ORIGINAL ARTICLE
Real-time geo-decisional system for risk and disaster management in Madagascar
 
More details
Hide details
1
School of Management and Technological Innovation, University of Fianarantsoa, Andrainjato, Fianarantsoa, zip code 301, Madagascar
 
2
Laboratory of Computer Science, Geomatics, Mathematics and Applications, University of Fianarantsoa, Andrainjato, Fianarantsoa, zip code 301, Madagascar
 
These authors had equal contribution to this work
 
 
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article
 
 
Submission date: 2024-10-24
 
 
Final revision date: 2024-12-16
 
 
Acceptance date: 2025-01-02
 
 
Publication date: 2025-01-24
 
 
Corresponding author
Tsiorinantenaina René Rakotoarison   

School of Management and Technological Innovation, University of Fianarantsoa, Andrainjato, Fianarantsoa, zip code 301, Madagascar
 
 
Reports on Geodesy and Geoinformatics 2025;119:7-13
 
KEYWORDS
TOPICS
ABSTRACT
Climate change is intensifying extreme phenomena, and the world is increasingly vulnerable to a variety of disasters whose impacts are considerable and varied over time, from one place to another and from one community to another. Due to its geographical location, Madagascar is the most cyclone-prone country in Africa and the ninth most vulnerable country in the world. Almost every year, Madagascar is hit by cyclones, causing loss of life and property for the population. In terms of prevention, Madagascar already has an early warning system to inform the population, but during a crisis, it still lacks a decision support system for rapid, real-time intervention to minimize damage. In this paper, we propose a real-time geo-decision support system based on real-time data integration, real-time ETL and real-time cube building. In the proposed architecture, continuous data flow is required for real-time data integration. The proposed real-time ETL unit is composed of the capitalization of risk analysis experiments to ensure their reusability, as well as the insertion of processing parallelization to optimize the processing time of voluminous data. The real-time SOLAP unit consists of real-time cube formation using a spatial database that stores spatio-temporal data from a given point in time, with query optimization using materialized query technology. Our prototype uses NASA's weather data streaming service via an API. The ETL is written in a Matlab script and loads the data into a spatial database in Postgresql after processing. A web mapping application queries the constitution of a cube and displays the result for visualization.
REFERENCES (39)
1.
Astriani, W. and Trisminingsih, R. (2016). Extraction, Transformation, and Loading (ETL) module for hotspot spatial data warehouse using geokettle. Procedia Environmental Sciences, 33:626–634, doi:10.1016/j.proenv.2016.03.117.
 
2.
Bimonte, S., Wehrle, P., Tchounikine, A., and Miquel, M. (2006). Gewolap: A web based spatial olap proposal. In On the Move to Meaningful Internet Systems 2006: OTM 2006 Workshops: OTM Confederated International Workshops and Posters, AWeSOMe, CAMS, COMINF, IS, KSinBIT, MIOS-CIAO, MONET, OnToContent, ORM, PerSys, OTM Academy Doctoral Consortium, RDDS, SWWS, and SeBGIS 2006, Montpellier, France, October 29-November 3, 2006. Proceedings, Part II, pages 1596–1605. Springer, doi:10.1007/11915072_66.
 
3.
Boulekrouche, B., Jabeur, N., and Alimazighi, Z. (2016). Toward integrating grid and cloud-based concepts for an enhanced deployment of spatial data warehouses in cyber-physical system applications. Journal of Ambient Intelligence and Humanized Computing, 7(4):475–487, doi:10.1007/s12652-016-0376-1.
 
4.
Bouzefrane, S., Etienne, J.-P., and Kaiser, C. (2008). Gestion de la surcharge dans les systèmes de gestion de base de données temps réel (Managing overload in real-time database management systems). Tech. Sci. Informatiques, 27(7):879–910.
 
5.
Chakhar, S. (2006). Cartographie décisionnelle multicritère: Formalisation et implémentation informatique (Multi-criteriadecision-making mapping: Formalization and IT implementation). PhD thesis, Université Paris Dauphine – Paris IX.
 
6.
Date, C. J. (2011). SQL and Relational Theory: How to Write Accurate SQL Code. O’Reilly Media, Inc.
 
7.
Deepak, S., Rajan, G., and Jairaj, P. G. (2020). Geospatial approach for assessment of vulnerability to flood in local self governments. Geoenvironmental Disasters, 7(1):35, doi:10.1186/s40677-020-00172-w.
 
8.
Grellet, S. (2019). Plateformes de données nouvelles API OGC et LINKED DATA (new data platforms OGC API and LINKED DATA). In AfiGeo: Réunion Du GT Open Data – 13 Mai 2019.
 
9.
Gutiérrez, C. and Servigne, S. (2007). Métadonnées spatiotemporelles temps réel (Real-time spatiotemporal data models). Ingenierie des systemes d information, 12(2):97.
 
10.
Hajalalaina, A. R., Raherinirina, A., Ratiarison, A., and Libourel, T. (2017). Modeling process chain of meteorological reanalysis precipitation data using work context. International Journal of Information Technology, Modeling and Computing (IJITMC) Vol, 5.
 
11.
Hung, S.-L., W.-S., Li Yang, S.-Y., and Hsu, M.-C (2004). Maintenance of materialized views in data warehouse systems. Journal of Information Science and Engineering, pages 879–890.
 
12.
ISO (2005). ISO-TC211 - 19123 - information géographique.
 
13.
Jogekar, R. N. and Mohod, A. (2013). Design and implementation of algorithms for materialized view selection and maintenance in data warehousing environment. International Journal of Emerging Technology and Advanced Engineering, 3(9):134–140.
 
14.
Júnior, W. M., Valeriano, T. T. B., and de Souza Rolim, G. (2019). EVAPO: A smartphone application to estimate potential evapotranspiration using cloud gridded meteorological data from NASA-POWER system. Computers and Electronics in Agriculture, 156:187–192, doi:10.1016/j.compag.2018.10.032.
 
15.
Kimball, R. and Caserta, J. (2004). The Data Warehouse ETL Toolkit. John Wiley & Sons.
 
16.
Kissi, R., Desconnets, J.-C., and Libourel, T. (2008). Intégration de données hétérogènes pour un Système d’Aide à la Décision environnemental (Integration of heterogeneous data for an environmental decision support system). Atelier SIDE – INFORSID.
 
17.
Lambert, M. (2006). Développement d’une Approche Pour l’analyse Solap En Temps Réel: Adapatation Aux Besoins Des Activités Sportives En Plein Air (Development of an Approach for Real-Time Solap Analysis: Adaptation to the Needs of Outdoor Sports Activities). PhD thesis, Université Laval.
 
18.
Libourel, T., Lin, Y., Mougenot, I., Pierkot, C., and Desconnets, J.-C. (2010). A Platform Dedicated to Share and Mutualize Environmental Applications. In ICEIS (1), pages 50–57.
 
19.
Mandimbisoa, R. (2024). Plus de 112 000 sinistrés, selon le BNGRC.
 
20.
Mathieu, J. (2011). Intégration de Données Temps-Réel Issues de Capteurs Dans Un Entrepôt de Données Géo-Décisionnel (Real-Time Data Integration from Sensors into a Geo-Decisional Data Warehouse). PhD thesis, Université Laval.
 
21.
Misra, Dixit, V, and Bhatnagar, R. (2013). Data analysis using open source tools: A comparison with ETL tools. Journal of Computer Science and Engineering, pages 123–130.
 
22.
Moumen, A., Oulidi, H. J., El Mansouri, B., Nehmadou, M., and Khazaz, L. (2014). Géo-cataloguer les données sur les ressources en eau, un défi à relever. Vers une infrastructure de données spatiales de l’eau au Maroc (Geo-catalogizing water resources data, a challenge to be addressed. Towards a spatial water data infrastructure in Morocco). Revue Internationale de Geomatique, 24(4):411.
 
23.
Navalho, I., Alegria, C., Roque, N., Quinta-Nova, L., Navalho, I., Alegria, C., Roque, N., and Quinta-Nova, L. (2019). Mapping forest landscape multifunctionality using multicriteria spatial analysis. Floresta e Ambiente, 26(2), doi:10.1590/2179-8087.070217.
 
24.
Nematchoua, M. K., Ricciardi, P., Orosa, J. A., and Buratti, C. (2018). A detailed study of climate change and some vulnerabilities in Indian Ocean: A case of Madagascar island. Sustainable cities and society, 41:886–898, doi:10.1016/j.scs.2018.05.040.
 
25.
Nguemdjo, U. (2023). Les enjeux liés aux données climatiques (Issues related to climate data). Technical report.
 
26.
Noucher, M. (2006). Mutualisation de l’information géographique-Communautés De Pratique Ou Infrastructures de Données Spatiales? (Sharing geographic information – Communities of practice or spatial data infrastructures?). Technical report.
 
27.
Noucher, M. and Archias, C. (2007). Evaluation des infrastructures de données spatiales: Application d’une typologie au CRIGE PACA (Evaluation of spatial data infrastructures: Application of a typology to CRIGE PACA). Technical report.
 
28.
Pires, J. M., Pantoquilho, M., and Viana, N. (2004). Real-Time Decision Support System for Space Missions Control. In IKE, pages 152–160.
 
29.
Rakotoarison, T. R., Hajalalaina, A. R., Raonivelo, A., Raherinirina, A., and Zojaona, R. T. (2021). Spatial Analysis of Risks and Vulnerabilities to Major Hazards in Madagascar Using the Multi-Criteria Method Based on the Analytical Hierarchy Process (AHP). Journal of Geoscience and Environment Protection, 9(5):15–24.
 
30.
Reed, C., Botts, M., Davidson, J., and Percivall, G. (2007). Ogc sensor web enablement: Overview and high level architecture. 2007 IEEE Autotestcon, pages 372–380.
 
31.
Resch, B., Mittlboeck, M., Girardin, F., Britter, R., and Ratti, C. (2009). Real-time Geo-awareness – Sensor Data Integration for Environmental Monitoring in the City. In 2009 International Conference on Advanced Geographic Information Systems & Web Services, pages 92–97. IEEE.
 
32.
Rey-Valette, H., Jabbour, C., Maurel, P., and Salles, J.-M. (2022). Infrastructures de Données Spatiales: Évaluations Économiques: Concepts, Méthodes et Retours d’expérience (Spatial Data Infrastructures: Economic Assessments: Concepts, Methods and Feedback). éditions Quae.
 
33.
Saaty, T. L. (1980). The analytical hierarchy process, planning, priority. Resource allocation. RWS publications, USA.
 
34.
Saaty, T. L. (1990). How to make a decision: The analytic hierarchy process. European Journal of Operational Research, 48(1):9–26, doi:10.1016/0377-2217(90)90057-I.
 
35.
Salem, R. (2012). Active XML Data Warehouses for Intelligent, On-line Decision Support. PhD thesis, Lyon 2.
 
36.
Shekhar, S. and Xiong, H. (2007). Encyclopedia of GIS. Springer.
 
37.
Science & Business Media. Sparks, A. (2018). Nasapower: A NASA POWER Global Meteorology, Surface Solar Energy and Climatology Data Client for R. Journal of Open Source Software, 3(30):1035, doi:10.21105/joss.01035.
 
38.
Stackhouse Jr, P. W., Chandler, W. S., Hoell, J. M., Westberg, D., and Zhang, T. (2015). An Assessment of Actual and Potential Building Climate Zone Change and Variability from the Last 30 Years through 2100 Using NASA’s MERRA and CMIP5 Simulations. In 2015 International Conference for Energy and Climate for the Energy Industry (ICEM 2015), number NF1676L-21913.
 
39.
Weiskopf, S., Cushing, J., Morelli, T. L., and Myers, B. (2021). Climate change risks and adaptation options for Madagascar. Ecology and Society, 26(4).
 
eISSN:2391-8152
ISSN:2391-8365
Journals System - logo
Scroll to top