ORIGINAL ARTICLE
Laser scanning data processed using Msplit estimation and sliding window algorithm
More details
Hide details
1
Department of Geodesy, Institute of Geodesy and Civil Engineering, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Oczapowskiego 2, 10-719 Olsztyn, Poland
These authors had equal contribution to this work
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article
Submission date: 2025-07-16
Final revision date: 2025-09-10
Acceptance date: 2025-10-13
Publication date: 2025-11-12
Corresponding author
Patrycja Wyszkowska
Department of Geodesy, Institute of Geodesy and Civil Engineering, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Oczapowskiego 2, 10-719 Olsztyn, Poland
Reports on Geodesy and Geoinformatics 2025;120:67-74
KEYWORDS
TOPICS
ABSTRACT
Laser scanning systems are modern measurement techniques generating large datasets. Observations, usually collected as a point cloud, present the general results that can be visualized using specialized software. While the final effect might be impressive from a visualization point of view, it is inconvenient for modeling or extracting detailed information about, for example, terrain, buildings, engineering structures, and deformations. Therefore, data from laser scanning systems require post-processing using several methods reflecting different purposes or data processing stages: data segmentation, modeling, and filtration. Msplit estimation is one of the methods that has proved its effectiveness in laser scanning data processing and determination of terrain profiles, deformation, or building shapes. Processing the complete datasets tends to only yield often inadequate results when high-class computers are used, and it is time-consuming. Therefore, datasets tend to remain segmented. This paper explores a range of several types of segmentation methods that can be used in Msplit estimation. It presents profile determination when data cut out from the original point cloud are divided into intervals of the same length, or the sliding window algorithm is applied. In comparison, the given examples show that the latter approach can provide more reliable results. The application of the sliding window algorithm entails having to make assumptions concerning estimation parameters. The paper offers valuable guidance about both the width of the window and the slide size.
REFERENCES (46)
1.
Arslan Adil Enis, Erten Esra, Inan Muhittin. (2021). A comparative study for obtaining effective Leaf Area Index from single Terrestrial Laser Scans by removal of wood material. Measurement. 178: 109262-109262. doi:10.1016/j.measurement.2021.109262.
2.
Banimostafavi Zahra, Sharifi Mohammad Ali, Farzaneh Saeed. (2023). Evaluation of unstable points detection methods in geodetic GNSS-based networks. Iranian Journal of Geophysics. 16 (4): 175-192. doi:10.30499/ijg.2023.350587.1441.
3.
Błaszczak-Bąk Wioleta, Janowski Artur, Kamiński Waldemar, Rapiński Jacek. (2015). Application of the Msplit method for filtering airborne laser scanning data-sets to estimate digital terrain models. International Journal of Remote Sensing. 36 (9): 2421–2437-2421–2437. doi:10.1080/01431161.2015.1041617.
4.
Błaszczak-Bąk Wioleta, Suchocki Czesław, Janicka Joanna, Dumalski Andrzej, Duchnowski Robert, Sobieraj-Żłobińska Anna. (2020). Automatic Threat Detection for Historic Buildings in Dark Places Based on the Modified OptD Method. ISPRS International Journal of Geo-Information. 9 (2): 123-123. doi:10.3390/ijgi9020123.
5.
Cabaleiro M., Riveiro B., Arias P., Caamaño J.C. (2015). Algorithm for beam deformation modeling from LiDAR data. Measurement. 76: 20–31-20–31. doi:10.1016/j.measurement.2015.08.023.
6.
Carrilho A. C., Galo M., Santos R. C. (2018). Statistical Outlier Detection Method For Airborne LiDAR Data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. XLII–1: 87–92-87–92. doi:10.5194/isprs-archives-xlii-1-87-2018.
7.
Crespo-Peremarch Pablo, Tompalski Piotr, Coops Nicholas C., Ruiz Luis Angel. (2018). Characterizing understory vegetation in Mediterranean forests using full-waveform airborne laser scanning data. Remote Sensing of Environment. 217: 400–413-400–413. doi:10.1016/j.rse.2018.08.033.
8.
Dąbrowski Paweł S., Zienkiewicz Marek Hubert. (2022). Impact of cross-section centers estimation on the accuracy of the point cloud spatial expansion using robust M-estimation and Monte Carlo simulation. Measurement. 189: 110436-110436. doi:10.1016/j.measurement.2021.110436.
9.
Duchnowski Robert, Wiśniewski Zbigniew. (2019). Robustness of Msplit(q) estimation: A theoretical approach. Studia Geophysica et Geodaetica. 63 (3): 390–417-390–417. doi:10.1007/s11200-018-0548-x.
10.
Duchnowski Robert, Wyszkowska Patrycja. (2022). Absolute Msplit estimation as an alternative for robust M-estimation. Advances in Geodesy and Geoinformation. : 17–17-17–17. doi:10.24425/gac.2022.141170.
11.
Duchnowski Robert, Wyszkowska Patrycja. (2022). Unstable Object Points during Measurements—Deformation Analysis Based on Pseudo Epoch Approach. Sensors. 22 (23): 9030-9030. doi:10.3390/s22239030.
12.
Duchnowski Robert, Wyszkowska Patrycja. (2023). Tolerance for Growing Errors of Observations as a Measure Describing Global Robustness of Msplit Estimation and Providing New Information on Other Methods. Journal of Surveying Engineering. 149 (4). doi:10.1061/jsued2.sueng-1451.
13.
Forlani Gianfranco, Nardinocchi Carla. (2007). Adaptive filtering of aerial laser scanning data. Workshop on Laser Scanning 2007 and SilviLaser 2007, 12-14 September 2007, Espoo, Finland. 130-35.
14.
Janicka J, Rapinski J. (2013). Msplit transformation of coordinates. Survey Review. 45 (331): 269–274-269–274. doi:10.1179/003962613x13726661625708.
15.
Janicka Joanna, Rapinski Jacek, Błaszczak-Bąk Wioleta. (2023). Orthogonal Msplit Estimation for Consequence Disaster Analysis. Remote Sensing. 15 (2): 421-421. doi:10.3390/rs15020421.
16.
Janicka Joanna, Rapiński Jacek, Błaszczak-Bąk Wioleta, Suchocki Czesław. (2020). Application of the Msplit Estimation Method in the Detection and Dimensioning of the Displacement of Adjacent Planes. Remote Sensing. 12 (19): 3203-3203. doi:10.3390/rs12193203.
17.
Janowski Artur. (2018). The circle object detection with the use of Msplit estimation. E3S Web of Conferences. 26: 00014-00014. doi:10.1051/e3sconf/20182600014.
18.
Janowski Artur, Rapinski Jacek. (2012). M-Split Estimation in Laser Scanning Data Modeling. Journal of the Indian Society of Remote Sensing. 41 (1): 15–19-15–19. doi:10.1007/s12524-012-0213-8.
19.
Li J, Wang A, Xinyuan W. (2013). Msplit estimate the relationship between LS and its application in gross error detection. Mine Surveying. 2: 57-59.
20.
Li Jiaqiang, Xiong Biao, Biljecki Filip, Schrotter Gerhard. (2018). A sliding window method for detecting corners of openings from terrestrial LiDAr data. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 42 (4/W10): 97-103. doi:10.5194/isprs-archives-XLII-4-W10-97-2018.
21.
Lian Xugang, Hu Haifeng. (2017). Terrestrial laser scanning monitoring and spatial analysis of ground disaster in Gaoyang coal mine in Shanxi, China: a technical note. Environmental Earth Sciences. 76 (7). doi:10.1007/s12665-017-6609-6.
22.
Nguyen Anh, Le Bac. (2013). 3D point cloud segmentation: A survey. 2013 6th IEEE Conference on Robotics, Automation and Mechatronics (RAM). 225–230-225–230. doi:10.1109/ram.2013.6758588.
23.
Nowel Krzysztof. (2018). Squared Msplit(q) S-transformation of control network deformations. Journal of Geodesy. 93 (7): 1025–1044-1025–1044. doi:10.1007/s00190-018-1221-4.
24.
Pleterski Žan, Ambrožič Tomaž, Mulahusić Admir, Tuno Nedim, Topoljak Jusuf, Hajdar Amir, Hamzić Adis, Đidelija Muamer, Kulo Nedim, Rak Gašper, Marjetič A., Kregar K. (2025). Squared Msplit estimation in deformation analysis -- 2D geodetic network case study. Geodetski vestnik. 69 (2): 115-147. doi:10.15292/geodetski-vestnik.2025.02.115-147.
25.
Rodríguez-Gonzálvez Pablo, Jiménez Fernández-Palacios Belén, Muñoz-Nieto Angel, Arias-Sanchez Pedro, Gonzalez-Aguilera Diego. (2017). Mobile LiDAR System: New Possibilities for the Documentation and Dissemination of Large Cultural Heritage Sites. Remote Sensing. 9 (3): 189-189. doi:10.3390/rs9030189.
26.
Spaete Lucas P., Glenn Nancy F., Derryberry Dewayne R., Sankey Temuulen T., Mitchell Jessica J., Hardegree Stuart P. (2010). Vegetation and slope effects on accuracy of a LiDAR-derived DEM in the sagebrush steppe. Remote Sensing Letters. 2 (4): 317–326-317–326. doi:10.1080/01431161.2010.515267.
27.
Tao Yeqing, Li Xinchuan, Chen Hao, Yang Juan. (2024). Solution for the Robust Estimation of Heterogeneous Data Fusion Based on Classification Estimation. Journal of Surveying Engineering. 150 (3). doi:10.1061/jsued2.sueng-1492.
28.
Tao Yeqing, Su Mingchong, Xu Zhida, Chen Hao. (2025). Solution for heterogeneous data fusion based on autonomous classification. Measurement. 243: 116326-116326. doi:10.1016/j.measurement.2024.116326.
29.
Tóvári Daniel, Pfeifer Norbert. (2005). Segmentation based robust interpolation-a new approach to laser data filtering. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences. 36 (3/19): 79-84.
30.
Wang Anqing, Li Chi, Liu Yisha, Zhuang Yan, Bu Chunguang, Xiao Jizhong. (2016). Laser-Based Online Sliding-Window Approach for UAV Loop-Closure Detection in Urban Environments. International Journal of Advanced Robotic Systems. 13 (2). doi:10.5772/62755.
31.
Wang C, Hsu Pai-Hui. (2007). Building detection and structure line extraction from airborne lidar data. Journal of Photogrammetry and Remote Sensing. 12 (4): 365-379.
32.
Wiśniewski Z. (2009). Estimation of parameters in a split functional model of geodetic observations (Msplit estimation). Journal of Geodesy. 83 (2): 105–120-105–120. doi:10.1007/s00190-008-0241-x.
33.
Wiśniewski Z. (2010). Msplit(q) estimation: estimation of parameters in a multi split functional model of geodetic observations. Journal of Geodesy. 84 (6): 355–372-355–372. doi:10.1007/s00190-010-0373-7.
34.
Wiśniewski Zbigniew. (2022). Total Msplit estimation. Journal of Geodesy. 96 (10): 82-82. doi:10.1007/s00190-022-01668-z.
35.
Wyszkowska Patrycja, Duchnowski Robert. (2019). Msplit Estimation Based on L 1 Norm Condition. Journal of Surveying Engineering. 145 (3). doi:10.1061/(asce)su.1943-5428.0000286.
36.
Wyszkowska Patrycja, Duchnowski Robert. (2020). Iterative Process of Msplit(q) Estimation. Journal of Surveying Engineering. 146 (3). doi:10.1061/(asce)su.1943-5428.0000318.
37.
Wyszkowska Patrycja, Duchnowski Robert. (2022). Processing TLS heterogeneous data by applying robust Msplit estimation. Measurement. 197: 111298-111298. doi:10.1016/j.measurement.2022.111298.
38.
Wyszkowska Patrycja, Duchnowski Robert. (2024). Msplit Estimation with Local or Global Robustness Against Outliers—Applications and Limitations in LiDAR Data Processing. Remote Sensing. 16 (23): 4512-4512. doi:10.3390/rs16234512.
39.
Wyszkowska Patrycja, Duchnowski Robert. (2024). Locally robust Msplit estimation. Journal of Applied Geodesy. 19 (2): 145–158-145–158. doi:10.1515/jag-2024-0023.
40.
Wyszkowska Patrycja, Duchnowski Robert. (2025). Sliding window algorithm applied to Msplit estimation for seasonal change detection from LiDAR data. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000179767.
41.
Wyszkowska Patrycja, Duchnowski Robert, Dumalski Andrzej. (2020). Determination of Terrain Profile from TLS Data by Applying Msplit Estimation. Remote Sensing. 13 (1): 31-31. doi:10.3390/rs13010031.
42.
Yang Hao, Omidalizar, i Mohammad, Xu Xiangyang, Neumann Ingo. (2017). Terrestrial laser scanning technology for deformation monitoring and surface modeling of arch structures. Composite Structures. 169: 173–179-173–179. doi:10.1016/j.compstruct.2016.10.095.
43.
Zhang Xudong, Wenjun Chen, Zhang Xiaodong, Zheng Yajun, Zhang Bin, Shaoming Wang, Ji, ong Yuan, Guozhen Sun. (2023). The Deformation Analysis of the 3D Alignment Control Network Based on the Multiple Congruence Models. Journal of Geodesy & Geoinformation Science. 6 (2): 21-31. doi:10.11947/j.JGGS.2023.0203.
44.
Zhao Ruibin, Pang Mingyong, Liu Caixia, Zhang Yanling. (2019). Robust Normal Estimation for 3D LiDAR Point Clouds in Urban Environments. Sensors. 19 (5): 1248-1248. doi:10.3390/s19051248.
45.
Zienkiewicz Marek Hubert. (2015). Determination of vertical indicators of ground deformation in the Old and Main City of Gdansk area by applying unconventional method of robust estimation. Acta Geodynamica et Geomaterialia. : 249–257-249–257. doi:10.13168/agg.2015.0024.
46.
Zienkiewicz Marek Hubert, Dąbrowski Paweł S. (2023). Matrix strengthening the identification of observations with split functional models in the squared Msplit(q) estimation process. Measurement. 217: 112950-112950. doi:10.1016/j.measurement.2023.112950.