ORIGINAL ARTICLE
Long Series of GNSS Integrated Precipitable Water as a Climate Change Indicator
 
 
More details
Hide details
1
Department of Geodesy and Geodetic Astronomy, Faculty of Geodesy and Cartography, Warsaw University of Technology Warsaw, Poland
 
 
Online publication date: 2016-02-12
 
 
Publication date: 2015-12-01
 
 
Reports on Geodesy and Geoinformatics 2015;99:1-18
 
KEYWORDS
ABSTRACT
This paper investigates information potential contained in tropospheric delay product for selected International GNSS Service (IGS) stations in climatologic research. Long time series of daily averaged Integrated Precipitable Water (IPW) can serve as climate indicator. The seasonal model of IPW change has been adjusted to the multi-year series (by the least square method). Author applied two modes: sinusoidal and composite (two or more oscillations). Even simple sinusoidal seasonal model (of daily IPW values series) clearly represents diversity of world climates. Residuals in periods from 10 up to 17 years are searched for some long-term IPW trend – self-evident climate change indicator. Results are ambiguous: for some stations or periods IPW trends are quite clear, the following years (or the other station) not visible. Method of fitting linear trend to IPW series does not influence considerably the value of linear trend. The results are mostly influenced by series length, completeness and data (e.g. meteorological) quality. The longer and more homogenous IPW series, the better chance to estimate the magnitude of climatologic IPW changes.
 
REFERENCES (19)
1.
Andrews, D. G. (2010). An Introduction to Atmospheric Physics. Second Edition, Cambridge University Press.
 
2.
Bałdysz, Z., Nykiel, G., Figurski, M., Szafranek, K., Kroszczyński, K. (2015). Investigation of the 16-year and 18-year ZTD Time Series Derived from GPS Data Processing, Acta Geophysica 63(4), pp 1103-1125, doi: 10.1515/acgeo-2015-0033.
 
3.
Bevis, M., Businger, S., Herring, T., Rocken, C., Anthes, R., & Ware, R. (1992). GPS Meteorology: Remote Sensing of Atmospheric Water Vapour using the Global Positioning System, J. Geophys. Res., 97, pp 15,787-15,801.
 
4.
Byun, S. H., Bar-Sever, Yoaz E. (2009). A new type of troposphere zenith path delay product of the international GNSS service. J. Geod. 83 (2009): pp 367–373, doi: 10.1007/s00190-008-0288-8.
 
5.
Davis, J. L., Herring, T. A., Shapiro, I. I., Rogers, A. E., & Elgered, G. (1985). Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimates of baseline length, Radio Sci., 20, pp 1593-1607. doi:10.1029/RS020i006p01593.
 
6.
Duan, J., Bevis, M., Fang, P., Bock, Y., Chiswell, S., Businger, S., Rocken, C., Solheim, F., Van Hove, T., Ware, R., McClusky, S., Herring, T. A. & King, R. W. (1996). GPS meteorology: direct estimation of the absolute value of precipitable water. J. Applied Met. 35, 830–838. doi:10.1175/1520-0450.
 
7.
Forster, P., Ramaswamy V., Artaxo P., Berntsen T., Betts R., Fahey D.W., Haywood J., Lean J., Lowe D.C., Myhre G., Nganga J., Prinn R., Raga G., Schulz M. and Van Dorland R. (2007). Changes in Atmospheric Constituents and in Radiative Forcing. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York.
 
8.
Gradinarsky, L.P., Johansson, J.M., Bouma, H.R, Scherneck, H.-G., Elgered, G. (2002). Climate monitoring using GPS. Physics and Chemistry of the Earth, 27 pp. 335-340. doi: 10.1016/S1474-7065(02)00009-8.
 
9.
Hofmann-Wellenhof, B., Lichtenegger, H., Wasle, E. (2008). GNSS – Global Navigation Satellite Systems GPS, GLONASS, Galileo, and more. Springer Wien NewYork.
 
10.
Jin, S., Park, J.-U., Cho, J.-H., Park, P.-H. (2007). Seasonal variability of GPS-derived zenith tropospheric delay (1994-2006) and climate implications. J.Geophys. Res., 112: D09110. doi:10.1029/2006JD007772.
 
11.
Kruczyk, M. (2014). Integrated Precipitable Water from GNSS as a climate parameter, Geoinformation Issues Vol. 6, No 1 (6), 21–35/2014.
 
12.
Kruczyk, M., Liwosz, T., (2012). Tropospheric Delay from EPN Reprocessing by WUT LAC as Valuable Data Source – in Comparison to Operational EPN Products and Aerological Data, Reports on Geodesy, No 1 (92) /2012, pp. 105–118.
 
13.
McIlven, R. (2010). Fundamentals of Weather and Climate, Second Edition, Oxford University Pess.
 
14.
Ning, T., Elgered, G. (2012). Trends in the atmospheric water vapour content from ground-based GPS: The impact of the elevation cutoff angle. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5 pp. 744-751. doi:10.1109/JSTARS.2012.2191392.
 
15.
Rocken, C., Ware, R., Van Hove, T., Solheim, F., Alber, C., Johnson, J., Bevis, M., Businger, S. (1993). Sensing atmospheric water vapor with the Global Positioning System. Geophys. Res. Lett., 20, 2631.
 
16.
Salby, M. L. (2012). Physics of the Atmosphere and Climate. Cambridge University Press.
 
17.
Shelton, M. L. (2009). Hydrometeorology. Perspectives and Applications. Cambridge University Press.
 
18.
Trenberth, K. E., Dai, A., Rasmussen, R.M. and Parsons, D.B. (2003). The changing character of precipitation. Bull. Amer. Meteor. Soc., 84 (9), pp. 1205-1217. doi: 10.1175/BAMS-84-9-1205.
 
19.
Yuan, L.L., Anthes. R.A., Ware, R.H., Rocken, C., Bonner, W.D., Bevis, M.G., Businger, S. (1993). Sensing Climate Change Using the Global Positioning System. J.Geophys. Res., Vol. 98 No. D8, pp. 14 925 - 14 937.
 
eISSN:2391-8152
ISSN:2391-8365
Journals System - logo
Scroll to top