REVIEW PAPER
Tropospheric water vapor retrievals by Ground-Based GNSS in Africa: A systematic review
,
 
Pierre Bosser 2, A,D-F
,
 
 
 
 
More details
Hide details
1
Laboratory of Mechanics and Modeling L2M, University Iba Der Thiam of Thiès, Voie de Contournement Nord Thiès, Thiès, Senegal
 
2
ENSTA, IP Paris, Lab-STICC UMR 6285 CNRS, Rue Francois Verny, 29200 Brest, France
 
 
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article
 
 
Submission date: 2024-12-31
 
 
Final revision date: 2025-02-23
 
 
Acceptance date: 2025-03-03
 
 
Publication date: 2025-04-11
 
 
Corresponding author
Moustapha Gning TINE   

Laboratory of Mechanics and Modeling L2M, University Iba Der Thiam of Thiès, Voie de Contournement Nord Thiès, Thiès, Senegal
 
 
Reports on Geodesy and Geoinformatics 2025;119:71-84
 
KEYWORDS
TOPICS
ABSTRACT
Tropospheric water vapor is a complex parameter due to its spatial and temporal variability, but it is essential for meteorology and study of climate. Faced with high operating costs and traditional low resolutions, Ground-Based Global Navigation Satellite System (GNSS) is increasingly used for tropospheric water vapor retrieval. From databases and several query strings, this study examines in different ways the evidence-based studies of water vapor retrieval from African Ground-Based GNSS using the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) protocol and specific criteria. 30 articles of empirical studies published between 2000 and June 2024 were analysed in depth vis-a-vis research questions. This Systematic Review (SR) includes a mapping of the selected literature, highlighting the distribution and focus of research efforts across Africa. This SR provides new insights by consolidating the evidence on the various approaches used with African Ground Stations. Water vapor time series obtained from GNSS data show consistency with traditional data sources, particularly for seasonal and diurnal cycles. It also highlights the under-exploited potential of GNSS networks in Africa, limited by uneven geographical coverage and a lack of standardization of methodologies, despite significant progress in atmospheric studies, as well as it highlights the advanced techniques that are under-exploredand proposes future research directions, while calling for closer collaboration between scientists and decision-makers to improve access to GNSS data, promote network interoperability, and explore methodological approaches adapted to Africa's specific climatic conditions, in order to maximise the applications of GNSS techniques for water vapor retrieval.
ACKNOWLEDGEMENTS
This article written as part of doctoral research at the Doctoral School of Thies under the supervision of Professor Mapathe Ndiaye and Dr Pierre Bosser. I express my heartfelt gratitude to Dr Bosser for his invaluable support, insightful advice, and the invitation to ENSTA (Brest, France), which played a key role in achieving the objectives of this PhD research.
REFERENCES (75)
1.
Abdelfatah M. A., Elhaty N. M., Mousa A. E., El-Fiky G. S. (2022). Derived precipitable water vapour from GNSS and radiosonde data using time series and spatial least-square. NRIAG Journal of Astronomy and Geophysics. 11 (1): 113-119. doi:10.1080/20909977.2021.2000267.
 
2.
Abdellaoui Hassen, Zaourar Naima, Kahlouche Salem. (2019). Contribution of permanent stations GPS data to estimate the water vapor content over Algeria. Arabian Journal of Geosciences. 12 (3). doi:10.1007/s12517-019-4226-2.
 
3.
Abraha Kibrom Ebuy, Lewi Elias, Masson Frédéric, Boy Jean-Paul, Doubre Cécile. (2015). Spatial–temporal variations of water vapor content over Ethiopia: A study using GPS observations and the ECMWF model. GPS Solutions. 21 (1): 89-99. doi:10.1007/s10291-015-0508-7.
 
4.
Acheampong A. A., Fosu C., Amekudzi L. K., Kaas E. (2015). Comparison of precipitable water over Ghana using GPS signals and reanalysis products. Journal of Geodetic Science. 5 (1). doi:10.1515/jogs-2015-0016.
 
5.
Acheampong A.A., Fosu C., Amekudzi L.K., Kaas E. (2017). Precipitable water comparisons over Ghana using PPP Techniques and reanalysis data. South African Journal of Geomatics. 6 (3): 449-449. doi:10.4314/sajg.v6i3.13.
 
6.
Acheampong A., Obeng K. (2019). Application of GNSS derived precipitable water vapour prediction in West Africa. Journal of Geodetic Science. 9 (1): 41-47. doi:10.1515/jogs-2019-0005.
 
7.
Baldysz Zofia, Nykiel Grzegorz, Latos Beata, Baranowski Dariusz B., Figurski Mariusz. (2021). Interannual Variability of the GNSS Precipitable Water Vapor in the Global Tropics. Atmosphere. 12 (12): 1698-1698. doi:10.3390/atmos12121698.
 
8.
Baranowski Dariusz B., Waliser Duane E., Jiang Xianan, Ridout James A., Flatau Maria K. (2019). Contemporary GCM Fidelity in Representing the Diurnal Cycle of Precipitation Over the Maritime Continent. Journal of Geophysical Research: Atmospheres. 124 (2): 747-769. doi:10.1029/2018jd029474.
 
9.
Barriot Jean-Pierre, Serafini Jonathan, Sichoix Lydie. (2021). Estimating the 3D time variable water vapor contents of the troposphere from a single GNSS receiver. arXiv preprint arXiv:2102.01858.
 
10.
Bawa Swafiyudeen, Isioye Olalekan Adekunle, Mefe Moses Mefe Moses, Abdulmumin Lukman. (2022). AN APPRAISAL OF THE ECMWF REANALYSIS (ERA5) MODEL IN ESTIMATING AND MONITORING ATMOSPHERIC WATER VAPOUR VARIABILITY OVER NIGERIA. Geodesy and cartography. 48 (3): 150-159. doi:10.3846/gac.2022.14777.
 
11.
Benevides P., Catalao J., Mir, a P. M. A. (2015). On the inclusion of GPS precipitable water vapour in the nowcasting of rainfall. Natural Hazards and Earth System Sciences. 15 (12): 2605-2616. doi:10.5194/nhess-15-2605-2015.
 
12.
Bevis Michael, Businger Steven, Chiswell Steven, Herring Thomas A, Anthes Richard A, Rocken Christian, Ware R, olph H. (1994). GPS meteorology: Mapping zenith wet delays onto precipitable water. Journal of Applied Meteorology and Climatology. 33 (3): 379-386. doi:10.1175/1520-0450(1994)033<0379:GMMZWD>2.0.CO;2.
 
13.
Bevis Michael, Businger Steven, Herring Thomas A., Rocken Christian, Anthes Richard A., Ware R, olph H. (1992). GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system. Journal of Geophysical Research: Atmospheres. 97 (D14): 15787-15801. doi:10.1029/92jd01517.
 
14.
Bi Yan-Meng, Mao Jie-Tai, Liu Xiao-Yang, Fu Yang, Li Cheng-Cai. (2006). Remote sensing of the amount of water vapor along the slant path using the ground-base GPS. Chinese Journal of Geophysics. 49 (2): 335-342.
 
15.
Bock O., Bouin M.-N., Walpersdorf A., Lafore J. P., Janicot S., Guichard F., Agusti-Panareda A. (2007). Comparison of ground-based GPS precipitable water vapour to independent observations and NWP model reanalyses over Africa. Quarterly Journal of the Royal Meteorological Society. 133 (629): 2011-2027. doi:10.1002/qj.185.
 
16.
Bock O., Bouin M. N., Doerflinger E., Collard P., Masson F., Meynadier R., Nahmani S., Koité M., Gaptia Lawan Balawan K., Didé F., Ouedraogo D., Pokperlaar S., Ngamini J.-B., Lafore J. P., Janicot S., Guichard F., Nuret M. (2008). West African Monsoon observed with ground-based GPS receivers during African Monsoon Multidisciplinary Analysis (AMMA). Journal of Geophysical Research: Atmospheres. 113 (D21). doi:10.1029/2008jd010327.
 
17.
Bock O., Guichard F., Janicot S., Lafore J. P., Bouin M.-N., Sultan B. (2007). Multiscale analysis of precipitable water vapor over Africa from GPS data and ECMWF analyses. Geophysical Research Letters. 34 (9). doi:10.1029/2006gl028039.
 
18.
Bock O., Guichard F., Meynadier R., Gervois S., Agustí-Panareda A., Beljaars A., Boone A., Nuret M., Redelsperger J.-L., Roucou P. (2010). The large-scale water cycle of the West African monsoon. Atmospheric Science Letters. 12 (1): 51-57. doi:10.1002/asl.288.
 
19.
Bock O., Nuret M. (2009). Verification of NWP Model Analyses and Radiosonde Humidity Data with GPS Precipitable Water Vapor Estimates during AMMA. Weather and Forecasting. 24 (4): 1085-1101. doi:10.1175/2009waf2222239.1.
 
20.
Boniface Karen. (2009). Quantification de la vapeur d’eau atmosphérique par GPS et apport à la prévision des événements cévenols, phdthesis.
 
21.
Boniface K., Champollion C., Chery J., Ducrocq V., Rocken C., Doerflinger E., Collard P. (2012). Potential of shipborne GPS atmospheric delay data for prediction of Mediterranean intense weather events. Atmospheric Science Letters. 13 (4): 250-256. doi:10.1002/asl.391.
 
22.
Bosser Pierre, Bock Olivier. (2021). IWV retrieval from ground GNSS receivers during NAWDEX. Advances in Geosciences. 55: 13-22. doi:10.5194/adgeo-55-13-2021.
 
23.
Boutiouta S., Lahcene A. (2013). Preliminary study of GNSS meteorology techniques in Algeria. International Journal of Remote Sensing. 34 (14): 5105-5118. doi:10.1080/01431161.2013.786850.
 
24.
Chen Peng, Yao Wanqiang. (2015). GTmES_DASHX: A new version global weighted mean temperature model. China Satellite Navigation Conference (CSNC) 2015 Proceedings: Volume II. 605-611. Springer. doi:10.1007/978-3-662-46635-3ES_DASH51.
 
25.
Combrink AZA, Combrinck WL, Moraal H. (2004). Near real-time detection of atmospheric water vapour using the SADC GPS network. South African Journal of Science. 100 (9): 436-442.
 
26.
de Haan Siebren, Holleman Iwan, Holtslag Albert A. M. (2009). Real-Time Water Vapor Maps from a GPS Surface Network: Construction, Validation, and Applications. Journal of Applied Meteorology and Climatology. 48 (7): 1302-1316. doi:10.1175/2008jamc2024.1.
 
27.
Ding Junsheng, Chen Junping, Tang Wenjie, Song Ziyuan. (2022). Spatial–Temporal Variability of Global GNSS-Derived Precipitable Water Vapor (1994–2020) and Climate Implications. Remote Sensing. 14 (14): 3493-3493. doi:10.3390/rs14143493.
 
28.
Dirksen R. J., Sommer M., Immler F. J., Hurst D. F., Kivi R., Vömel H. (2014). Reference quality upper-air measurements: GRUAN data processing for the Vaisala RS92 radiosonde. Atmospheric Measurement Techniques. 7 (12): 4463-4490. doi:10.5194/amt-7-4463-2014.
 
29.
Elouardi Mustapha, Ben Hachmi Mohammed Karim, Hdidou Fatima Zahra, El Yabani Salma. (2022). Assessment of integrated water vapor derived from AROME model using GPS data over Morocco. Modeling Earth Systems and Environment. 8 (4): 4965-4973. doi:10.1007/s40808-022-01432-4.
 
30.
Ge Maorong, Gendt Gerd. (2004). Estimation and validation of the IGS absolute antenna phase center variations. Proc IGS 2004 Workshop and Symposium, Bern.
 
31.
Guerova Guergana, Jones Jonathan, Douša Jan, Dick Galina, de Haan Siebren, Pottiaux Eric, Bock Olivier, Pacione Rosa, Elgered Gunnar, Vedel Henrik, Bender Michael. (2016). Review of the state of the art and future prospects of the ground-based GNSS meteorology in Europe. Atmospheric Measurement Techniques. 9 (11): 5385-5406. doi:10.5194/amt-9-5385-2016.
 
32.
Hadas Tomasz, Teferle Felix Norman, Kazmierski Kamil, Hordyniec Pawel, Bosy Jaroslaw. (2016). Optimum stochastic modeling for GNSS tropospheric delay estimation in real-time. GPS Solutions. 21 (3): 1069-1081. doi:10.1007/s10291-016-0595-0.
 
33.
Hogg DC, Guiraud FO, Decker MT. (1981). Measurement of excess radio transmission length on earth-space paths. Astronomy and Astrophysics. 95 (2): 304-307.
 
34.
Holloway Christopher E., Neelin J. David. (2010). Temporal Relations of Column Water Vapor and Tropical Precipitation. Journal of the Atmospheric Sciences. 67 (4): 1091-1105. doi:10.1175/2009jas3284.1.
 
35.
(2024). Network.igs.org. https://network.igs.org/.
 
36.
Isioye Olalekan Adekunle, Combrinck Ludwig, Botai Joel. (2016). Modelling weighted mean temperature in the West African region: Implications for GNSS meteorology: Weighted mean temperature in the West African region. Meteorological Applications. 23 (4): 614–632-614–632.
 
37.
Isioye Olalekan Adekunle, Combrinck Ludwig, Botai Joel Ondego. (2017). Retrieval and analysis of precipitable water vapour based on GNSS, AIRS, and reanalysis models over Nigeria. International Journal of Remote Sensing. 38 (20): 5710-5735. doi:10.1080/01431161.2017.1346401.
 
38.
Isioye Olalekan A., Combrinck Ludwig, Botai Joel O., Munghemezulu Cilence. (2015). The Potential for Observing African Weather with GNSS Remote Sensing. Advances in Meteorology. 2015: 1-16. doi:10.1155/2015/723071.
 
39.
Jiang Chunhua, Chen Shaoni, Wang Shuaimin, Gao Xiang, Zhu Huizhong, Lu Yangyang, Liu Guangsheng. (2024). A grid model of direct conversion between zenith tropospheric delay and precipitable water vapor in tropical regions. GPS Solutions. 28 (3). doi:10.1007/s10291-024-01672-0.
 
40.
Jones Jonathan, Guerova G, Douša J, Dick G, De Haan S, Pottiaux E, Bock O, Pacione R, Van Malderen R. (2020). Advanced GNSS tropospheric products for monitoring severe weather events and climate. COST action ES1206 final action dissemination report. (2019): 563-563. doi:10.1007/978-3-030-13901-8.
 
41.
Kawo Abdisa, Van Schaeybroeck Bert, Van Malderen Roel, Pottiaux Eric. (2023). Precipitable water vapor in regional climate models over Ethiopia: Model evaluation and climate projections. Climate Dynamics. doi:10.1007/s00382-023-06855-y.
 
42.
Kitchenham Barbara, Brereton Pearl. (2013). A systematic review of systematic review process research in software engineering. Information and Software Technology. 55 (12): 2049-2075. doi:10.1016/j.infsof.2013.07.010.
 
43.
Koji Abdisa Kawo, Van Malderen Roel, Pottiaux Eric, Van Schaeybroeck Bert. (2022). Understanding the Present-Day Spatiotemporal Variability of Precipitable Water Vapor over Ethiopia: A Comparative Study between ERA5 and GPS. Remote Sensing. 14 (3): 686-686. doi:10.3390/rs14030686.
 
44.
Koome Derrick, Ogaja Clement, Rubinov Eldar. (2019). Developing Africa one CORS at a time. FIF Working Week 2019, Geospatial Information for a Smarter Life and Environmental Resilience, 22--24 April, Hanoi, Vietnam.
 
45.
Koulali Achraf, Ouazar Driss, Bock Olivier, Fadil Abdelali. (2012). Study of seasonal-scale atmospheric water cycle with ground-based GPS receivers, radiosondes and NWP models over Morocco. Atmospheric Research. 104–105: 273-291. doi:10.1016/j.atmosres.2011.11.002.
 
46.
Li Longjiang, Wu Suqin, Zhang Kefei, Wang Xiaoming, Li Wang, Shen Zhen, Zhu Dantong, He Qimin, Wan Moufeng. (2021). A New ZHD Model for Real-Time Retrievals of GNSS-PWV. doi:10.5194/amt-2021-113.
 
47.
Li Xingxing, Dick Galina, Lu Cuixian, Ge Maorong, Nilsson Tobias, Ning Tong, Wickert Jens, Schuh Harald. (2015). Multi-GNSS Meteorology: Real-Time Retrieving of Atmospheric Water Vapor From BeiDou, Galileo, GLONASS, and GPS Observations. IEEE Transactions on Geoscience and Remote Sensing. 53 (12): 6385-6393. doi:10.1109/tgrs.2015.2438395.
 
48.
Lu Cuixian, Li Xingxing, Nilsson Tobias, Ning Tong, Heinkelmann Robert, Ge Maorong, Glaser Susanne, Schuh Harald. (2015). Real-time retrieval of precipitable water vapor from GPS and BeiDou observations. Journal of Geodesy. 89 (9): 843-856. doi:10.1007/s00190-015-0818-0.
 
49.
Mateo Sébastien. (2020). Procédure pour conduire avec succès une revue de littérature selon la méthode PRISMA. Kinésithérapie, la Revue. 20 (226): 29-37. doi:10.1016/j.kine.2020.05.019.
 
50.
Mengistu Tsidu G., Blumenstock T., Hase F. (2015). Observations of precipitable water vapour over complex topography of Ethiopia from ground-based GPS, FTIR, radiosonde and ERA-Interim reanalysis. Atmospheric Measurement Techniques. 8 (8): 3277-3295. doi:10.5194/amt-8-3277-2015.
 
51.
Mlawa A. Mlawa, Saria E. E Saria. (2023). Atmospheric Water Vapour Determination Using GPS Signals for Numeric Weather Prediction in Tanzania. Journal of Geosciences and Geomatics. 11 (3): 88-96. doi:10.12691/jgg-11-3-3.
 
52.
Moradi Isaac, Soden Brian, Ferraro Ralph, Arkin Phillip, Vömel Holger. (2013). Assessing the quality of humidity measurements from global operational radiosonde sensors. Journal of Geophysical Research: Atmospheres. 118 (14): 8040-8053. doi:10.1002/jgrd.50589.
 
53.
Namaoui Houaria, Kahlouche Salem, Belbachir Ahmed Hafid, Van Malderen Roel, Brenot Hugues, Pottiaux Eric. (2017). GPS water vapor and its comparison with radiosonde and ERA-Interim data in Algeria. Advances in Atmospheric Sciences. 34 (5): 623-634. doi:10.1007/s00376-016-6111-1.
 
54.
Namaoui Houaria. (2017). Quantification de la vapeur d’eau dans la basse atmosphère à partir des techniques de radiolocalisation, phdthesis.
 
55.
Nambiema A., Fouquet J., Guilloteau J., Descatha A. (2021). La revue systématique et autres types de revue de la littérature: qu’est-ce que c’est, quand, comment, pourquoi?. Archives des Maladies Professionnelles et de l’Environnement. 82 (5): 539-552. doi:10.1016/j.admp.2021.03.004.
 
56.
Ojegbile BM, Okolie CJ, Omogunloye OG, Abiodun OE, Olaleye JB. (2023). The Dynamics of ERA5 and GNSS-Derived Precipitable Water Vapour in the Climatic Zones of Nigeria. Dynamics. 7 (2): 372-394. doi:10.36263/nijest.2023.02.0429.
 
57.
Osah Samuel, Acheampong Akwasi A., Fosu Collins, Dadzie Isaac. (2021). Evaluation of Zenith Tropospheric Delay Derived from Ray-Traced VMF3 Product over the West African Region Using GNSS Observations. Advances in Meteorology. 2021: 1-14. doi:10.1155/2021/8836806.
 
58.
Panetier Aurélie, Bosser Pierre, Khenchaf Ali. (2023). Sensitivity of Shipborne GNSS Estimates to Processing Modeling Based on Simulated Dataset. Sensors. 23 (14): 6605-6605. doi:10.3390/s23146605.
 
59.
Reverdy Mathieu. (2008). GPS estimates of atmospheric parameters: Analysis of the spatial and temporal variability of the water vapor, phdthesis.
 
60.
Saastamoinen J. (1972). Atmospheric correction for the troposphere and stratosphere in radio ranging satellites. The use of artificial satellites for geodesy. 15: 247-251. doi:10.1029/GM015p0247.
 
61.
Song Dong-Seob, Boutiouta Seddik. (2012). Determination of Algerian Weighted Mean Temperature Model for forthcoming GNSS Meteorology Application in Algeria. Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography. 30 (6ES_DASH2): 615–622-615–622.
 
62.
Ssenyunzi Richard Cliffe, Oruru Bosco, Mutonyi D’ujanga Florence. (2021). Linear regression models to predict the tropospheric parameters at the Global Positioning systems’ sites over the East African region. East African Journal of Science, Technology and Innovation. 2 (3). doi:10.37425/eajsti.v2i3.274.
 
63.
Ssenyunzi Richard Cliffe, Oruru Bosco, D’ujanga Florence Mutonyi, Realini Eugenio, Barindelli Stefano, Tagliaferro Giulio, von Engeln Axel, van de Giesen Nick. (2020). Performance of ERA5 data in retrieving Precipitable Water Vapour over East African tropical region. Advances in Space Research. 65 (8): 1877-1893. doi:10.1016/j.asr.2020.02.003.
 
64.
Swafiyudeen Bawa, Sa’i Usman Ibrahim, Adamu Bala, Zailani Abubakar Aliyu, Musa Adamu Abubakar, Nura Shehu. (2021). Modelling Precipitable Water Vapour (PWV) Over Nigeria from Ground-Based GNSS. Geoplanning: Journal of Geomatics and Planning. 8 (1): 41-50. doi:10.14710/geoplanning.8.1.41-50.
 
65.
Teunissen P., Montenbruck O. (2017). Springer Handbook of Global Navigation Satellite Systems. Springer International Publishing. doi:10.1007/978-3-319-42928-1.
 
66.
Van Malderen Roel, Pottiaux Eric, Stankunavicius Gintautas, Beirle Steffen, Wagner Thomas, Brenot Hugues, Bruyninx Carine, Jones Jonathan. (2022). Global Spatiotemporal Variability of Integrated Water Vapor Derived from GPS, GOME/SCIAMACHY and ERA-Interim: Annual Cycle, Frequency Distribution and Linear Trends. Remote Sensing. 14 (4): 1050-1050. doi:10.3390/rs14041050.
 
67.
Vaquero-Martínez Javier, Antón Manuel. (2021). Review on the Role of GNSS Meteorology in Monitoring Water Vapor for Atmospheric Physics. Remote Sensing. 13 (12): 2287-2287. doi:10.3390/rs13122287.
 
68.
(2024). MAXQDA QDA software package for Windows and Mac. MAXQDA. https://www.maxqda.com/products/maxqda.
 
69.
Wang Junhong, Cole Harold L, Carlson David J, Miller Erik R, Beierle Kathryn, Paukkunen Ari, Laine Tapani K. (2002). Corrections of humidity measurement errors from the Vaisala RS80 radiosonde — Application to TOGA COARE data. Journal of Atmospheric and Oceanic Technology. 19 (7): 981-1002. doi:10.1175/1520-0426(2002)019<0981:COHMEF>2.0.CO;2.
 
70.
Weatherhead Elizabeth C., Reinsel Gregory C., Tiao George C., Meng Xiao-Li, Choi Dongseok, Cheang Wai-Kwong, Keller Teddie, DeLuisi John, Wuebbles Donald J., Kerr James B., Miller Alvin J., Oltmans Samuel J., Frederick John E. (1998). Factors affecting the detection of trends: Statistical considerations and applications to environmental data. Journal of Geophysical Research: Atmospheres. 103 (D14): 17149-17161. doi:10.1029/98jd00995.
 
71.
(2024). Devastating West and Central Africa floods affect over 4 million people, raise health risks, World Health Organization, Regional Office for Africa.
 
72.
Wonnacott R. T., Merry C. L. (2006). The use of GPS for the estimation of precipitable water vapour for weather forecasting and monitoring in South Africa. Survey Review. 38 (301): 594-607. doi:10.1179/sre.2006.38.301.594.
 
73.
Wu Zhilu, Lu Cuixian, Tan Yuxuan, Zheng Yuxin, Liu Yang, Liu Yanxiong, Jin Ke. (2023). Real-time GNSS tropospheric delay estimation with a novel global random walk processing noise model (GRM). Journal of Geodesy. 97 (12). doi:10.1007/s00190-023-01780-8.
 
74.
Yao Yibin, Xu Chaoqian, Zhang Bao, Cao Na. (2014). GTm-III: A new global empirical model for mapping zenith wet delays onto precipitable water vapour. Geophysical Journal International. 197 (1): 202–212-202–212.
 
75.
Yuan Peng, Blewitt Geoffrey, Kreemer Corné, Hammond William C., Argus Donald, Yin Xungang, Van Malderen Roel, Mayer Michael, Jiang Weiping, Awange Joseph, Kutterer Hansjörg. (2023). An enhanced integrated water vapour dataset from more than 10000 global ground-based GPS stations in 2020. Earth System Science Data. 15 (2): 723-743. doi:10.5194/essd-15-723-2023.
 
eISSN:2391-8152
ISSN:2391-8365
Journals System - logo
Scroll to top