ORIGINAL ARTICLE
GNSS sites at Hornsund reveal increase of land uplift rate due to recent acceleration of deglaciation at Svalbard
Marcin Rajner 1, A-F
 
 
 
More details
Hide details
1
Faculty of Geodesy and Cartography, Warsaw University of Technology, pl. Politechniki 1, 00-661 Warszawa, Poland
 
 
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article
 
 
Submission date: 2025-11-08
 
 
Final revision date: 2025-12-10
 
 
Acceptance date: 2025-12-10
 
 
Publication date: 2025-12-15
 
 
Corresponding author
Marcin Rajner   

Faculty of Geodesy and Cartography, Warsaw University of Technology, pl. Politechniki 1, 00-661, Warszawa, Poland
 
 
Reports on Geodesy and Geoinformatics 2025;120:96-100
 
KEYWORDS
TOPICS
ABSTRACT
This paper discusses recent and up-to-date uplift rates at Polish Polar Station at Hornsund (SW Svalbard). Twenty years of continuous Global Navigation Satellite Systems (GNSS) measurements was used to infer contemporary vertical crust deformation due to viscous and elastic response to variable loads. Using environmental models good agreement of observed land uplift with numerical predictions was found. Most of the vertical change stem from Glacial Isostatic Adjustment (GIA), Little Ice Age (LIA) and Present Day Ice Melting (PDIM). Significant increase of uplift was observed in the last few years from 9.0 mm yr−1 up to 11.5 mm yr−1. This can be attributed to increase of ice mass loss at Svalbard archipelago of additional 10 Gt yr−1. In case of GNSS site at Hornsund 80% of PDIM comes from melting of glaciers at south Spitsbergen.
REFERENCES (23)
1.
A Geruo, Wahr John, Zhong Shijie. (2013). Computations of the viscoelastic response of a 3-D compressible Earth to surface loading: an application to Glacial Isostatic Adjustment in Antarctica and Canada. Geophysical Journal International. 192 (2): 557-572-557-572. doi:10.1093/gji/ggs030.
 
2.
Aas K. S., Dunse T., Collier E., Schuler T. V., Berntsen T. K., Kohler J., Luks B. (2016). The climatic mass balance of Svalbard glaciers: a 10-year simulation with a coupled atmosphere--glacier mass balance model. The Cryosphere. 10 (3): 1089-1104. doi:10.5194/tc-10-1089-2016.
 
3.
Willy Bertiger, Yoaz Bar-Sever, Angie Dorsey, Bruce Haines, Nate Harvey, Dan Hemberger, Michael Heflin, Wenwen Lu, Mark Miller, Angelyn W. Moore, Dave Murphy, Paul Ries, Larry Romans, Aurore Sibois, Ant Sibthorpe, Bela Szilagyi, Michele Vallisneri, Pascal Willis. (2020). GipsyX/RTGx, a new tool set for space geodetic operations and research. Advances in Space Research. 66 (3): 469-489-469-489. doi:10.1016/j.asr.2020.04.015.
 
4.
Błaszczyk, M., Luks, B., Pętlicki, M., Puczko, D., Ignatiuk, D., Laska, M., Jania, J., and Głowacki, P. (2024). High temporal resolution records of the velocity of Hansbreen, a tidewater glacier in Svalbard. Earth System Science Data. 4: 1847-1860. doi:10.5194/essd-16-1847-2024.
 
5.
Blewitt Geoffrey, Lavallée David. (2002). Effect of annual signals on geodetic velocity. Journal of Geophysical Research: Solid Earth. 107 (B7): ETG 9-1-ETG 9-11-ETG 9-1-ETG 9-11. doi:10.1029/2001JB000570.
 
6.
Bos M. S., Fern, es R. M. S., Williams S. D. P., Bastos L. (2013). Fast error analysis of continuous GNSS observations with missing data. Journal of Geodesy. 87 (4): 351-360. doi:10.1007/s00190-012-0605-0.
 
7.
Farrell W. E. (1972). Deformation of the Earth by surface loads. Reviews of Geophysics. 10 (3): 761-797. doi:10.1029/RG010i003p00761.
 
8.
Fischer E. M., Knutti R. (2015). Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes. Nature Climate Change. 5 (6): 560–564-560–564.
 
9.
Gardner Alex S., Moholdt Geir, Cogley J. Graham, Wouters Bert, Arendt Anthony A., Wahr John, Berthier Etienne, Hock Regine, Pfeffer W. Tad, Kaser Georg, Ligtenberg Stefan R. M., Bolch Tobias, Sharp Martin J., Hagen Jon Ove, van den Broeke Michiel R., Paul Frank. (2013). A Reconciled Estimate of Glacier Contributions to Sea Level Rise: 2003 to 2009. Science. 340 (6134): 852–857-852–857.
 
10.
Jiang Weiping, Li Zhao, van Dam Tonie, Ding Wenwu. (2013). Comparative analysis of different environmental loading methods and their impacts on the GPS height time series. Journal of Geodesy. 87 (7): 687–703-687–703.
 
11.
Kierulf Halfdan Pascal, Kohler Jack, Boy Jean-Paul, Geyman Emily C, Mémin Anthony, Omang Ove C D, Steffen Holger, Steffen Rebekka. (2022). Time-varying uplift in Svalbard—an effect of glacial changes. Geophysical Journal International. 231 (3): 1518-1534-1518-1534. doi:10.1093/gji/ggac264.
 
12.
Kierulf H. P., Plag H.-P., Kohler J. (2009). Surface deformation induced by present-day ice melting in Svalbard. Geophysical Journal International. 179 (1): 1-13-1-13. doi:10.1111/j.1365-246X.2009.04322.x.
 
13.
Kierulf H P, van Pelt W J J, Petrov L, Dähnn M, Kirkvik A-S, Omang O. (2021). Seasonal glacier and snow loading in Svalbard recovered from geodetic observations. Geophysical Journal International. 229 (1): 408-425-408-425. doi:10.1093/gji/ggab482.
 
14.
Mémin A., Spada G., Boy J.-P., Rogister Y., Hinderer J. (2014). Decadal geodetic variations in Ny-Ålesund (Svalbard): role of past and present ice-mass changes. Geophysical Journal International. 198: 285-297-285-297. doi:10.1093/gji/ggu134.
 
15.
Mémin A., Rogister Y., Hinderer J., Omang O. C., Luck B. (2011). Secular gravity variation at Svalbard (Norway) from ground observations and GRACE satellite data. Geophysical Journal International. 184 (3): 1119-1130-1119-1130. doi:10.1111/j.1365-246X.2010.04922.x.
 
16.
Omang O. C. D., Kierulf H. P. (2011). Past and present-day ice mass variation on Svalbard revealed by superconducting gravimeter and GPS measurements. Geophysical Research Letters. 38 (22). doi:10.1029/2011GL049266.
 
17.
Peltier W. R., Argus D. F., Drummond R. (2015). Space geodesy constrains ice age terminal deglaciation: The global ICE-6G_C (VM5a) model. Journal of Geophysical Research: Solid Earth. 120 (1): 450-487. doi:10.1002/2014JB011176.
 
18.
Marcin Rajner. (2018). Detection of ice mass variation using gnss measurements at Svalbard. Journal of Geodynamics. 121: 20-25-20-25. doi:10.1016/j.jog.2018.06.001.
 
19.
Marcin Rajner. (2010). Some remarks on determining short-period changes in glacier surface velocity using gps technique — case study of Hans glacier example. Geodesy and Cartography. 59 (1): 39-47-39-47. doi:10.2478/v10277-012-0007-8.
 
20.
Thomas Vikhamar Schuler, Rasmus Emil Benestad, Ketil Isaksen, Halfdan Pascal Kierulf, Jack Kohler, Geir Moholdt, Louise Steffensen Schmidt. (2025). Svalbard’s 2024 record summer: An early view of Arctic glacier meltdown?. Proceedings of the National Academy of Sciences. 122 (34): e2503806122-e2503806122. doi:10.1073/pnas.2503806122.
 
21.
Shepherd Andrew, Ivins Erik R., A Geruo, Barletta Valentina R., Bentley Mike J., Bettadpur Srinivas, Briggs Kate H., Bromwich David H., Forsberg René, Galin Natalia, Horwath Martin, Jacobs Stan, Joughin Ian, King Matt A., Lenaerts Jan T. M., Li Jilu, Ligtenberg Stefan R. M., Luckman Adrian, Luthcke Scott B., McMillan Malcolm, Meister Rakia, Milne Glenn, Mouginot Jeremie, Muir Alan, Nicolas Julien P., Paden John, Payne Antony J., Pritchard Hamish, Rignot Eric, Rott Helmut, Sørensen Louise S, berg, Scambos Ted A., Scheuchl Bernd, Schrama Ernst J. O., Smith Ben, Sundal Aud V., van Angelen Jan H., van de Berg Willem J., van den Broeke Michiel R., Vaughan David G., Velicogna Isabella, Wahr John, Whitehouse Pippa L., Wingham Duncan J., Yi Donghui, Young Duncan, Zwally H. Jay. (2012). A Reconciled Estimate of Ice-Sheet Mass Balance. Science. 338 (6111): 1183–1189-1183–1189.
 
22.
Stroeve Julienne C., Serreze Mark C., Holl, Marika M., Kay Jennifer E., Malanik James, Barrett Andrew P. (2011). The Arctic’s rapidly shrinking sea ice cover: a research synthesis. Climatic Change. 110 (3–4): 1005–1027-1005–1027.
 
23.
Wunderling Nico, Willeit Matteo, Donges Jonathan F., Winkelmann Ricarda. (2020). Global warming due to loss of large ice masses and Arctic summer sea ice. Nature Communications. 11 (1).
 
eISSN:2391-8152
ISSN:2391-8365
Journals System - logo
Scroll to top