ORIGINAL ARTICLE
Effects of observation loss in geodetic determination of horizontal displacements
More details
Hide details
1
Faculty of Geo-Data Science, Geodesy, and Environmental Engineering, AGH University of Krakow, A. Mickiewicza 30, 30-059 Krakow, Poland
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article
Submission date: 2025-07-18
Final revision date: 2025-10-23
Acceptance date: 2025-11-14
Publication date: 2025-12-02
Corresponding author
Joanna Swatowska
Faculty of Geo-Data Science, Geodesy, and Environmental Engineering, AGH University of Krakow, Al. Adama Mickiewicza 30, 30-059, Krakow, Poland
Reports on Geodesy and Geoinformatics 2025;120:75-85
KEYWORDS
TOPICS
ABSTRACT
Regular monitoring of dams is fundamental to ensuring their safety, stability, and smooth operation. However, during the measurement phase, a number of obstacles are encountered that are often difficult to predict at the planning stage of the observation campaign. In such situations, the surveyor must decide whether to continue all planned observations, which may involve a significant extension of working time. An alternative is to reduce the number of observations deliberately, provided the required accuracy and reliability of the data are ensured. This paper examines the impact of missing observations on the position errors of control network points. Using an angular-linear network as an example, a simulation was carried out by excluding observation stations selected at random from subsequent adjustments and by checking its effect on the final result.
Additionally, the possibility of removing from the adjustment those observations that were considered problematic for measurement due to various types of obstacles was verified. The results of the conducted studies show that the cautious station elimination prevents network weakening. The necessary removal of problematic observations can be implemented already at the measurement stage. These findings highlight the significant trend of decreasing accuracy in determining the positions of network points. After eliminating 15% of the observations, the control network maintained high accuracy, with the resulting RMSE changing by no more than 10%.
FUNDING
Financial support of AGH University of Krakow - subsidy no. 16.16.150.545
REFERENCES (56)
1.
Agapie Mereuta Ioana, Luca Mihail, Gherasim Paul Marian, Dominte Croitoru Violeta. (2022). Design Of GNSS Networks For Monitoring Earth Dams Deformations. Journal of Applied Life Sciences and Environment. 54 (4): 354–369-354–369. doi:10.46909/journalalse-2021-031.
2.
Alba Mario, Fregonese Luigi, Pr, i Federico, Scaioni Marco, Valgoi Paolo, others. (2006). Structural monitoring of a large dam by terrestrial laser scanning. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences. 36 (5): 6-6.
3.
Amaral Paulo, Malheiro Ana, Marques Filipe, Moniz Letícia, Furtado Sílvia, Loura Nuno. (2020). The Use of Total Station for Monitoring Mass Movements: Application to Fajãzinha Landslide at Flores Island (Azores Archipelago). In: Advances in Natural Hazards and Hydrological Risks: Meeting the Challenge. 59–62-59–62. Springer International Publishing. doi:10.1007/978-3-030-34397-2_12.
4.
Aswathi J., Binoj Kumar R.B., Oommen T., Bouali E.H., Sajinkumar K.S. (2022). InSAR as a tool for monitoring hydropower projects: A review. Energy Geoscience. 3 (2): 160–171-160–171. doi:10.1016/j.engeos.2021.12.007.
5.
Bagherbandi Mohammad. (2016). Deformation monitoring using different least squares adjustment methods: A simulated study. KSCE Journal of Civil Engineering. 20 (2): 855–862-855–862. doi:10.1007/s12205-015-0454-5.
6.
Barzaghi Riccardo, Cazzaniga Noemi, De Gaetani Carlo, Pinto Livio, Tornatore Vincenza. (2018). Estimating and Comparing Dam Deformation Using Classical and GNSS Techniques. Sensors. 18 (3): 756-756. doi:10.3390/s18030756.
7.
Bea RG, Johnson T. (2017). Root causes analyses of the Oroville dam gated spillway failures and other developments. Cal Alumni Association: Berkeley, CA, USA.
8.
Bergkvist Joel. (2015). Optimal Design of Network for Control of Total Station Instruments, mastersthesis. KTH, School of Architecture and the Built Environment (ABE), Urban Planning and Environment, Geodesy and Satellite Positioning.
9.
Burdick R. K., Graybill F. A. (1992). Confidence Intervals on Variance Components. doi:10.1201/9781482277142.
10.
Cardoso Flávio Henrique Carvalho, Giorgini Michelle Granha, Paula Am, a De. (2020). Diretrizes para o monitoramento de deformações e deslocamentos em barragens e estruturas de mineração utilizando GNSS. Congresso Brasileiro de Mecânica dos Solos e Engenharia Geotécnica. 1415–1421-1415–1421. doi:10.4322/cobramseg.2022.0178.
11.
Chrzanowski A, Szostak A, Steeves R. (2011). Reliability and efficiency of dam deformation monitoring schemes. Proceedings of the 2011 Annual Conference of Canadian Dam Association (CDA/ACB), Fredericton, NB, Canada.
12.
Dmitruk Zbigniew. (2022). Zbiorniki zaporowe – aktualne zagadnienia ich funkcjonowania i oceny stanu bezpieczeństwa (Damming reservoirs – current issues concerning their operation and safety status assessment). GOSPODARKA WODNA. 1 (10): 4–12-4–12. doi:10.15199/22.2022.10.1.
13.
Dwitya Rahardian, Hendrianto Pratomo Awang, Agung Cahyadi Tedy, Rianto Budi Nugroho Arif, Prio Utomo Dwi, Sulo Ckristian. (2024). Slope Stability Monitoring of Hydroelectric Dam and Upstream Watershed Areas Utilizing Satellite Interferometric Synthetic Aperture Radar (InSAR). IOP Conference Series: Earth and Environmental Science. 1339 (1): 012037-012037. doi:10.1088/1755-1315/1339/1/012037.
14.
Dziewański J. (1998). Warunki geologiczno-inżynierskie podłoża Zespołu Zbiorników Wodnych Czorsztyn-Niedzica i Sromowce Wyżne im. Gabriela Narutowicza na Dunajcu (Geological-engineering conditions of the substrate of water dams Czorsztyn and Sromowce Wyżne). Kraków: IGSMIE PAN Inst. Gosp. Sur. Min. Energ.
15.
Ehiorobo Jacob O, Irughe-Ehigiator Raphael. (2011). Monitoring for horizontal movement in an earth dam using differential GPS. Journal of Emerging Trends in Engineering and Applied Sciences. 2 (6): 908-913.
16.
Farzaneh Saeed, Safari Abdolreza, Parvazi Kamal. (2021). Improving Dam Deformation Analysis Using Least-Squares Variance Component Estimation and Tikhonov Regularization. Journal of Surveying Engineering. 147 (1). doi:10.1061/(asce)su.1943-5428.0000339.
17.
Fiedler Krzysztof. (2007). Awarie i katastrofy zapór-zagrożenia, ich przyczyny i skutki oraz działania zapobiegawcze: praca zbiorowa (Dam failures and disasters - hazards, their causes and effects, and preventive measures). Instytut Meteorologii i Gospodarki Wodnej, Warsaw.
18.
Golonka Jan, Krobicki Michał, Waśkowska Anna. (2018). The Pieniny Klippen Belt in Poland. Geology, Geophysics and Environment. 44 (1): 111-111. doi:10.7494/geol.2018.44.1.111.
19.
Grafarend E. W., Sansò F. (1985). Optimization and Design of Geodetic Networks. Springer Berlin Heidelberg. doi:10.1007/978-3-642-70659-2.
20.
Gruszecka Alicja. (2016). Wodne budowle piętrzące. Nadzór nad stanem technicznym i stanem bezpieczeństwa (Hydraulic Structures. Supervision of Technical Condition and Safety). Kontrola Państwowa. 61 (5 (370): 102-115.
21.
Guler Goknil, Kilic Havvanur, Hosbas Gursel, Ozaydin Kutay. (2006). Evaluation of the movements of the dam embankments by means of geodetic and geotechnical methods. Journal of surveying engineering. 132 (1): 31-39. doi:10.1061/(ASCE)0733-9453(2006)132:1(31).
22.
Hollins Lucien X., Eisenberg Daniel A., Seager Thomas P. (2018). Risk and Resilience at the Oroville Dam. Infrastructures. 3 (4): 49-49. doi:10.3390/infrastructures3040049.
23.
International Commission. (2018). Dam Surveillance Guide. CRC Press. doi:10.1201/9781351035781.
24.
Kledyński Zbigniew. (2011). Monitoring i diagnostyka budowli hydrotechnicznych. cz. 1 (Monitoring and diagnostics of hydrotechnical structures. P. 1). Nowoczesne Budownictwo Inżynieryjne. 35 (2): 54-61.
25.
Kledyński Zbigniew. (2011). Monitoring i diagnostyka budowli hydrotechnicznych. cz. 2 (Monitoring and diagnostics of hydrotechnical structures. P. 2). Nowoczesne Budownictwo Inżynieryjne. 36 (3): 36-38.
26.
Kuras Przemysław, Ortyl Lukasz, Owerko Tomasz, Borecka Aleks, ra. (2018). Geodetic monitoring of earth-filled flood embankment subjected to variable loads. Reports on Geodesy and Geoinformatics. 106 (1): 9–18-9–18. doi:10.2478/rgg-2018-0009.
27.
(1994). Act of 7 July, 1994 Construction Law. Act. Journal of Laws 2025, Item 725, Poland.
28.
(2017). Act of of 20 July, 2017 Water Law. Act. Journal of Laws 2025, Item 216, Poland.
29.
Lu Zhiping, Qu Yunying, Qiao Shubo. (2014). Geodesy: Introduction to Geodetic Datum and Geodetic Systems. Springer Berlin Heidelberg. doi:10.1007/978-3-642-41245-5.
30.
Maltese Antonino, Pipitone Claudia, Dardanelli Gino, Capodici Fulvio, Muller Jan-Peter. (2021). Toward a Comprehensive Dam Monitoring: On-Site and Remote-Retrieved Forcing Factors and Resulting Displacements (GNSS and PS–InSAR). Remote Sensing. 13 (8): 1543-1543. doi:10.3390/rs13081543.
31.
Mazzanti Paolo, Antonielli Benedetta, Sciortino Aless, ra, Scancella Stefano, Bozzano Francesca. (2021). Tracking Deformation Processes at the Legnica Glogow Copper District (Poland) by Satellite InSAR—II: Żelazny Most Tailings Dam. Land. 10 (6): 654-654. doi:10.3390/land10060654.
32.
Merkle Wesley J., Myers John J. (2004). Use of the total station for load testing of retrofitted bridges with limited access. Smart Structures and Materials 2004: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems. 687-687. doi:10.1117/12.539992.
33.
Milanović Petar, Maximovich Nikolai G., Meshcheriakova Olga. (2019). Monitoring. In: Dams and Reservoirs in Evaporites. 109–114-109–114. Springer International Publishing. doi:10.1007/978-3-030-18521-3_8.
34.
Negrila A., Onose D. (2013). Dam monitoring using terrestrial laser scanning. Journal of Geodesy and Cadastre. (15): 149-158.
35.
Novak P., Moffat A.I.B., Nalluri C., Narayanan R. (2007). Hydraulic Structures (4th Edition). CRC Press.
36.
Nowak Bogumił, Ptak Mariusz, Sojka Mariusz. (2022). Monitoring of the Technical Condition and Optimisation of the Functioning of Small Hydraulic Structures in Poland: The Case Study of the Oświecim Weir. Buildings. 12 (10): 1527-1527. doi:10.3390/buildings12101527.
37.
Nowak Edward, Odziemczyk Waldemar. (2018). Impact analysis of observation coupling on reliability indices in a geodetic network. Reports on Geodesy and Geoinformatics. 106 (1): 1–7-1–7. doi:10.2478/rgg-2018-0008.
38.
Odziemczyk Waldemar. (2014). Analiza stałości bazy odniesienia na przykładzie monitoringu przemieszczeń pionowych Zapory Zatonie (Analysis of reference points stability on the example of Zatonie Water Dam horizontal displacements monitoring). In: Kulesza J., Wyczałek I (Eds.), Teoretyczne Podstawy Budownictwa (Theoretical Foundations of Civil Engineering). 19-26. Publishing House of the Warsaw University of Technology.
39.
Oro S.R., Mafioleti T.R., Chaves Neto A., Garcia S.R.P., Neumann Júnior C. (2016). Study of the influence of temperature and water level of the reservoir about the displacement of a concrete dam. International Journal of Applied Mechanics and Engineering. 21 (1): 107–120-107–120. doi:10.1515/ijame-2016-0007.
40.
Salagean T, Ficior D, Pop N, Luput I, Vele D. (2012). Considerations Regarding Hydro Power Station Monitoring Objectives Through Geodetic Measurements. Bulletin UASVM Horticulture. 69: 477-485.
41.
Prószyński Witold. (2014). Seeking realistic upper-bounds for internal reliability of systems with uncorrelated observations. Geodesy and Cartography. 63 (1): 111–121-111–121. doi:10.2478/geocart-2014-0009.
42.
Rebmeister Matthieu, Schenk Andreas, Weisgerber Jakob, Westerhaus Malte, Hinz Stefan, Andrian Frédéric, Vonié Maxime. (2025). Ground-based InSAR and GNSS integration for enhanced dam monitoring. Applied Geomatics. 17 (2): 393–400-393–400. doi:10.1007/s12518-025-00622-w.
43.
(2007). Regulation of the Minister of the Environment of April 20, 2007 on the technical conditions to be met by hydraulic engineering structures and their location. Act. Journal of Laws, 2007, No. 86, Item 579, Poland.
44.
Ribeiro F.C.D., Fazan J.A., Netto N.P., Blitzkow D., Da Fonseca Junior E.S., Cintra J.P., Fiorini A.S., Neves C.P. (2008). Comparison between geodetic technology and plumb lines in monitoring of displacements on Itaipu Dam. 13th International Symposium on Deformation Measurements and Analysis, International Federation of Surveyors (FIG), Lisbon, Portugal.
45.
Salagean T., Onose D., Rusu T., Şuba E., Chiorean S. (2017). Aspects regarding the analysis of horizontal displacements at Cumpana Dam, Arges County. AgroLife Scientific Journal. 6 (1): 237-242.
46.
Šarkanović Bugarinović M., Govedarica M., Ristic A., Bugarinović Z., Ruskovski I. (2023). Analysis and application of terrestrial laser scanning algorithms for dam monitoring. Proceedings of the International Scientific Conference iNDiS 2023 Planning, Design, Construction and Building Renewal, Vrdnik, Serbia.
47.
Scaioni Marco, Marsella Maria, Crosetto Michele, Tornatore Vincenza, Wang Jin. (2018). Geodetic and Remote-Sensing Sensors for Dam Deformation Monitoring. Sensors. 18 (11): 3682-3682. doi:10.3390/s18113682.
48.
Staroverov Volodumyr, Haikin Dmytro. (2020). Geodesic Monitoring Of Hydrotechnical Structures Using an Automated Observation System. Urban development and spatial planning. 0 (74): 298–307-298–307. doi:10.32347/2076-815x.2020.74.298-307.
49.
Szostak-Chrzanowski Anna, Massiéra Michel. (2006). Relation between monitoring and design aspects of large earth dams. Proceedings, 3rd IAG Symposium on Geodesy for Geotechnical and Structural Engineering and 12th FIG Symposium on Deformation Measurements, Baden, Austria. FIG.
50.
Talich M. (2016). The Deformation Monitoring of Dams by the Ground-Based InSAR Technique -- Case Study of Concrete Hydropower Dam Orlik. International Journal of Advances in Agricultural and Environmental Engineering. 3 (1). doi:10.15242/ijaaee.a0416051.
51.
Taşçi Levent. (2008). Dam deformation measurements with GPS. Geodesy and Cartography. 34 (4): 116–121-116–121. doi:10.3846/1392-1541.2008.34.116-121.
52.
Tretyak Kornyliy, Palianytsia Bohdan. (2022). Research of the environmental temperature influence on the horizontal displacements of the Dnieper hydroelectric station dam (according to GNSS measurements). Reports on Geodesy and Geoinformatics. 113 (1): 1–10-1–10. doi:10.2478/rgg-2022-0001.
53.
(2018). Structural Deformation Surveying. Engineer Manual EM 1110-2-1009.
54.
Zaczek-Peplinska Janina, Pasik Mariusz, Adamek Artur, Adamek Anna, Kołakowska Maria, Łapiński Sławomir. (2013). Monitoring Technical Conditions Of Engineering Structures Using The Terrestrial Laser Scanning Technology. Reports on Geodesy and Geoinformatics. 95 (1): 1–10-1–10. doi:10.2478/rgg-2013-0008.
55.
Zaczek-Peplinska Janina, Podawca Konrad, Karsznia Krzysztof. (2018). Reliability of geodetic control measurements of high dams as a guarantee of safety of the construction and the natural environment. Bulletin of the Polish Academy of Sciences: Technical Sciences. 66 (1): 87-98. doi:10.24425/119062.
56.
(2025). Zespół Elektrowni Wodnych Niedzica S.A. https://www.zew-niedzica.pl (accessed on: 18 March 2025).