ORIGINAL ARTICLE
Integrated Precipitable Water Vapour Measurements At Polish Polar Station Hornsund From GPS Observations Verified By Aerological Techniques
 
More details
Hide details
1
Department of Geodesy and Geodetic Astronomy, Faculty of Geodesy and Cartography, Warsaw University of Technology, Warsaw, Poland
 
 
Online publication date: 2015-08-06
 
 
Publication date: 2015-07-01
 
 
Reports on Geodesy and Geoinformatics 2015;98:1-17
 
KEYWORDS
ABSTRACT
We present results of the comparison of integrated precipitable water measurements from GPS solution and aerological techniques: CIMEL-318 sun-photometer and radiosoundings (RAOB). Integrated Precipitable Water (IPW) - important meteorological parameter is derived from GPS tropospheric solutions by known procedure for GPS station at Polish Polar Station, Hornsund (Svalbard). The relation between 2 m temperature and the mean temperature of atmosphere above, used to convert from wet part of tropospheric delay (ZWD) to IPW, has been derived using local radiosonde data at Ny Alesund. Sunphotometer data have been provided by AERONET. Quality of dedicated tropospheric solutions has been verified by comparison with EPN tropospheric combined product. Several IPW comparisons and analyses lead to determination of systematic difference between techniques: GPS IPW and sunphotometer data (not present in case of RAOBs). IPW measured by CIMEL is on average 5% bigger (0.5 mm) than IPW from GPS. This bias changes seasonally and is a function of atmospheric temperature what signals some systematic deficiencies in solar photometry as IPW retrieval technique. CIMEL IPW show some temperature dependent bias also in relation to radiosoundings.
 
REFERENCES (15)
1.
Alexandrov, M.A., Schmid, B., Turner, D.D., Cairns, B., Oinas, V., Lacis, A.A., Gutman, S.I., Westwater, E.R., A. Smirnov and J. Eilers, (2009). Columnar water vapor retrievals from MFRSR data, J. Geophys. Res., 114, D02306, doi:10.1029/2008JD010543.
 
2.
Bevis, M., Businger, S., Herring, T., Rocken, C., Anthes, R., & Ware, R. (1992): GPS Meteorology: Remote Sensing of Atmospheric Water Vapour using the Global Positioning System, J. Geophys. Res., 97, pp 15, 787-15, 801.
 
3.
Byun, S. H., Bar-Sever, Yoaz E. (2009). A new type of troposphere zenith path delay product of the international GNSS service. J Geod (2009) 83: pp 367–373, doi: 10.1007/s00190-008-0288-8.
 
4.
Dach, R., U. Hugentobler, P. Fridez, M. Meindl (2007) Bernese GPS Software Version 5.0. User manual, University of Bern, 2007.
 
5.
Davis, J. L., Herring, T. A., Shapiro, I. I., Rogers A. E., & Elgered, G. (1985). Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimates of baseline length, Radio Sci., 20, pp 1593-1607. doi:10.1029/RS020i006p01593.
 
6.
Duan, J., Bevis, M., Fang, P., Bock, Y., Chiswell, S., Businger, S., Rocken, C., Solheim, F., Van Hove, T., Ware, R., McClusky, S., Herring, T. A. & King, R. W. (1996). GPS meteorology: direct estimation of the absolute value of precipitable water. J. Applied Met. 35, 830–838. doi:10.1175/1520-0450.
 
7.
Halthore, R.N., Eck, T.F., Holben B.N., & Markham, B.L. (1997). Sunphotometric Measurements of Atmospheric Water Vapor Column Abundance in the 940-nm Band. J. Geophys. Res., 102, pp 4343-4352.
 
8.
Holben, B.N., Tanre, D., Smirnov, A., Eck, T.F., Slutsker, I., N. Abuhassan, W.W. Newcomb, J. Schafer, B. Chatenet, F. Lavenue, Y.J. Kaufman, J. Vande Castle, A. Setzer, B. Markham, D. Clark, R. Frouin, R. Halthore, A. Karnieli, N.T. O’Neill, C. Pietras, R.T. Pinker, K. Voss, and G. Zibordi, (2001). An emerging ground-based aerosol climatology: Aerosol Optical Depth from AERONET, J. Geophys. Res., 106, pp 12 067-12 097.
 
9.
Hofmann-Wellenhof B., Lichtenegger, H., Wasle E. (2008). GNSS – Global Navigation Satellite Systems GPS, GLONASS, Galileo, and more. Springer Wien NewYork.
 
10.
Kruczyk, M., Liwosz, T., Pietruczuk, A. (2015): Integrated Precipitable Water from GPS Observations and CIMEL Sunphotometer Measurements at CGO Belsk, submitted to Artificial Satellites.
 
11.
Liwosz, T., Kruczyk, M., Rogowski, J. (2010). WUT LAC Report. Paper presented at 7th EUREF LAC EUREF Analysis Workshop, Warsaw, November 18-19 2010 (http://www.epncb.oma.be/_newsm...).
 
12.
McIlven, R. (2010). Fundamentals of Weather and Climate, Second Edition, Oxford University Pess.
 
13.
Pérez-Ramírez, D., D.N. Whiteman, A. Smirnov, H. Lyamani, B. Holben, R. Pinker, M. Andrade, L. Alados-Arboledas, (2014). Evaluation of AERONET precipitable water vapor versus microwave radiometry, GPS and radiosondes at ARM sites, J. Geophys. Res. - Atmos., 119, doi:10.1002/2014JD021730.
 
14.
Rocken, C., Ware, R., Van Hove, T., Solheim, F., Alber, C., Johnson, J., Bevis, M., and S. Businger, (1993). Sensing atmospheric water vapor with the Global Positioning System, Geophys. Res. Lett., 20, 2631.
 
15.
Vedel, H., Mogensen, K. S., Huang, X.-Y. (2001). Calculation of zenith delays from meteorological data, comparison of NWP model, radiosonde and GPS delays. Phys. Chem. Earth, Vol. 26, No. 6-8, pp. 497–502.
 
eISSN:2391-8152
ISSN:2391-8365
Journals System - logo
Scroll to top