ORIGINAL ARTICLE
Application of the Simulated Annealing algorithm and robust weight functions for identification of constant reference points in 3D deformation analysis
 
 
More details
Hide details
1
Department of Engineering Geodesy and Measurement Systems, Faculty of Geodesy and Cartography, Warsaw University of Technology, Pl. Politechniki 1, 00-661 Warsaw, Poland
 
 
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article
 
 
Submission date: 2025-08-13
 
 
Final revision date: 2025-11-15
 
 
Acceptance date: 2025-12-04
 
 
Publication date: 2025-12-15
 
 
Corresponding author
Waldemar Odziemczyk   

Department of Engineering Geodesy and Measurement Systems, Faculty of Geodesy and Cartography, Warsaw University of Technology, Pl. Politechniki 1, 00-661 Warsaw, Poland
 
 
Reports on Geodesy and Geoinformatics 2025;120:86-95
 
KEYWORDS
TOPICS
ABSTRACT
Identification of the reference base in deformation analysis is a key element in obtaining the correct deformations of the monitored object. As it cannot be assumed that all the reference points are stable, a stability check must be conducted as the initial stage of the deformation analysis. Most known methods used for the identification of stable reference points cover leveling or horizontal networks. This study presents an approach using a coordinate transformation for the comparison of coordinates corresponding to two measurement epochs in 3D deformation analysis. The proposed algorithm is aimed at selecting such coordinate transformation parameters that correspond to the acceptable transformation residuals for the points of the reference base. Three robust adjustment weight functions (Kadaj, Huber, and Danish) were selected as a basis for formulating the objective function. The six 3D transformation parameters create a 6D search space. The optimization algorithm (simulated annealing) was applied for the search through the search space for desirable transformation parameters. The simulated example 3D two-epoch network was used for testing the performance of particular objective functions. The necessary parameters of the objective functions and optimization procedure were selected empirically. The test results confirmed the correctness of the adopted solution and the ability of all objective functions to detect the groups of fitting points. The objective function based on the Danish weight function appeared to be most promising due to the wide possibilities of shaping its features, which enable tailoring the objective function to the specific need.
REFERENCES (44)
1.
Adamczewski Z. (1979). Algorytm numerycznej kontroli przylegania obiektów (Algorithm for numerical control of object adjacency). Geodezja i Kartografia. 27 (3): 195-200.
 
2.
Ambrožič Tomaž, Mulahusić Admir, Tuno Nedim, Topoljak Jusuf, Hajdar Amir, Kogoj Dušan. (2019). Deformation analysis with robust methods in geodetic nets. Geodetski vestnik. 63 (02): 163–178-163–178. doi:10.15292/geodetski-vestnik.2019.02.163-178.
 
3.
Amiri-Simkooei AR, Alaei-Tabatabaei SM, Zangeneh-Nejad F, Voosoghi B. (2017). Stability analysis of deformation-monitoring network points using simultaneous observation adjustment of two epochs. Journal of Surveying Engineering. 143 (1): 04016020-04016020. doi:10.1061/(ASCE)SU.1943-5428.0000195.
 
4.
Baselga Sergio. (2007). Global optimization solution of robust estimation. Journal of Surveying Engineering. 133 (3): 123-128. doi:10.1061/(ASCE)0733-9453(2007)133:3(123).
 
5.
Baselga S., García-Asenjo L., Garrigues P. (2015). Deformation monitoring and the maximum number of stable points method. Measurement. 70: 27–35-27–35. doi:10.1016/j.measurement.2015.03.034.
 
6.
Batilović Mehmed, Đurović Radovan, Sušić Zoran, Kanović Zeljko, Cekić Zoran. (2021). Robust Estimation of Deformation from Observation Differences Using Some Evolutionary Optimisation Algorithms. Sensors. 22 (1): 159-159. doi:10.3390/s22010159.
 
7.
Berne J. L., Baselga S. (2004). First-order design of geodetic networks using the simulated annealing method. Journal of Geodesy. 78 (1–2). doi:10.1007/s00190-003-0365-y.
 
8.
Brunner FK, Coleman R, Hirsch B. (1981). A comparison of computation methods for crustal strains from geodetic measurements. In: Developments in Geotectonics. 16: 281-298. Elsevier. doi:10.1016/B978-0-444-41953-8.50037-2.
 
9.
Caspary W., Borutta H. (1987). Robust estimation in deformation models. Survey Review. 29 (223): 29–45-29–45. doi:10.1179/sre.1987.29.223.29.
 
10.
Chen Y Q. (1984). Analysis of deformation surveys -- A generalized method.
 
11.
Chrzanowski A. (1986). Geotechnical and other non-geodetic methods in deformation measurements. Proc. Deformation Measurements Workshop, Massachusetts Institute of Technology, Boston. 112-153.
 
12.
Denli H Hakan, Deniz Rasim. (2003). Global congruency test methods for GPS networks. Journal of Surveying Engineering. 129 (3): 95-98. doi:10.1061/(ASCE)0733-9453(2003)129:3(95).
 
13.
Doma Mohamed I, Sedeek Ahmed A. (2014). Comparison of PSO, GAs and Analytical Techniques in Second-Order Design of Deformation Monitoring Networks. Journal of Applied Geodesy. 8 (1). doi:10.1515/jag-2013-0013.
 
14.
Duchnowski R., Wiśniewski Z. (2014). Comparison of two unconventional methods of estimation applied to determine network point displacement. Survey Review. 46 (339): 401–405-401–405. doi:10.1179/1752270614y.0000000127.
 
15.
Duffy M, Hill Chris, Whitaker Cecilia, Chrzanowski Adam, Lutes James, Bastin Geoffrey. (2001). An automated and integrated monitoring program for Diamond Valley Lake in California. Proceedings of the 10th FIG symposium on deformation measurements. 22-22.
 
16.
Fazilova Dilbarkhon Sh., Sichugova Lola V. (2021). Deformation analysis based on GNSS measurements in Tashkent region. E3S Web of Conferences. 227: 04002-04002. doi:10.1051/e3sconf/202122704002.
 
17.
García-Asenjo Luis, Martínez Laura, Baselga Sergio, Garrigues Pascual. (2019). Establishment of a multi-purpose 3D geodetic reference frame for deformation monitoring in Cortes de Pallás (Spain). Proceedings of the 4th Joint International Symposium on Deformation Monitoring (JISDM), Athens, Greece. 15-17.
 
18.
García-Asenjo Luis, Martínez Laura, Baselga Sergio, Garrigues Pascual, Luján Raquel. (2023). Design, establishment, analysis, and quality control of a high-precision reference frame in Cortes de Pallás (Spain). Applied Geomatics. 15 (2): 359–370-359–370. doi:10.1007/s12518-022-00481-9.
 
19.
Henriques Maria João, Casaca JM. (2004). Quality control of a dam geodetic surveying system. Proceedings of the 1st FIG International Symposium on Engineering Surveys for Construction Works and Structural Engineering, Nottingham, United Kingdom.
 
20.
Huber Peter J. (1964). Robust Estimation of a Location Parameter. The Annals of Mathematical Statistics. 35 (1): 73–101-73–101. doi:10.1214/aoms/1177703732.
 
21.
Kadaj R. (1978). Wyrównanie z obserwacjami odstającymi (Adjustment with outliers). Przegląd Geodezyjny. 8: 252-253.
 
22.
Karsznia Krzysztof, Zaczek-Peplinska Janina, Łapiński Sławomir, Odziemczyk Waldemar, Piasta Łukasz, Saloni Lech. (2022). The functionality assessment of geodetic monitoring systems for analyzing structural elements. XXVII FIG Congress 2022: Volunteering for the future -- Geospatial excellence for a better living.
 
23.
Kirkpatrick S., Gelatt C. D., Vecchi M. P. (1983). Optimization by Simulated Annealing. Science. 220 (4598): 671–680-671–680. doi:10.1126/science.220.4598.671.
 
24.
Krarup Torben. (1980). Gotterdammerung over least squares adjustment. Proc. 14th Congress of the International Society of Photogrammetry. 369-378.
 
25.
Lehmann Rüdiger, Lösler Michael. (2017). Congruence analysis of geodetic networks – hypothesis tests versus model selection by information criteria. Journal of Applied Geodesy. 11 (4): 271–283-271–283. doi:10.1515/jag-2016-0049.
 
26.
Maghsoudi Alireza, Kalantari Behzad. (2014). Monitoring Instrumentation in Underground Structures. Open Journal of Civil Engineering. 04 (02): 135–146-135–146. doi:10.4236/ojce.2014.42012.
 
27.
Mahboub V., Ebrahimzadeh S., Baghani A., Rastegar A., Zanganeh M. (2024). L1-norm optimisation of rank deficient GNSS networks by an improved Grey Wolf method. Survey Review. 56 (399): 582–588-582–588. doi:10.1080/00396265.2024.2327124.
 
28.
Metropolis Nicholas, Rosenbluth Arianna W., Rosenbluth Marshall N., Teller Augusta H., Teller Edward. (1953). Equation of State Calculations by Fast Computing Machines. The Journal of Chemical Physics. 21 (6): 1087–1092-1087–1092. doi:10.1063/1.1699114.
 
29.
Moore J. R., Gischig V., Button E., Loew S. (2010). Rockslide deformation monitoring with fiber optic strain sensors. Natural Hazards and Earth System Sciences. 10 (2): 191–201-191–201. doi:10.5194/nhess-10-191-2010.
 
30.
Mrówczyńska Maria, Sztubecki Jacek. (2019). The use of evolutionary algorithms for designing an optimum structure of a geodesic measurement and control network. MATEC Web of Conferences. 262: 07008-07008. doi:10.1051/matecconf/201926207008.
 
31.
Neitzel Frank. (2005). Die Methode der maximalen Untergruppe (MSS) und ihre Anwendung in der Kongruenzuntersuchung geodätischer Netze. ZfV-Zeitschrift für Geodäsie, Geoinformation und Landmanagement. (zfv 2/2005): 82-91.
 
32.
Niemeier Wolfgang. (1979). Zur Kongruenz mehrfach beobachteter geodätischer Netze. Fachrichtung Vermessungswesen d. Univ., Universität Hannover.
 
33.
Nowel Krzysztof, Kamiński Waldemar. (2014). Robust estimation of deformation from observation differences for free control networks. Journal of Geodesy. 88 (8): 749–764-749–764. doi:10.1007/s00190-014-0719-7.
 
34.
Odziemczyk Waldemar. (2020). Application of simulated annealing algorithm for 3D coordinate transformation problem solution. Open Geosciences. 12 (1): 491-502. doi:10.1515/geo-2020-0038.
 
35.
Odziemczyk Waldemar. (2021). Application of Optimization Algorithms for Identification of Reference Points in a Monitoring Network. Sensors. 21 (5): 1739-1739. doi:10.3390/s21051739.
 
36.
Odziemczyk Waldemar. (2023). Comparison of selected reliability optimization methods in application to the second order design of geodetic network. Journal of Applied Geodesy. 18 (2): 223–236-223–236. doi:10.1515/jag-2023-0024.
 
37.
Odziemczyk Waldemar. (2025). Hybrid algorithm for identification of stable reference points in a monitoring network. Journal of Applied Geodesy. doi:10.1515/jag-2024-0083.
 
38.
Odziemczyk W. (2025). Application of the Metaheuristic Algorithm for Identification of the Constant Reference Points in 3D Deformation Analysis. XVII International Science and Technology Conference CURRENT PROBLEMS IN ENGINEERING SURVEYING "New challenges for engineering surveying in civil engineering and environmental monitoring ", May, 22-23, 2025, Józefosław, Poland.
 
39.
Prószyński Witold. (2010). Problem of partitioned bases in monitoring vertical displacements for elongated structures. Geodesy and Cartography. 59 (2). doi:10.2478/v10277-012-0001-1.
 
40.
Prószyński Witold, Kwaśniak Mieczysław. (2015). Podstawy geodezyjnego wyznaczania przemieszczeń: pojęcia i elementy metodyki (Basics of geodetic displacement determination: concepts and elements of methodology). Warsaw University of Technology Press: Warsaw, Poland.
 
41.
Taşçi Levent. (2008). Dam deformation measurements with GPS. Geodesy and Cartography. 34 (4): 116–121-116–121. doi:10.3846/1392-1541.2008.34.116-121.
 
42.
Wujanz Daniel, Avian Michael, Krueger Daniel, Neitzel Frank. (2018). Identification of stable areas in unreferenced laser scans for automated geomorphometric monitoring. Earth Surface Dynamics. 6 (2): 303–317-303–317. doi:10.5194/esurf-6-303-2018.
 
43.
Yetkin M. (2013). Metaheuristic optimisation approach for designing reliable and robust geodetic networks. Survey Review. 45 (329): 136-140. doi:10.1080/17522706.2013.12287495.
 
44.
Zhou Wentao, Zhang Wenjun, Yang Xinchun, Wu Weiqiang. (2021). An Improved GNSS and InSAR Fusion Method for Monitoring the 3D Deformation of a Mining Area. IEEE Access. 9: 155839–155850-155839–155850. doi:10.1109/access.2021.3129521.
 
eISSN:2391-8152
ISSN:2391-8365
Journals System - logo
Scroll to top