ORIGINAL ARTICLE
Laser Scanning in Engineering Surveying: Methods of Measurement and Modeling of Structures
 
More details
Hide details
1
AGH University of Science and Technology, Faculty of Mining Surveying and Environmental Engineering, Department of Engineering Surveying and Civil Engineering, Krakow, Poland, 30 Mickiewicza Av., 30 – 059 Krakow, Poland
 
2
AGH University of Science and Technology, Faculty of Mining Surveying and Environmental Engineering, Department of Engineering Surveying and Civil Engineering, Krakow, Poland, 30 Mickiewicza Av.,30 – 059 Krakow, Poland
 
 
Online publication date: 2016-05-31
 
 
Publication date: 2016-06-01
 
 
Reports on Geodesy and Geoinformatics 2016;100:109-130
 
KEYWORDS
ABSTRACT
The study is devoted to the uses of laser scanning in the field of engineering surveying. It is currently one of the main trends of research which is developed at the Department of Engineering Surveying and Civil Engineering at the Faculty of Mining Surveying and Environmental Engineering of AGH University of Science and Technology in Krakow. They mainly relate to the issues associated with tower and shell structures, infrastructure of rail routes, or development of digital elevation models for a wide range of applications. These issues often require the use of a variety of scanning techniques (stationary, mobile), but the differences also regard the planning of measurement stations and methods of merging point clouds. Significant differences appear during the analysis of point clouds, especially when modeling objects. Analysis of the selected parameters is already possible basing on ad hoc measurements carried out on a point cloud. However, only the construction of three-dimensional models provides complete information about the shape of structures, allows to perform the analysis in any place and reduces the amount of the stored data. Some structures can be modeled in the form of simple axes, sections, or solids, for others it becomes necessary to create sophisticated models of surfaces, depicting local deformations. The examples selected for the study allow to assess the scope of measurement and office work for a variety of uses related to the issue set forth in the title of this study. Additionally, the latest, forward-looking technology was presented - laser scanning performed from Unmanned Aerial Vehicles (drones). Currently, it is basically in the prototype phase, but it might be expected to make a significant progress in numerous applications in the field of engineering surveying.
 
REFERENCES (29)
1.
Draeyer, B., & Strecha, Ch., (2014). Pix4D White paper- How accurate are UAV surveying methods? https://support.pix4d.com/hc/e....
 
2.
Eisenbeiss, H., Stempfhuber, W., & Kolb, M., (2009). Genauigkeitsanalyse der 3DTrajektorie von Mini-UAVs. In: Zukunft mit Tradition "29. Wissenschaftlich- Technische Jahrestagung der DGPF", Ed.: Seyfert, E., Publikationen der Deutschen Gesellschaft für Photogrammetrie, Fernerkundung und Geoinformation (DGPF) e.V., Potsdam, 407-417.
 
3.
Gikas, V. (2012). Three-dimensional laser scanning for geometry documentation and construction management of highway tunnels during excavation. Sensors, 12 (8), 11249-11270.
 
4.
Glennie, C., (2007). Rigorous 3D error analysis of kinematic scanning LIDAR systems. Journal of Applied Geodesy, 1 (2007), 147-157. de Gruyter, doi: 10.1515/JAG.
 
5.
Glennie, C., Brooks B., Ericksen, T., Hauser, D., Hudnut, K., Foster, J., & Avery, J., (2013). Compact Multipurpose Mobile Laser Scanning System - Initial Tests and Results. Remote Sensing, 5, 521-538. doi:10.3390/rs5020521.
 
6.
Gocał, J. (2010). Geodezja inżynieryjno-przemysłowa, część 3. ISBN: 978-83-7464-327-6, Wydawnictwa AGH, Kraków.
 
7.
Hoult, N.A. & Soga, K. (2014). 11 - Sensing solutions for assessing and monitoring tunnels, In Woodhead Publishing Series in Electronic and Optical Materials, edited by M.L. Wang, J.P. Lynch and H. Sohn, Woodhead Publishing, Volume 56, 309-346, Sensor Technologies for Civil Infrastructures.
 
8.
Huber, P, J. (2009). Robust Statistics. ISBN 978-0-470-12990-6. John Wiley & Sons Inc. Hoboken, New Jersey.
 
9.
Kiciak, P. (2005). Podstawy modelowania krzywych i powierzchni. WNT, Warszawa.
 
10.
Lefsky, M.A., Cohen W.B., Parker, G.G., & Harding, D.J. (2002). Lidar Remote Sensing for Ecosystem Studies. BioScience, vol. 52 (1), 19-30.
 
11.
Lenda G., Ligas M., Lewińska P., Szafarczyk A., (2016). The use of surface interpolation methods for landslides monitoring, KSCE Journal of Civil Engineering, vol. 20, ISSN 1226-7988.
 
12.
Lenda, G., Marmol, U., Mirek, G. (2015). Accuracy of laser scanners for measuring surfaces made of synthetic materials. Photogrammetrie Fernerkundung Geoinformation ; ISSN 1432-8364. Issue 2015 H. 5, 357-372.
 
13.
Li, Z., Zhu, C., Gold, C.(2004). Digital Terrain Modeling: Principles and Methodology. ISBN 9780415324625. CRC Press, New York.
 
14.
Nagai, M., Chen, T., Ahmed, A., & Shibasaki, R., (2008). UAV Borne Mapping by Multi Sensor Integration. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B1. Beijing.
 
15.
Novaković, G., Lazar A., Kovačič S. & Vulić M. (2014). The Usability of Terrestrial 3D Laser Scanning Technology for Tunnel Clearance Analysis Application. Applied Mechanics and Materials, vol. 683, 219-224. Trans Tech Publications.
 
16.
Olea, R.A., (1997). Geostatistics for engineers and earth scientists. Kluwer Academic Publishers.
 
17.
Pejić, M. (2013). Design and optimisation of laser scanning for tunnels geometry inspection. Tunnelling and Underground Space Technology, Volume 37, 199-206.
 
18.
Pilecki R., (2012). Zastosowania naziemnego skanera laserowego. Mechanika, czasopismo techniczne, wyd. Politechnika Krakowska.
 
19.
Ries L., (1993). Areas of influence for IDW-interpolation with isotropic environmental data, Catena, Vol. 20, No.1-2, DOI: 10.1016/0341-8162(93)90039-R.
 
20.
Scaioni, M., Longoni, L., Melillo, V., & Papini, M. (2014). Remote Sensing for Landslide Investigations: An Overview of Recent Achievements and Perspectives. Remote Sensing, 6(10), 9600-9652. doi:10.3390/rs6109600.
 
21.
Siddiqi, K., Pizer, S.M. (2008). Medial Representations: Mathematics, Algorithms and Applications. ISBN: 978-1-4020-8657-1. Springer.
 
22.
Strach, M. (2013). Nowoczesne techniki pomiarowe w procesie modernizacji i diagnostyce geometrii torów kolejowych (Modern surveying techniques in the process of modernization and diagnostics of railway track geometry). Rozprawy, Monografie (Dissertations, Monographs) ISBN 978-83-7464-618-5. Wydawnictwa AGH, Krakow.
 
23.
Strurzengger M., Yan M., Stead D., Elmo D., (2007). Application and limitations of ground-based laser scanning in rock slope characterization. Rock Mechanics: Meeting Society’s Callenges and Demands, London.
 
24.
Tong X., Liu X., Chen P., Liu S., Luan K., Li L., Liu S., Liu X., Xie H., Jin Y. & Hong Z. (2015). Integration of UAV-Based Photogrammetry and Terrestrial Laser Scanning for the Three-Dimensional Mapping and Monitoring of Open-Pit Mine Areas, Remote Sens. vol. 7(6), 6635-6662. doi:10.3390/rs70606635.
 
25.
Wallace, L., Lucieer, A., Watson, Ch., & Turner, D., (2012). Development of a UAVLiDAR System with Application to Forest Inventory. Remote Sensing, 4, 1519-1543. doi:10.3390/rs4061519.
 
26.
Weixing, W., Weisen, Z., Lingxiao, H., Vivian, V. & Zhiwei, W. (2014). Applications of terrestrial laser scanning for tunnels: a review, Journal of Traffic and Transportation Engineering (English Edition), Volume 1, Issue 5, 325-337.
 
27.
Wirth, H. (2008). Der neue Lichtraummesszug LIMEZ III der Deutschen Bahn AG. Zeitschrift für Geodäsie, Geoinformation und Landmanagement 133 (3), 180-186.
 
28.
Yang, B. & Fang, L. (2014). Automated Extraction of 3-D Railway Tracks from Mobile Laser Scanning Point Cloud, IEEE Journal of Selected Topics and Applied Earth Observations and Remote Sensing.
 
29.
Zhang, C., Arditi, D. & Chen, Z. (2013). Documentation and visualization of an as built tunnel by combining 3D laser scanning and web mapping, ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences; vol. XL-2/W2, 139-144. DOI: 10.5194/isprsarchives-XL-2- W2-139-2013.
 
eISSN:2391-8152
ISSN:2391-8365
Journals System - logo
Scroll to top