ORIGINAL ARTICLE
The comparison of distances metrics in descriptor matching methods utilised in TLS-SfM point cloud registration
More details
Hide details
1
Department of Photogrammetry, Remote Sensing and Spatial Information Systems, Faculty of Geodesy and Cartography, Warsaw University of Technology, 1 Politechniki Square, 00-661 Warsaw, Poland
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article
Submission date: 2024-11-08
Final revision date: 2025-01-22
Acceptance date: 2025-01-29
Publication date: 2025-03-14
Corresponding author
Jakub Markiewicz
Department of Photogrammetry, Remote Sensing and Spatial Information Systems, Faculty of Geodesy and Cartography, Warsaw University of Technology, 1 Politechniki Square, 00-661 Warsaw, Poland
Reports on Geodesy and Geoinformatics 2025;119:39-61
KEYWORDS
TOPICS
ABSTRACT
Advanced measurement techniques, such as Terrestrial Laser Scanning (TLS), play a vital role in documenting cultural heritage and civil engineering structures. A key aspect of these applications is the accurate registration of point clouds. Conventional TLS methods often rely on manual or semi-automated correspondence detection, which can be inefficient for large or complex objects. Structure-from-Motion Terrestrial Laser Scanning (SfM-TLS) offers an alternative methodology, comprising two primary phases: correspondence search and incremental reconstruction. Descriptor matching in SfM-TLS typically employs the L2 norm to measure Euclidean distances between features, valued for its simplicity and compatibility with algorithms like SIFT. This study investigates the influence of various distance metrics on descriptor matching during the correspondence search stage of SfM-TLS. Eight metrics were analysed: Bray-Curtis, Canberra, Correlation, Cosine, L1, L2, Squared Euclidean, and Standardised Euclidean. Synthetic data experiments highlighted challenges in keypoint detection and matching due to measurement angles, material characteristics, and 3D-to-2D transformations. Simulations incorporating Gaussian noise demonstrated that image rotation and skew significantly affected tie-point accuracy, more so than variations in intensity. In field applications involving cultural heritage sites and building interiors, the L1 and Squared Euclidean metrics yielded higher accuracy, while the Canberra metric underperformed. Metric selection was found to have a greater impact on complex geometries, such as historical structures, compared to simpler forms. Consequently, this study recommends the L1 and Squared Euclidean metrics for pairwise SfM-TLS registration, as they exhibit robustness in maintaining high accuracy and completeness across a variety of architectural scenarios.
FUNDING
This paper was co-financed under the research grant of Warsaw University of Technology supporting scientific activity in the discipline of Civil Engineering and Transport.
REFERENCES (38)
1.
Abbate E., Sammartano G., Spanò A. (2019). PROSPECTIVE UPON MULTI-SOURCE URBAN SCALE DATA FOR 3D DOCUMENTATION AND MONITORING OF URBAN LEGACIES. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. XLII-2/W11: 11-19. doi:10.5194/isprs-archives-xlii-2-w11-11-2019.
2.
Aggarwal Charu C, others. (2015). Data mining: The textbook. Springer.
3.
Alba M., Barazzetti L., Scaioni M., Remondino F. (2012). AUTOMATIC REGISTRATION OF MULTIPLE LASER SCANS USING PANORAMIC RGB AND INTENSITY IMAGES. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. XXXVIII-5/W12: 49-54. doi:10.5194/isprsarchives-xxxviii-5-w12-49-2011.
4.
Arif R., Essa K. (2017). EVOLVING TECHNIQUES OF DOCUMENTATION OF A WORLD HERITAGE SITE IN LAHORE. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. XLII-2/W5: 33-40. doi:10.5194/isprs-archives-xlii-2-w5-33-2017.
5.
Bay Herbert, Tuytelaars Tinne, Van Gool Luc. (2006). SURF: Speeded Up Robust Features. In: Lecture Notes in Computer Science. 404-417. Springer Berlin Heidelberg. doi:10.1007/11744023ES_DASH32.
6.
Berenyi A, Lovas T, Barsi A. (2010). Terrestrial Laser Scanning – Civil engineering applications. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences. 38 (Part 5): 80-85.
7.
Bianco Simone, Ciocca Gianluigi, Marelli Davide. (2018). Evaluating the Performance of Structure from Motion Pipelines. Journal of Imaging. 4 (8): 98-98. doi:10.3390/jimaging4080098.
8.
Cheng Liang, Chen Song, Liu Xiaoqiang, Xu Hao, Wu Yang, Li Manchun, Chen Yanming. (2018). Registration of Laser Scanning Point Clouds: A Review. Sensors. 18 (5): 1641-1641. doi:10.3390/s18051641.
9.
Cipriani L., Bertacchi S., Bertacchi G. (2019). AN OPTIMISED WORKFLOW FOR THE INTERACTIVE EXPERIENCE WITH CULTURAL HERITAGE THROUGH REALITY-BASED 3D MODELS: CASES STUDY IN ARCHAEOLOGICAL AND URBAN COMPLEXES. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. XLII-2/W11: 427-434. doi:10.5194/isprs-archives-xlii-2-w11-427-2019.
10.
Dong Zhen, Yang Bisheng, Liang Fuxun, Huang Ronggang, Scherer Sebastian. (2018). Hierarchical registration of unordered TLS point clouds based on binary shape context descriptor. ISPRS Journal of Photogrammetry and Remote Sensing. 144: 61-79. doi:10.1016/j.isprsjprs.2018.06.018.
11.
Giżyńska Joanna, Komorowska Emilia, Kowalczyk Michal. (2022). The comparison of photogrammetric and terrestrial laser scanning methods in the documentation of small cultural heritage object -- case study. Journal of Modern Technologies for Cultural Heritage Preservation. 1 (1). doi:10.33687/jmtchp.001.01.0013.
12.
Grussenmeyer P., Alby E., L, es T., Koehl M., Guillemin S., Hullo J. F., Assali P., Smigiel E. (2012). RECORDING APPROACH OF HERITAGE SITES BASED ON MERGING POINT CLOUDS FROM HIGH RESOLUTION PHOTOGRAMMETRY AND TERRESTRIAL LASER SCANNING. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. XXXIX-B5: 553-558. doi:10.5194/isprsarchives-xxxix-b5-553-2012.
13.
Han Xian-Feng, Sun Shi-Jie, Song Xiang-Yu, Xiao Guo-Qiang. (2018). 3D point cloud descriptors in hand-crafted and deep learning age: State-of-the-art. arXiv preprint arXiv:1802.02297.
14.
Harris C., Stephens M. (1988). A Combined Corner and Edge Detector. Procedings of the Alvey Vision Conference 1988. doi:10.5244/c.2.23.
15.
Janßen Jannik, Kuhlmann Heiner, Holst Christoph. (2023). Keypoint-based registration of TLS point clouds using a statistical matching approach. Journal of Applied Geodesy. 18 (2): 267-284. doi:10.1515/jag-2022-0058.
16.
Kang Zhizhong, Li Jonathan, Zhang Liqiang, Zhao Qile, Zlatanova Sisi. (2009). Automatic Registration of Terrestrial Laser Scanning Point Clouds using Panoramic Reflectance Images. Sensors. 9 (4): 2621-2646. doi:10.3390/s90402621.
17.
Karwel Artur Karol, Markiewicz Jakub. (2022). The methodology of the archival aerial image orientation based on the SfM method. Sensors and Machine Learning Applications. 1 (2). doi:10.55627/smla.001.02.0015.
18.
Kowalska Magdalena, Kowalczyk Michał. (2024). Modelling Of The Exterior Surface Of A Historic And Contemporary Object By Digital Photos And Laser Scanning. Journal of Modern Technologies for Cultural Heritage Preservation. 3 (3). doi:10.69534/jmtchp/193893.
19.
Kuzyk Zoriana. (2023). The use of modern measurement methods in the inventory of endangered cultural heritage objects in Lviv. Journal of Modern Technologies for Cultural Heritage Preservation. 2 (2). doi:10.69534/jmtchp/191347.
20.
Lowe David G. (2004). Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision. 60 (2): 91-110. doi:10.1023/b:visi.0000029664.99615.94.
21.
Markiewicz Jakub, Kot Patryk, Markiewicz Lukasz, Muradov Magomed. (2023). The evaluation of hand-crafted and learned-based features in Terrestrial Laser Scanning-Structure-from-Motion (TLS-SfM) indoor point cloud registration: the case study of cultural heritage objects and public interiors. Heritage Science. 11 (1). doi:10.1186/s40494-023-01099-9.
22.
Markiewicz Jakub, Zawieska Dorota. (2019). The Influence of the Cartographic Transformation of TLS Data on the Quality of the Automatic Registration. Applied Sciences. 9 (3): 509-509. doi:10.3390/app9030509.
23.
Markiewicz Jakub, Podlasiak Piotr, Zawieska Dorota. (2015). A New Approach to the Generation of Orthoimages of Cultural Heritage Objects—Integrating TLS and Image Data. Remote Sensing. 7 (12): 16963-16985. doi:10.3390/rs71215869.
24.
Markiewicz Jakub. (2024). Evaluation of 2D affine — hand-crafted detectors for feature-based TLS point cloud registration. Reports on Geodesy and Geoinformatics. 117 (1): 69-88. doi:10.2478/rgg-2024-0008.
25.
(2024). Distance Metrics, https://numerics.mathdotnet.com/Distance.html.
26.
Moussa W., Abdel-Wahab M., Fritsch D. (2012). AN AUTOMATIC PROCEDURE FOR COMBINING DIGITAL IMAGES AND LASER SCANNER DATA. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. XXXIX-B5: 229-234. doi:10.5194/isprsarchives-xxxix-b5-229-2012.
27.
Mukupa W., Roberts G. W., Hancock C. M., Al-Manasir K. (2016). A review of the use of terrestrial laser scanning application for change detection and deformation monitoring of structures. Survey Review. : 1-18. doi:10.1080/00396265.2015.1133039.
28.
(2024). NumPy – The Fundamental Package for Scientific Computing with Python, https://numpy.org/.
29.
(2018). http://opencv.org/.
30.
Piermattei Livia, Karel Wilfried, Wang Di, Wieser Martin, Mokroš Martin, Surový Peter, Koreň Milan, Tomaštík Julián, Pfeifer Norbert, Hollaus Markus. (2019). Terrestrial Structure from Motion Photogrammetry for Deriving Forest Inventory Data. Remote Sensing. 11 (8): 950-950. doi:10.3390/rs11080950.
31.
Rashidi Maria, Mohammadi Masoud, Sadeghlou Kivi Saba, Abdolv, Mohammad Mehdi, Truong-Hong Linh, Samali Bijan. (2020). A Decade of Modern Bridge Monitoring Using Terrestrial Laser Scanning: Review and Future Directions. Remote Sensing. 12 (22): 3796-3796. doi:10.3390/rs12223796.
32.
Remondino Fabio, Stylianidis Efstrations. (2016). 3D recording, documentation and management of cultural heritage. Whittles Publishing Dunbeath, UK.
33.
(2024). SciPy – Fundamental Algorithms for Scientific Computing in Python, https://scipy.org/.
34.
Tobiasz Aleks, ra, Markiewicz Jakub, Łapiński Sławomir, Nikel Joanna, Kot Patryk, Muradov Magomed. (2019). Review of Methods for Documentation, Management, and Sustainability of Cultural Heritage. Case Study: Museum of King Jan III’s Palace at Wilanów. Sustainability. 11 (24): 7046-7046. doi:10.3390/su11247046.
35.
Tola E., Lepetit V., Fua P. (2010). DAISY: An Efficient Dense Descriptor Applied to Wide-Baseline Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence. 32 (5): 815-830. doi:10.1109/tpami.2009.77.
36.
Tuytelaars Tinne, Mikolajczyk Krystian. (2007). Local Invariant Feature Detectors: A Survey. Foundations and Trends® in Computer Graphics and Vision. 3 (3): 177-280. doi:10.1561/0600000017.
37.
Urban S., Weinmann M. (2015). FINDING A GOOD FEATURE DETECTOR-DESCRIPTOR COMBINATION FOR THE 2D KEYPOINT-BASED REGISTRATION OF TLS POINT CLOUDS. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences. II-3/W5: 121-128. doi:10.5194/isprsannals-ii-3-w5-121-2015.
38.
Yu Guoshen, Morel Jean-Michel. (2011). ASIFT: An Algorithm for Fully Affine Invariant Comparison. Image Processing On Line. 1: 11-38. doi:10.5201/ipol.2011.my-asift.