ORIGINAL ARTICLE
Accuracy of the application of mobile technologies for measurements made in headings of the Kłodawa Salt Mine
Damian Kurdek 2, B,E-F
,
 
Iwona Jankowska 1, B,E-F
 
 
 
More details
Hide details
1
Department of Engineering Geodesy and Measurement Systems, Faculty of Geodesy and Cartography, Warsaw University of Technology, Pl. Politechniki 1, 00-661, Warsaw, Poland
 
2
Surveying Department, Salt Mine „Kłodawa” S.A., Aleja 1000-lecia 2, 62-650 Kłodawa, Poland
 
 
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article
 
 
Submission date: 2024-01-05
 
 
Final revision date: 2024-02-22
 
 
Acceptance date: 2024-02-27
 
 
Publication date: 2024-03-18
 
 
Corresponding author
Ewa Joanna Świerczyńska   

Department of Engineering Geodesy and Measurement Systems, Faculty of Geodesy and Cartography, Warsaw University of Technology, Pl. Politechniki 1, 00-661, Warsaw, Poland
 
 
Reports on Geodesy and Geoinformatics 2024;117:55-68
 
KEYWORDS
TOPICS
ABSTRACT
The "Kłodawa" salt mine, due to geological conditions and continuous salt extraction, is subject to a range of measurements documenting the speed of changes in the geometry of the chambers. Cyclic surveys are conducted under challenging conditions several hundred metres underground. Consequently, measurement methods used for determining the parameters of the ongoing clamping should be of high precision but also be resistant to dense dust (in fields of active mining) and strong gusts (near ventilation shafts). The research presented here concerns the analysis of the possibilities of solutions offered by modern technologies in mine conditions. Test measurements were conducted at observation stations using linear bases stabilized with metal pins. The base points were located in the aisles, ceiling, and bottom of the chamber in Field 1 of "Kłodawa" salt mine at the depth of 600m. Point clouds mapping the object were acquired using a Leica RTC360 3D laser scanner and two mobile devices: Motorola G100 smartphone and iPad Pro with LiDAR technology using the Pix4Dcatch application. The accuracy of the point cloud from the Leica RTC360 3D laser scanner was determined by comparing it with classic measurements taken with a Leica Disto laser rangefinder. The repeatability and accuracy of the point cloud from a smartphone were examined using statistical analysis based on Pearson's correlation coefficient and cross-correlation. An attempt was also made to approximate the correlation between the obtained errors and two parameters: the number of images and the size of the object.
 
REFERENCES (41)
1.
Adamek, A. (2015). Mobilna Platforma Górnicza (MPG) – nowatorskim rozwiązaniem w polskich kopalniach (Mobile Mining Platform – an innovative solution in Polish mines). Archiwum Fotogrametrii, Kartografii i Teledetekcji, pages 11–24,doi:10.14681/afkit.2015.001.
 
2.
Baltsavias, E. P. (1999). A comparison between photogrammetry and laser scanning. ISPRS Journal of Photogrammetry and Remote Sensing, 54(2–3):83–94, doi:10.1016/s0924-2716(99)00014-3.
 
3.
Błaszczak-Bąk, W., Suchocki, C., Kozakiewicz, T., and Janicka, J. (2023). Measurement methodology for surface defects inventory of building wall using smartphone with light detection and ranging sensor. Measurement, 219:113286, doi:10.1016/j.measurement.2023.113286.
 
4.
Benito-Calvo, A., Gutiérrez, F., Martínez-Fernández, A., Carbonel, D., Karampaglidis, T., Desir, G., Sevil, J., Guerrero, J., Fabregat, I., and García-Arnay, A. (2018). 4D monitoring of Active Sinkholes with a Terrestrial Laser Scanner (TLS): A case study in the Evaporite Karst of the Ebro Valley, NE Spain. Remote Sensing, 10(4):571, doi:10.3390/rs10040571.
 
5.
Bieniasz, J., Ciągło, W., and Wojnar, W. (2003). Nowa metoda pomiarów deformacji solnej struktury filarowo-komorowej wykorzystująca dalmierz laserowy (A new method for measuring the deformation of a salt pillar-chamber structure using a laser rangefinder). Geodezja/Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie, 9(2/1):187–193.
 
6.
Bieniasz, J. and Wojnar, W. (2007). Zarys historii pomiarów i wybrane wyniki obserwacji zjawiska konwergencji wyrobisk w pokładowych złożach soli (An outline of the history of measurements and selected results of observations of the phenomenon of convergence of workings in seam salt deposits). Gospodarka Surowcami Mineralnymi, 23:133–142.
 
7.
Corradetti, A., Seers, T., Billi, A., and Tavani, S. (2021). Virtual outcrops in a pocket: The smartphone as a fully equipped photogrammetric data acquisition tool. GSA Today, 31(9):4–9, doi:10.1130/gsatg506a.1.
 
8.
Dorninger, P., Nothegger, C., Pfeifer, N., and Molnár, G. (2008). On-the-job detection and correction of systematic cyclic distance measurement errors of terrestrial laser scanners. Journal of Applied Geodesy, 2(4), doi:10.1515/jag.2008.022.
 
9.
El-Din Fawzy, H. (2019). Study the accuracy of digital close range photogrammetry technique software as a measuring tool. Alexandria Engineering Journal, 58(1):171–179, doi:10.1016/j.aej.2018.04.004.
 
10.
Gollob, C., Ritter, T., Kraßnitzer, R., Tockner, A., and Nothdurft, A. (2021). Measurement of forest inventory parameters with Apple iPad Pro and integrated LiDAR technology. Remote Sensing, 13(16):3129, doi:10.3390/rs13163129.
 
11.
Huang, X., Zhang, Y., and Xiong, Z. (2021). High-speed structured light based 3D scanning using an event camera. Optics Express, 29(22):35864, doi:10.1364/oe.437944.
 
12.
Jankowska, I. and Kwaśniak, M. (2015). Rola dokładności wyznaczania konwergencji wyrobisk w aspekcie zagospodarowania pustek poeksploatacyjnych w kopalniach soli (Role of accuracy in determining the convergence of workings with regard to managing post-excavation spaces in salt mines). In Kwaśniak, M., editor, Techniki inwentaryzacji i monitoringu obiektów inżynierskich, pages 32–43. Warsaw University of Technology, Faculty of Geodesy and Cartography, Engineering Geodesy and Control Surveying Systems.
 
13.
Jaud, M., Kervot, M., Delacourt, C., and Bertin, S. (2019). Potential of smartphone SfM photogrammetry to measure coastal morphodynamics. Remote Sensing, 11(19):2242, doi:10.3390/rs11192242.
 
14.
Kortas, G., Szewczyk, J., and Toboła, T. (2004). Ruch górotworu i powierzchni w otoczeniu zabytkowych kopalń soli (Movement of the rock mass and surface in the vicinity of historic salt mines). Wydaw. Instytutu Gospodarki Surowcami Mineralnymi i Energią PAN.
 
15.
Kottner, S., Thali, M. J., and Gascho, D. (2023). Using the iPhone’s LiDAR technology to capture 3D forensic data at crime and crash scenes. Forensic Imaging, 32:200535, doi:10.1016/j.fri.2023.200535.
 
16.
Kukutsch, R., Kajzar, V., Konicek, P., Waclawik, P., and Ptacek, J. (2015). Possibility of convergence measurement of gates in coal mining using terrestrial 3D laser scanner. Journal of Sustainable Mining, 14(1):30–37, doi:10.1016/j.jsm.2015.08.005.
 
17.
Kunstman, A., Poborska-Młynarska, K., and Urbańczyk, K. (2002). Zarys otworowego ługownictwa solnego: aktualne kierunki rozwoju (Outline of borehole salt leaching: current development directions). AGH Akademia Górniczo-Hutnicza, Uczelniane Wydawnictwa Naukowo-Dydaktyczne, Karków.
 
18.
Kurdek, D. (2020). Pomiary konwergencji wyrobisk chodnikowych w Kopalni Soli „Kłodawa” S.A. (Convergence measurements of drift excavation in Salt Mine „Kłodawa” S.A). Salt Review, 15:56–61.
 
19.
Lipecki, T., Jaśkowski, W., Gruszczyński, W., Matwij, K., Matwij, W., and Ulmaniec, P. (2016). Inventory of the geometric condition of inanimate nature reserve Crystal Caves in “Wieliczka” Salt Mine. Acta Geodaetica et Geophysica, 51:257–272, doi:10.1007/s40328-015-0125-5.
 
20.
Lipecki, T. and Thi Thu Huong, K. (2020). The development of terrestrial laser scanning technology and its applications in mine shafts in Poland. Inżynieria Mineralna, 1(2), doi:10.29227/im-2020-02-36.
 
21.
Litoński, A. (1960). Przepisy technicznej eksploatacji kopalń soli (Regulations on the technical operation of salt mines). Technical report, Ministerstwo Przemysłu Chemicznego, Wydawnictwo Górniczo–Hutnicze, Katowice, Poland.
 
22.
Lohani, B. and Ghosh, S. (2017). Airborne LiDAR technology: A review of data collection and processing systems. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 87(4):567–579, doi:10.1007/s40010-017-0435-9.
 
23.
Maj, A. (2011). Konwergencja w warunkach nieregularnie rozproszonych wyrobisk, na przykładzie kopalni wieliczka (Convergence in conditions of irregularly dispersed workings, on the example of the Wieliczka mine). Prace Instytutu Mechaniki Górotworu PAN, 13(1-4):121–130.
 
24.
Maj, A. and Florkowska, L. (2013). Obserwacja oddziaływania wyrobisk na powierzchnię terenu w warunkach kopalń soli (Observation of the impact of excavations on the ground surface in the conditions of salt mines). Prace Instytutu Mechaniki Górotworu PAN, 15(3-4):107–113.
 
25.
Miller, S. H., Hashemian, A., Gillihan, R., and Helms, E. (2022). A comparison of mobile phone LiDAR capture and established ground based 3D scanning methodologies. In SAE Technical Paper Series, ANNUAL. SAE International, doi:10.4271/2022-01-0832.
 
26.
Ochalek, A. (2018). Analysis of convergence and deformation measurements based on classical geodetic surveys and terrestrial laser scanning in Wieliczka salt mine. In 18th International Multidisciplinary Scientific GeoConference SGEM2018, Informatics, Geoinformatics and Remote Sensing, SGEM2018. Stef92 Technology, doi:10.5593/sgem2018/2.2/s09.073.
 
27.
Pearson, K. (1896). Mathematical contributions to the theory of evolution. III. regression, heredity, and panmixia. Philosophical Transactions of the Royal Society of London. Series A, (187):253–318.
 
28.
Poborska-Młynarska, K. (2022). Geologiczno-górnicze warunki eksploatacji w kopalniach podziemnych w wysadach solnych Polski środkowej (Geological and mining operating conditions in underground mines in salt domes in central Poland). AGH Akademia Górniczo-Hutnicza, Uczelniane Wydawnictwa Naukowo-Dydaktyczne, Karków.
 
29.
Regulation (1970). Zarządzenie zewnętrzne nr 18 Naczelnego Dyrektora Kopalni Soli „Kłodawa” z dnia 1 kwietnia 1970 r. dotyczące wprowadzenia „instrukcji/tymczasowej/ w sprawie określenia stanu zagrożenia wodnego kopalni oraz organizacji środków i służby dla ochrony załogi i ruchu kopalni” (External Order No. 18 of the General Director of the "Kłodawa" Salt Mine of April 1, 1970 regarding the introduction of "temporary instructions on determining the state of water hazard in the mine and organizing measures and services to protect the crew and mine operations").
 
30.
Rutkowski, W. and Lipecki, T. (2023). Use of the iPhone 13 Pro LiDAR scanner for inspection and measurement in the mineshaft sinking process. Remote Sensing, 15(21):5089, doi:10.3390/rs15215089.
 
31.
Sapirstein, P. (2016). Accurate measurement with photogrammetry at large sites. Journal of Archaeological Science, 66:137–145, doi:10.1016/j.jas.2016.01.002.
 
32.
Stoica, P. and Moses, R. L. (2005). Spectral analysis of signals, volume 452. Pearson Prentice Hall Upper Saddle River, NJ.
 
33.
Suchocki, C., Katzer, J., and Panuś, A. (2017). Remote sensing to estimate saturation differences of chosen building materials using terrestrial laser scanner. Reports on Geodesy and Geoinformatics, 103(1):94–105, doi:10.1515/rgg-2017-0008.
 
34.
Suchocki, C., Okrój, S., and Błaszczak-Bąk, W. (2023). Methodology for the measurement and 3D modelling of cultural heritage: a case study of the monument to the Polish Diaspora Bond with the Homeland. Reports on Geodesy and Geoinformatics, 116(1):1–8, doi:10.2478/rgg-2023-0005.
 
35.
Świerczyńska, E. (2020). Reprezentatywność kształtu obiektu odwzorowanego za pomocą “chmury punktów” – analiza na pod- stawie danych z technologii wideotachimetrycznej (Representativeness of the shape of an object mapped using a "point cloud" – analysis based on data from video tachymetry technology). Przegląd Geodezyjny, 1(4):23–27, doi:10.15199/50.2020.4.3.
 
36.
Świerczyńska, E. and Kołakowska, M. (2014). The attempt to use levelling rods for testing metric properties of surveying instruments, which are used for reflectorless distance measurements. Reports on Geodesy and Geoinformatics, 96(1):38–54, doi:10.2478/rgg-2014-0005.
 
37.
Szafarczyk, A. and Gawałkiewicz, R. (2018). Defining the cubature changes of historic St. Kinga Chamber in Bochnia salt mine, using laser scanning technology. E3S Web of Conferences, 35:04006, doi:10.1051/e3sconf/20183504006.
 
38.
Teppati Losè, L., Spreafico, A., Chiabrando, F., and Giulio Tonolo, F. (2022). Apple LiDAR sensor for 3D surveying: Tests and results in the cultural heritage domain. Remote Sensing, 14(17):4157, doi:10.3390/rs14174157.
 
39.
Teukolsky, S. A., Flannery, B. P., Press, W., and Vetterling, W. (1992). Numerical recipes in c. SMR, 693(1):59–70.
 
40.
Woźniak, M., Świerczyńska, E., and Jastrzębski, S. (2015). The use of video-tacheometric technology for documenting and analysing geometric features of objects. Reports on Geodesy and Geoinformatics, 99(1):28–43, doi:10.2478/rgg-2015-0010.
 
41.
Zaczek-Peplinska, J. (2023). Pomiary inwetaryzacyjne z wykorzystaniem Apple iPhone 13 Pro i zintegrowanej technologii LiDAR (Inventory measurements using Apple iPhone 13 Pro and integrated LiDAR technology). Przegląd Geodezyjny, 1(2):16–19, doi:10.15199/50.2023.02.1.
 
eISSN:2391-8152
ISSN:2391-8365
Journals System - logo
Scroll to top