ORIGINAL ARTICLE
Posteriori Optimization of Active Geodetic Monitoring Networks
 
More details
Hide details
1
Institute of Geodesy, National University Lviv Polytechnic, Lviv, Ukraine
 
 
Online publication date: 2014-07-26
 
 
Publication date: 2014-06-01
 
 
Reports on Geodesy and Geoinformatics 2014;96:67-77
 
KEYWORDS
ABSTRACT
This paper presents developed method of a posteriori optimization of measurement results of active geodesic monitoring networks with taking into account the parameters of accuracy and reliability. Filtering the measurement results of active geodetic monitoring networks is in out of order exclusion vectors with maximum corrections, which is determined from successive iterations of network adjustment. After each iteration it’s determined the mean square error of unit weight and the parameter of network reliability. Sifting vectors with maximal errors leads to accuracy improving and reliability deterioration of network. Using entropy approach is defined group of vectors in which the value of accuracy and reliability is optimal. Using the developed method performed a posteriori optimization of active precision geodesic monitoring network of the Dnieper, Dniester and Kanev HPP. The represented method can also be used for the optimization of any active geodesic monitoring networks with large quantity of redundant measurements
REFERENCES (12)
1.
Craenenbroeck, J.v. (2012). Engineering Structures. First International FIG Workshop, International Federation of Surveyors (FIG), Belgium, pp. 1-18.
 
2.
Even-Tzur, G. (2002). GPS vector configuration design for monitoring deformation networks. Journal of Geodesy, 76(8), pp. 455-461. doi: 10.1007/s00190-002-0274-5.
 
3.
Knight, N. L., Wang, J., & Rizos, C. (2010). Generalised measures of reliability for multiple outliers. Journal of Geodesy, 84(10), pp. 625-635. doi:10.1007/s00190-010-0392-4.
 
4.
Prószyński, W. (2010). Another approach to reliability measures for systems with correlated observations. Journal of Geodesy, 84(9), pp. 547-556. doi: 10.1007/s00190-010-0394-2.
 
5.
Rizos, C., Craenenbroeck, J.v., & Liu, V. (2010). Advances in GNSS-RTK for Structural Monitoring in Regions of High Ionospheric Activity. Deformation Measurement of Structures Using GNSS, FIG Congress 2010, held 11-16 April, 2010 in Sydney, Australia, pp. 1-13.
 
6.
Rodionova, Yu.V. (2006). Optimizatsiya planovoy geodezicheskoy seti goroda N po kriteriyu geometricheskoy nadezhnosti [Optimization of planned and geodetic network of the city N by geometric reliability]. Vestn. SGGA [Bulletin of SGGA], 11, pp. 125-129.
 
7.
Rodionova, Yu.V., & Dyakov, B.N. (2004). O povyshenii nadezhnosti nekotorykh geodezicheskikh postroeniy [About improving the reliability of some geodesic constructions]. Geoprofi, 4, pp. 48-50.
 
8.
Stempfhuber W., & Alberding, J. (2012). Geodätische Monitoringsysteme mit RTK Low-Cost-GNSS. Allgemeine Vermessungs-Nachrichten: AVN, 119(4), pp. 132-139.
 
9.
Tretyak, K.R. (1993). Uzaghaljnenyj kryterij optymizaciji gheodezychnykh merezh [Generalized criterion of optimization of geodetic networks]. Gheodezija, kartoghrafija i aerofotoznimannja [Geodesy, Cartography and Aerial Photography], 55, pp. 93-102.
 
10.
Tretyak, K.R. (2003). Aposteriorna optymizacija gheodezychnykh merezh [Posteriori optimization of geodetic networks]. Zb.: «Suchasni dosjaghnennja gheodezychnoji nauky ta vyrobnyctva» [Journal: «Modern geodesic advances of science and industry»], pp. 127-141.
 
11.
Tretyak, K.R., & Savchyn, I.R. (2013a). Rozroblennja metodyky rozrakhunku nadijnosti aktyvnykh monitorynghovykh merezh [Reserch of reliability of active geodetic network for deformation monitoring]. Visnyk gheodeziji ta kartoghrafiji [Bulletin of Geodesy and Cartography], 1(82), pp. 5-10.
 
12.
Tretyak, K.R., & Savchyn, I.R. (2013b). Do pytannja nadijnosti aktyvnykh monitorynghovykh merezh [On the issue of reliability of active geodetic monitoring networks]. Gheodezija kartoghrafija i aerofotoznimannja [Geodesy, Cartography and Aerial Photography], 77, pp. 122-126.
 
eISSN:2391-8152
ISSN:2391-8365
Journals System - logo
Scroll to top