ORIGINAL ARTICLE
Impact analysis of observation coupling on reliability indices in a geodetic network
 
More details
Hide details
1
Faculty of Geodesy and Cartography, Warsaw University of Technology, Pl. Politechniki 1, 00-661, Warsaw, Poland
 
 
Submission date: 2018-05-07
 
 
Acceptance date: 2018-09-28
 
 
Online publication date: 2018-12-31
 
 
Publication date: 2018-12-01
 
 
Reports on Geodesy and Geoinformatics 2018;106:1-7
 
KEYWORDS
ABSTRACT
An optimally designed geodetic network is characterised by an appropriate level of precision and the lowest possible setup cost. Reliability, translating into the ability to detect blunders in the observations and higher certainty of the obtained point positions, is an important network characteristic. The principal way to provide appropriate network reliability is to acquire a suitably large number of redundant observations. This approach, however, faces limitations resulting from the extra cost. This paper analyses the possibility of providing appropriate reliability parameters for networks with moderate redundancy. A common problem in such cases are dependencies between observations preventing the acquisition of the required reliability index for each of the individual observation. The authors propose a methodology to analyse dependencies between observations aiming to determine the possibility of acquiring the optimal reliability indices for each individual observation or groups of observations. The suggested network structure analysis procedures were illustrated with numerical examples.
 
REFERENCES (14)
1.
Amiri-Simkooei, A. R. (2004). A new method for second order design of geodetic networks: aiming at high reliability. Survey Review, 37(293):552-560, doi: 10.1179/sre.2004.37.293.552.
 
2.
Amiri-Simkooei, A. R. and Sharifi, M. A. (2004). Approach for equivalent accuracy design of different types of observations. Journal of Surveying Engineering, 130(1):1-5, doi: 10.1061/(ASCE)0733-9453(2004)130:1(1).
 
3.
Baarda, W. (1967). Statistical concepts in geodesy, volume 2 of Publication on Geodesy, New Series. Netherlands Geodetic Commision.
 
4.
Baarda, W. (1968). A testing procedure for use in geodetic networks, volume 2 of Publication on Geodesy, New Series. Netherlands Geodetic Commision.
 
5.
Baselga, S. (2011). Second order design of geodetic networks by the simulated annealing method. Journal of Surveying Engineering, 137(4):167-173, doi: 10.1061/(ASCE)SU.1943-5428.0000053.
 
6.
Berné, J. and Baselga, S. (2004). First-order design of geodetic networks using the simulated annealing method. Journal of Geodesy, 78(1-2):47-54, doi: 10.1007/s00190-003-0365-y.
 
7.
Grafarend, E. W. (1974). Optimization of geodetic networks. Bolletino di Geodesia a Science Affini, 33(4):351-406.
 
8.
Grafarend, E. W. and Sansò, F. (2012). Optimization and design of geodetic networks. Springer Science & Business Media.
 
9.
Nowak, E. (2011). Reliability design of geodetic networks by quality harmonization of observations. Reports on Geodesy, 90(1):341-347.
 
10.
Prószynski, W. (2014). Seeking realistic upper-bounds for internal reliability of systems with uncorrelated observations. Geodesy and Cartography, 63(1):111-121, doi: 10.2478/geocart-2014-0009.
 
11.
Prószynski, W. (1994). Criteria for internal reliability of linear least squares models. Bulletin Géodésique, 68(3):162-167, doi: 10.1007/BF00808289.
 
12.
Prószynski, W. and Kwasniak, M. (2002). Niezawodnosc sieci geodezyjnych. Oficyna Wydawnicza Politechniki Warszawskiej.
 
13.
Rao, C. R. (1982). Modele liniowe statystyki matematycznej. Panstwowe Wydawnictwo Naukowe.
 
14.
Woodbury, M. A. (1950). Inverting modified matrices. Statistical Research Group, Memorandum report, 42(106):336.
 
eISSN:2391-8152
ISSN:2391-8365
Journals System - logo
Scroll to top