ORIGINAL ARTICLE
Determination of geometric parameters of highways using classical and modern technologies
 
More details
Hide details
1
Faculty of Land Management, architecture and design, Kazakh Agrotechnical Research University named after S. Seifullin, 62 Zhenis, 010000, Astana, Republic of Kazakhstan
 
2
Faculty of Land Management, Omsk State Agrarian University named after P.A.Stolypin, 1 Institutskaya Ploshchad, 644008, Omsk, Russia
 
3
Faculty of Geodesy and Cartography, Warsaw University of Technology, 1 Politechniki Square, 00-661, Warsaw, Poland
 
 
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article
 
 
Submission date: 2024-10-12
 
 
Final revision date: 2024-12-20
 
 
Acceptance date: 2025-01-28
 
 
Publication date: 2025-03-14
 
 
Corresponding author
Ewa Joanna Świerczyńska   

Faculty of Geodesy and Cartography, Warsaw University of Technology, 1 Politechniki Square, 00-661, Warsaw, Poland
 
 
Reports on Geodesy and Geoinformatics 2025;119:30-38
 
KEYWORDS
TOPICS
ABSTRACT
Road upgrading to increase freight and passenger transport capacity requires surveying services, carried out at every stage of construction. During the construction of road sections designed as curves or arcs, their shape must be constantly monitored. During surveying, it is necessary to determine the elements of curves, in particular the radius and length of the curve, as well as the bisector, tangents, and angle of return of the tangents. The article presents a methodology for determining the radii of curves on highways using a GNSS system receiver with planar rectangular coordinates derived through post-processing using the Trimble Geomatics Office (TGO) software. In addition, the authors present the results of measurements of the height markers of the bottom layer of the substructure on the section from measuring point 1015+40 to measuring point 1020+00 of the Astana-Petropavlovsk highway. On the test object, tests were carried out on the technical condition of the pavement. The results were determined by the parameter. The highway section was also examined geometrically on the basis of levelling measurements. The paper proposes a methodology for road construction work that divides the measurements into two stages: initial — based on GNSS technology, and a second one — based on the levelling method.
REFERENCES (37)
1.
Bárta Ladislav, Bureš Jiří, Švábenský Otakar. (2021). Geodetic Monitoring of Bridge Structures in Operation. Contributions to International Conferences on Engineering Surveying: 8th INGEO International Conference on Engineering Surveying and 4th SIG Symposium on Engineering Geodesy. 198-210. Springer. doi:10.1007/978-3-030-51953-7ES_DASH17.
 
2.
Bazhenov A.A. (2021). Information technologies in road construction. BIM Modelling Construction And Architecture Problems. : 72-76. doi:10.23968/BIMAC.2021.008.
 
3.
Blachowski J, Milczarek W, Stefaniak P. (2014). Deformation information system for facilitating studies of mining-ground deformations, development, and applications. Natural Hazards and Earth System Sciences. 14 (7): 1677-1689. doi:10.5194/nhess-14-1677-2014.
 
4.
Boyarchuk MA, Zhurkin IG, Nepoklonov VB, Orlov P Yu. (2022). Geoinformational technologies analysis for studying the visualization of the Earths surface vertical and horizontal deformations. Geodesy and Cartography (Lithuania). 988 (10): 53-61. doi:10.22389/0016-7126-2022-988-10-53-61.
 
5.
Braun Jaroslav, Štroner Martin. (2014). Geodetic measurement of longitudinal displacements of the railway bridge. Geoinformatics FCE CTU. 12: 16-21. doi:10.14311/gi.12.3.
 
6.
Butenko E., Nevoit N. (2021). Peculiarities of geodesic works with the use of UAVs for the needs of land management. Zemleustrij, kadastr i monitoring zemel'. (1). doi:10.31548/zemleustriy2021.01.08.
 
7.
Catania Pietro, Comparetti Antonio, Febo Pierluigi, Morello Giuseppe, Orl, o Santo, Roma Eliseo, Vallone Mariangela. (2020). Positioning accuracy comparison of GNSS receivers used for mapping and guidance of agricultural machines. Agronomy. 10 (7): 924-924. doi:10.3390/agronomy10070924.
 
8.
Cefalo Raffaela, Gr, i Giulia, Roberti Roberto, Sluga Tatiana. (2017). Extraction of road geometric parameters from high resolution remote sensing images validated by GNSS/INS geodetic techniques. Computational Science and Its Applications--ICCSA 2017: 17th International Conference, Trieste, Italy, July 3-6, 2017, Proceedings, Part IV 17. 181-195. Springer. doi:10.1007/978-3-319-62401-3ES_DASH14.
 
9.
Cignetti Martina, Guenzi Diego, Ardizzone Francesca, Allasia Paolo, Giordan Daniele. (2019). An open-source web platform to share multisource, multisensor geospatial data and measurements of ground deformation in mountain areas. ISPRS International Journal of Geo-Information. 9 (1): 4-4. doi:10.3390/ijgi9010004.
 
10.
Cruz Orlean G Dela, Mendoza Christian A, Lopez Kristel D. (2021). International roughness index as road performance indicator: A literature review. IOP conference series: earth and environmental science. 012016-012016. IOP Publishing. doi:10.1088/1755-1315/822/1/012016.
 
11.
Di Graziano Aless, ro, Marchetta Vincenzo, Cafiso Salvatore. (2020). Structural health monitoring of asphalt pavements using smart sensor networks: A comprehensive review. Journal of Traffic and Transportation Engineering (English Edition). 7 (5): 639-651. doi:10.1016/j.jtte.2020.08.001.
 
12.
Elnabwy Mohamed T, Kaloop Mosbeh R, Elbeltagi Emad. (2013). Talkha steel highway bridge monitoring and movement identification using RTK-GPS technique. Measurement. 46 (10): 4282-4292. doi:10.1016/j.measurement.2013.08.014.
 
13.
Golov Egor, Evtyukov Stanislav, Protsuto Marina, Evtyukov Sergey, Sorokina Elena. (2022). Influence of the road surface roughness (according to the International Roughness Index) on road safety. Transportation research procedia. 63: 999-1006. doi:10.1016/j.trpro.2022.06.099.
 
14.
Gorda O.B. (2020). Topology of information space in construction. Building production. 2 (70): 39-44.
 
15.
Guan Haiyan, Li Jonathan, Cao Shuang, Yu Yongtao. (2016). Use of mobile LiDAR in road information inventory: A review. International Journal of Image and Data Fusion. 7 (3): 219-242. doi:10.1080/19479832.2016.1188860.
 
16.
Han Chengjia, Han Tao, Ma Tao, Tong Zheng, Wang Siqi. (2023). A BIM-based framework for road construction quality control and quality assurance. International Journal of Pavement Engineering. 24 (1): 2209903-2209903. doi:10.1080/10298436.2023.2209903.
 
17.
Han Dongyeob, Lee Suk Bae, Song Mihwa, Cho Jun Sang. (2021). Change detection in unmanned aerial vehicle images for progress monitoring of road construction. Buildings. 11 (4): 150-150. doi:10.3390/buildings11040150.
 
18.
Hryhorovskyi P., Gorda O.B., Chukanova N. (2020). Information environments in construction. Building production. 2: 15-19. doi:10.36750/2524-2555.68.
 
19.
Karan Ebrahim P, Sivakumar Ramach, ra, Irizarry Javier, Guhathakurta Subhro. (2014). Digital modeling of construction site terrain using remotely sensed data and geographic information systems analyses. Journal of construction engineering and management. 140 (3): 04013067-04013067. doi:10.1061/(ASCE)CO.1943-7862.0000822.
 
20.
Katkalo Yu. (2012). Determination of actual radii on curves of motorways by electronic tacheometer. Bulletin of the Belarusian-Russian University. 3 (36): 89-95.
 
21.
Kovrov A.A. (2022). About the ways to improve the accuracy of mobile laser scanning results. Vestnik of North-Eastern Federal University. Series "Earth Sciences". (1(25)): 10-18. doi:10.25587/svfu.2022.25.1.009.
 
22.
Kuzmin Yu O. (2019). Recent geodynamics: from crustal movements to monitoring critical objects. Izvestiya, Physics of the Solid Earth. 55: 65-86. doi:10.1134/S106935131901004X.
 
23.
Lobatskaya RM, Strelchenko IP. (2016). GIS-based analysis of fault patterns in urban areas: A case study of Irkutsk city, Russia. Geoscience Frontiers. 7 (2): 287-294. doi:10.1016/j.gsf.2015.07.004.
 
24.
Mill Tarvo, Ellmann Artu, Kiisa Martti, Idnurm Juhan, Idnurm Siim, Horemuz Milan, Aavik Andrus. (2015). Geodetic monitoring of bridge deformations occurring during static load testing. The baltic journal of road and bridge engineering. 10 (1): 17-27. doi:10.3846/bjrbe.2015.03.
 
25.
Múčka Peter. (2017). International Roughness Index specifications around the world. Road materials and pavement design. 18 (4): 929-965. doi:10.1080/14680629.2016.1197144.
 
26.
Muñoz-Salinas E, Renschler CS, Palacios D. (2009). A GIS-based method to determine the volume of lahars: Popocatépetl volcano, Mexico. Geomorphology. 111 (1-2): 61-69. doi:10.1016/j.geomorph.2008.09.028.
 
27.
Nikitin A.V. (2018). Determination of motor roads geometry parameters with GNSS receivers. In Transport of the Asia-Pacific Region. 2 (15): 16-17.
 
28.
Pomortseva Olenara, Kobzan Sergiy, Yevdokimov Andrey, Kukhar Maksym. (2020). Use of geoinformation systems in environmental monitoring. The International Conference on Sustainable Futures: Environmental, Technological, Social and Economic Matters (ICSF 2020), E3S Web of Conferences. 01002-01002. EDP Sciences. doi:10.1051/e3sconf/202016601002.
 
29.
Prokhorov A.V., Medvedev A.A. (2022). Operational mapping of moving objects using the ICARUS satellite telemetry system. Geodesy and Cartography. 987 (9): 47-56. doi:10.22389/0016-7126-2022-987-9-47-56.
 
30.
Ranyal Eshta, Sadhu Ayan, Jain Kamal. (2022). Road Condition Monitoring Using Smart Sensing and Artificial Intelligence: A Review. Sensors. 22 (8): 3044-3044. doi:10.3390/s22083044.
 
31.
Raza Sajid, Al-Kaisy Ahmed, Teixeira Rafael, Meyer Benjamin. (2022). The role of GNSS-RTN in transportation applications. Encyclopedia. 2 (3): 83-83. doi:10.3390/encyclopedia2030083.
 
32.
Samsonov Sergey, Baryakh Alex, r. (2020). Estimation of deformation intensity above a flooded potash mine near Berezniki (Perm Krai, Russia) with SAR interferometry. Remote Sensing. 12 (19): 3215-3215. doi:10.3390/rs12193215.
 
33.
Scalco Leonardo, Bordin Fabiane, de Souza Eniuce Menezes, Brum Diego, Racolte Graciela, Marques Jr Ademir, da Silveira Jr Luiz Gonzaga, Veronez Maurício Roberto. (2023). Improving geometric road design through a virtual reality visualization technique. TRANSPORTES. 31 (1): e2838-e2838. doi:10.58922/transportes.v31i1.2838.
 
34.
Shutin Maksim D, Dolgov Denis V. (2019). Creating a Digital Passport of the Object During the Survey of Transport Infrastructure. 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). 1485-1487. IEEE. doi:10.1109/EIConRus.2019.8657299.
 
35.
Taşçi Levent. (2015). Deformation monitoring in steel arch bridges through close-range photogrammetry and the finite element method. Experimental techniques. 39: 3-10. doi:10.1111/ext.12022.
 
36.
Tikhomirov P V, Skrypnykov A V, Vysotskaya I A, Kazachek M N, Zelikov V A, Bondarev A B. (2022). Information-intelligent system for improving geometric control of the construction of road rounds. Izvestiya SPbLTA. (239): 161-171. doi:10.21266/2079-4304.2022.239.161-171.
 
37.
Vatseva Rumiana, Solakov Dimcho, Tcherkezova Emilia, Simeonova Stela, Trifonova Petya. (2013). Applying GIS in seismic hazard assessment and data integration for disaster management. Intelligent Systems for Crisis Management: Geo-information for Disaster Management (Gi4DM) 2012. : 171-183. doi:0.1007/978-3-642-33218-0ES_DASH13.
 
eISSN:2391-8152
ISSN:2391-8365
Journals System - logo
Scroll to top