuzzy subsets. Fuzzy Sets and Systems, 10(1-3), 157-168. doi: 10.1016/S0165-0114(83)80112-2.
 
36.
Young, V. R. (1996). Fuzzy subsethood. Fuzzy Sets and Systems, 77(3), 371-384. doi: 10.1016/0165-0114(95)00045-3.
 
37.
Zadeh, L. (1965). Fuzzy sets. Information and Control, 8(3), 338-353. doi: 10.1016/S0019-9958(65)90241-X.
 
38.
Zeng, W. & Li, H. (2006). Inclusion measures, similarity measures, and the fuzziness of fuzzy sets and their relations. International Journal of Intelligent Systems, 21, 639-653. doi: 10.1002/int.20152.
 
39.
Zhang, J. & Goodchild, M. F. (2002). Uncertainty in Geographical Information. Taylor & Francis. doi: 10.1111/j.1467-8306.2003.09304014_8.x.
 
eISSN:2391-8152
ISSN:2391-8365
Journals System - logo
Scroll to top