ORIGINAL ARTICLE
Investigating diverse photogrammetric techniques in the hazard assessment of historical sites of the Museum of the Coal Basin Area in Będzin, Poland
,
 
Krzysztof Karsznia 1, A-B,D-F
,
 
,
 
 
 
More details
Hide details
1
Faculty of Geodesy and Cartography, Warsaw University of Technology, Pl. Politechniki 1, 00-661, Warsaw, Poland
 
 
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article
 
 
Submission date: 2024-02-26
 
 
Final revision date: 2024-07-30
 
 
Acceptance date: 2024-08-19
 
 
Publication date: 2024-09-23
 
 
Corresponding author
Krzysztof Karsznia   

Faculty of Geodesy and Cartography, Warsaw University of Technology, Pl. Politechniki 1, 00-661, Warsaw, Poland
 
 
Reports on Geodesy and Geoinformatics 2024;118:70-81
 
KEYWORDS
TOPICS
ABSTRACT
Assessing the condition of historical sites at risk requires an interdisciplinary approach based on combining multiple measurement technologies. Due to the dynamic development of technology, non-invasive remote sensing methods are gaining significant importance. Among these techniques is photogrammetry based on images taken from unmanned aerial vehicles (UAVs) and those taken with a smartphone. In the study, the authors specified the possibilities and limitations of using remote photogrammetric methods to build accurate digital models of the walls of historic buildings with cracks in them. Point clouds, TIN grids, and façade orthophotos were examined. Statistical analysis was used to determine the repeatability of the data. Two parameters were identified that affect the accuracy of the data: the first – the direction of the segment between two points in the façade plane, and the second – the distance of the segment between two points in the plane of the façade. The study showed that the average accuracy of crack width measurements on the data acquired with the DJI Mavic 3 Enterprise RTK is 1 mm. Testing of crack width measurements using a Samsung Galaxy S20 FE smartphone showed an average absolute error of 0.24 mm. Based on the results, it was concluded that the images acquired using mobile devices can be used to determine changes in crack widths on walls.
ACKNOWLEDGEMENTS
All works were carried out in collaboration between the Warsaw University of Technology and the Museum of the Coal Basin Area in Będzin, Poland. The authors also want to thank Mr. Piotr Rozenbajgier from NaviGate Sp. z o.o. for his significant contribution to the paper by providing UAV flights and data processing.
FUNDING
The presented material is part of the research conducted under the grants of the Scientific Council of the Discipline of Civil Engineering, Geodesy, and Transport, Warsaw University of Technology, titled “Evaluation and modelling of geometric changes in the structures of historical buildings located in endangered areas” (Karsznia K.) and “Application of modern 3D modelling tools to determine the technical condition of historic buildings” (Świerczyńska E.).
REFERENCES (37)
1.
Baca, M., Muszyński, Z., Rybak, J., and Żyrek, T. (2015). The application of geodetic methods for displacement control in the self-balanced pile capacity testing instrument. In Advances and trends in engineering sciences and technologies: proceedings of the International Conference on Engineering Sciences and Technologies, Tatranská Štrba, Slovakia, pages 15–20.
 
2.
Baltsavias, E. P. (1999). A comparison between photogrammetry and laser scanning. ISPRS Journal of Photogrammetry and Remote Sensing, 54(2–3):83–94, doi:10.1016/s0924-2716(99)00014-3.
 
3.
Baselga, S., Garrigues, P., Berné, J. L., Anquela, A. B., and Martín, A. (2011). Deformation monitoring in historic buildings: A case study. Survey Review, 43(323):484–492, doi:10.1179/003962611x13117748891912.
 
4.
Bolognesi, M., Furini, A., Russo, V., Pellegrinelli, A., and Russo, P. (2014). Accuracy of cultural heritage 3D models by RPAS and terrestrial photogrammetry. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL–5:113–119, doi:10.5194/isprsarchives-xl-5-113-2014.
 
5.
Buill, F., Núñez-Andrés, M. A., Costa-Jover, A., Moreno, D., Puche, J. M., and Macias, J. M. (2020). Terrestrial Laser Scanner for the formal assessment of a Roman-Medieval structure – The cloister of the cathedral of Tarragona (Spain). Geosciences, 10(11):427, doi:10.3390/geosciences10110427.
 
6.
Błaszczak-Bąk, W., Suchocki, C., Kozakiewicz, T., and Janicka, J. (2023). Measurement methodology for surface defects inventory of building wall using smartphone with light detection and ranging sensor. Measurement, 219:113286, doi:10.1016/j.measurement.2023.113286.
 
7.
Chen, M.-C., Wang, K., and Xie, L. (2013). Deterioration mechanism of cementitious materials under acid rain attack. Engineering Failure Analysis, 27:272–285, doi:10.1016/j.engfailanal.2012.08.007.
 
8.
Corradetti, A., Seers, T., Billi, A., and Tavani, S. (2021). Virtual outcrops in a pocket: The smartphone as a fully equipped photogrammetric data acquisition tool. GSA Today, 31(9):4–9, doi:10.1130/gsatg506a.1.
 
9.
Di Stefano, F., Cabrelles, M., García-Asenjo, L., Lerma, J. L., Malinverni, E. S., Baselga, S., Garrigues, P., and Pierdicca, R. (2020). Evaluation of long-range mobile mapping system (MMS) and close-range photogrammetry for deformation monitoring. A case study of Cortes de Pallás in Valencia (Spain). Applied Sciences, 10(19):6831, doi:10.3390/app10196831.
 
10.
Fawzy, H. E.-D. (2019). Study the accuracy of digital close range photogrammetry technique software as a measuring tool. Alexandria Engineering Journal, 58(1):171–179, doi:10.1016/j.aej.2018.04.004.
 
11.
Gairns, C. (2008). Development of a semi-automated system for structural deformation monitoring using a reflectorless total station. Master’s thesis, Department of Geodesy and Geomatics Engineering, University of New Brunswick, Fredericton, Canada.
 
12.
Gollob, C., Ritter, T., Kraßnitzer, R., Tockner, A., and Nothdurft, A. (2021). Measurement of forest inventory parameters with Apple iPad Pro and integrated LiDAR technology. Remote Sensing, 13(16):3129, doi:10.3390/rs13163129.
 
13.
Jaud, M., Kervot, M., Delacourt, C., and Bertin, S. (2019). Potential of smartphone SfM photogrammetry to measure coastal morphodynamics. Remote Sensing, 11(19):2242, doi:10.3390/rs11192242.
 
14.
Jigyasu, R. (2005). Towards developing methodology for integrated risk management of cultural heritage sites and their settings. In 15th ICOMOS General Assembly and International Symposium: "Monuments and sites in their setting – conserving cultural heritage in changing townscapes and landscapes", 17–21.10.2005, Xi’an, China.
 
15.
Karsznia, K. (2023). Innowacyjny system geomonitoringu do badania deformacji elementów powierzchniowych – IMS GEO (Innovative geomonitoring system for studying surface element deformations – IMS GEO). PRZEGLĄD GEODEZYJNY, 1(8):22–26, doi:10.15199/50.2023.08.3.
 
16.
Karsznia, K. (2024). Wykorzystanie wieloźródłowych danych przestrzennych do oceny stanu obiektów zabytkowych na terenach zagrożonych (using multi-source spatial data to assess the condition of historic buildings in endangered areas). PRZEGLĄD GEODEZYJNY, 1(2):38–42, doi:10.15199/50.2024.2.5.
 
17.
Lohani, B. and Ghosh, S. (2017). Airborne lidar technology: A review of data collection and processing systems. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 87(4):567–579, doi:10.1007/s40010-017-0435-9.
 
18.
Markiewicz, J., Tobiasz, A., Kot, P., Muradov, M., Shaw, A., and Al-Shammaa, A. (2019). Review of surveying devices for structural health monitoring of cultural heritage buildings. In 2019 12th International Conference on Developments in eSystems Engineering (DeSE). IEEE, doi:10.1109/dese.2019.00113.
 
19.
Murtiyoso, A. and Grussenmeyer, P. (2017). Documentation of heritage buildings using close-range UAV images: dense matching issues, comparison and case studies. The Photogrammetric Record, 32(159):206–229, doi:10.1111/phor.12197.
 
20.
Museum of the Coal Basin (2024). Museum of the Coal Basin in Będzin. https://www.muzeumzaglebia.pl.
 
21.
Ornoch, L., Popielski, P., Olszewski, A., and Kasprzak, A. (2021). Ultrasonic sensors enabling early detection of emergency trends and analysis of structure inclination and stability by means of highly accurate level measurements. Sensors, 21(5):1789, doi:10.3390/s21051789.
 
22.
Pearson, K. (1896). VII. Mathematical contributions to the theory of evolution – III. Regression, heredity, and panmixia. Philosophical Transactions of the Royal Society of London. Series A, containing papers of a mathematical or physical character, (187):253–318.
 
23.
PGI (2024). Polish Geological Institute. https://geologia.pgi.gov.pl/ar....
 
24.
Piotrowski, J. and Kostyrko, K. (2012). Wzorcowanie aparatury pomiarowej (Calibration of measuring equipment). Wydawnictwo Naukowe PWN, Warszawa.
 
25.
Pix4D (2023). How can you know whether to use a drone or a terrestrial rover – the viDoc? One team compared the results of both to test the accuracy. https://www.pix4d.com/blog/com....
 
26.
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1992). Numerical recipes in C. Cambridge university press New York, NY.
 
27.
Sapirstein, P. (2016). Accurate measurement with photogrammetry at large sites. Journal of Archaeological Science, 66:137–145, doi:10.1016/j.jas.2016.01.002.
 
28.
Shevchenko, G. G., Bryn, M. J., Afonin, D. A., and Gura, D. A. (2020). Experimental Researches in Defining Deformations by Free Station Method and Results Processing by Search Method, pages 163–175. Springer Singapore, doi:10.1007/978-981-15-0454-9_17.
 
29.
Stec, K. (2007). Seismic hazard state in the Upper Silesian Coal Basin. Research Reports Mining and Environment, Quarterly, (3):55–75.
 
30.
Świerczyńska, E., Karsznia, K., Książek, K., Odziemczyk, W., , and Smaczyński, M. (2023). Assessing the technical state of historical buildings using Terrestrial Laser Scanning and close-range aerial photogrammetry. In XVI International Scientific and Technical Conference entitled "Current Problems in Engineering Geodesy – Engineering Geodesy for the Development of a Sustainable Economy," Poznań-Baranowo, 21–23.09.2023.
 
31.
Taylor, J. R. (1999). Wstęp do analizy błędu pomiarowego (Introduction to measurement error analysis).
 
32.
Teppati Losè, L., Spreafico, A., Chiabrando, F., and Giulio Tonolo, F. (2022). Apple LiDAR sensor for 3D surveying: Tests and results in the cultural heritage domain. Remote Sensing, 14(17):4157, doi:10.3390/rs14174157.
 
33.
Woźniak, M. (2009). Bezreflektorowe systemy pomiarowe w monitorowaniu przemieszczeń (Reflectorless measurement systems for displacement monitoring). Technical Report 443, Instytut Techniki Budowlanej. Bezdotykowe metody obserwacji i pomiarów obiektów budowlanych. Instrukcje, wytyczne, poradniki.
 
34.
Woźniak, M. and Woźniak, K. (2020). MarQR technology for measuring relative displacements of building structure elements with regard to joints and cracks. Reports on Geodesy and Geoinformatics, 109(1):33–40, doi:10.2478/rgg-2020-0005.
 
35.
Woźniak, M., Świerczyńska, E., and Jastrzębski, S. (2015). The use of video-tacheometric technology for documenting and analysing geometric features of objects. Reports on Geodesy and Geoinformatics, 99(1):28–43, doi:10.2478/rgg-2015-0010.
 
36.
Xie, S., Qi, L., and Zhou, D. (2004). Investigation of the effects of acid rain on the deterioration of cement concrete using accelerated tests established in laboratory. Atmospheric Environment, 38(27):4457–4466, doi:10.1016/j.atmosenv.2004.05.017.
 
37.
Zaczek-Peplinska, J. (2023). Pomiary inwetaryzacyjne z wykorzystaniem Apple iPhone 13 pro i zintegrowanej technologii LiDAR (Inventory measurements using Apple iPhone 13 Pro and integrated LiDAR technology). PRZEGLĄD GEODEZYJNY, 1(2):16–19, doi:10.15199/50.2023.02.1.
 
eISSN:2391-8152
ISSN:2391-8365
Journals System - logo
Scroll to top