ORIGINAL ARTICLE
The use of geodetic measurements in the assessment of the technical condition of road pavement - case study
,
 
Marcin Grygierek 1, B-C,F
 
 
 
More details
Hide details
1
Department of Geotechnics and Roads, Silesian University of Technology, ul. Akademicka 2A, 44-100 Gliwice, Poland
 
 
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article
 
 
Submission date: 2024-01-16
 
 
Final revision date: 2024-07-09
 
 
Acceptance date: 2024-07-10
 
 
Publication date: 2024-08-30
 
 
Corresponding author
Magdalena Wróblewska   

Department of Geotechnics and Roads, Silesian University of Technology, ul. Akademicka 2A, 44-100 Gliwice, Poland
 
 
Reports on Geodesy and Geoinformatics 2024;118:41-45
 
KEYWORDS
TOPICS
ABSTRACT
Technical infrastructure is exposed to environmental impacts throughout its entire life cycle. For linear objects, such as roads, additional impacts resulting from their continuous use – vehicle traffic – are distinguished. Due to their communication function, these facilities are subject to ongoing condition monitoring. This procedure allows to identify any damage and indicate appropriate protective measures. Observations of the terrain as well as the road surface can be carried out using commonly used geodetic measurements. Cyclic monitoring applies especially to facilities in mining areas, where impacts in the form of continuous and discontinuous deformations significantly contribute to their damage. The research presents the results of selected geodetic measurements made on a deformed road surface affected by underground mining. The aim of the observations was to use both classic and modern measurement techniques to determine, among others, the shape of the surface or identify damage. The applied measurements included commonly used total station measurements and GNSS satellite positioning. Additionally, low-ceiling photogrammetry using an unmanned aerial vehicle and laser scanning were used to illustrate the shape of the road surface. Finally, a comparison was made of selected methods; their advantages and disadvantages allowed us to determine their usefulness in monitoring the condition of the pavement.
REFERENCES (27)
1.
Artese, S. and Perrelli, M. (2018). Monitoring a landslide with high accuracy by total station: A DTM-Based model to correct for the atmospheric effects. Geosciences, 8(2):46, doi:10.3390/geosciences8020046.
 
2.
Baykal, O., Tari, E., Coşkun, M. Z., and Erden, T. (2005). Accuracy of point layout with polar coordinates. Journal of Surveying Engineering, 131(3):87–93, doi:10.1061/(asce)0733-9453(2005)131:3(87).
 
3.
Bęcek, K., Gawronek, P., Klapa, P., Kwoczyńska, B., Matuła, P., Michałowska, K., Mikrut, S., Mitka, B., Piech, I., and Makuch, M. (2015). Modelowanie i wizualizacja danych 3D na podstawie pomiarów fotogrametrycznych i skaningu laserowego (3D data modeling and visualization based on photogrammetric measurements and laser scanning). Wyższa Szkoła Inżynieryjno-Ekonomiczna.
 
4.
Bednarski, L., Sienko, R., Grygierek, M., and Howiacki, T. (2021). New distributed fibre optic 3DSensor with thermal self-compensation system: Design, research and field proof application inside geotechnical structure. Sensors, 21(15):5089, doi:10.3390/s21155089.
 
5.
Bell, F. G. and Donnelly, L. J. (2006). Mining and its impact on the environment.
 
6.
Boginska, L., Hasii, O., Yurchenko, O., and Shushkevych, V. (2020). Environmental and economic aspects of the exploitation of roads by the mining industry. E3S Web of Conferences, 168:00022, doi:10.1051/e3sconf/202016800022.
 
7.
Bzówka, J., Grygierek, M., and Rokitowski, P. (2021). Experimental investigation using distributed optical fiber sensor measurements in unbound granular layers. Engineering Structures, 231:111767, doi:10.1016/j.engstruct.2020.111767.
 
8.
Dreier, A., Kuhlmann, H., and Klingbeil, L. (2022). The potential of UAV-based laser scanning for deformation monitoring – Case study on a water dam. In Proceedings of the 5th Joint International Symposium on Deformation Monitoring – JISDM 2022, JISDM2022. Editorial de la Universitat Politècnica de València, doi:10.4995/jisdm2022.2022.13833.
 
9.
Grygierek, M. (2017). Change in stiffness of pavement layers in the linear discontinuous deformation area. IOP Conference Series: Materials Science and Engineering, 245:042051, doi:10.1088/1757-899x/245/4/042051.
 
10.
Grygierek, M. and J. Sternik, K. (2020). Identification of pavement model parameters in the area of discontinuous surface deformation based on FWD tests. International Journal of Civil Engineering, 19(3):265–282, doi:10.1007/s40999-020-00563-y.
 
11.
Grygierek, M. and Kalisz, P. (2018). Influence of mining operations on road pavement and sewer system – selected case studies. Journal of Sustainable Mining, 17(2):56–67, doi:10.1016/j.jsm.2018.04.001.
 
12.
Hayakawa, Y. S., Kusumoto, S., and Matta, N. (2016). Application of terrestrial laser scanning for detection of ground surface deformation in small mud volcano (Murono, Japan). Earth, Planets and Space, 68(1), doi:10.1186/s40623-016-0495-0.
 
13.
Hedel, R., Boustras, G., Gkotsis, I., Vasiliadou, I., and Rathke, P. (2018). Assessment of the European Programme for Critical Infrastructure Protection in the surface transport sector. International Journal of Critical Infrastructures, 14(4):311, doi:10.1504/ijcis.2018.095616.
 
14.
Judycki, J., Jaskuła, P., Pszczoła, M., Ryś, D., Jaczewski, M., Alenowicz, J., Dołżycki, B., and Stienss, M. (2017). New Polish catalogue of typical flexible and semi-rigid pavements. MATEC Web of Conferences, 122:04002, doi:10.1051/matecconf/201712204002.
 
15.
Karsznia, K. (2017). The assessment of modern photogrammetric surveying methods in road works applications. In 17th International Multidisciplinary Scientific GeoConference SGEM2017, Informatics, Geoinformatics and Remote Sensing, SGEM2017. Stef92 Technology, doi:10.5593/sgem2017/23/s10.033.
 
16.
Kratzsch, H. and Fleming, R. F. S. (2007). Mining subsidence engineering. Springer-Verlag.
 
17.
Kulupa, M., Magda, P., and Mrówczyńska, M. (2021). Accuracy characteristics of the selected diagnostics methods and the adjustment of geodetic observations. Civil and Environmental Engineering Reports, 31(4):167–183, doi:10.2478/ceer-2021-0055.
 
18.
Kwiatek, J. (2007). Obiekty budowlane na terenach górniczych (Buildings in mining areas). Główny Instytut Górnictwa.
 
19.
Lay, U. S., Pradhan, B., Yusoff, Z. B. M., Abdallah, A. F. B., Aryal, J., and Park, H.-J. (2019). Data mining and statistical approaches in debris-flow susceptibility modelling using airborne lidar data. Sensors, 19(16):3451, doi:10.3390/s19163451.
 
20.
Monserrat, O. and Crosetto, M. (2008). Deformation measurement using terrestrial laser scanning data and least squares 3D surface matching. ISPRS Journal of Photogrammetry and Remote Sensing, 63(1):142–154, doi:10.1016/j.isprsjprs.2007.07.008.
 
21.
Muszyński, Z. and Rybak, J. (2017). Evaluation of terrestrial laser scanner accuracy in the control of hydrotechnical structures. Studia Geotechnica et Mechanica, 39(4):45–57, doi:10.1515/sgem-2017-0036.
 
22.
Nam, B. X., Van Anh, T., Bui, L. K., Long, N. Q., Le Thu Ha, T., and Goyal, R. (2020). Mining-Induced Land Subsidence Detection by Persistent Scatterer InSAR and Sentinel-1: Application to Phugiao Quarries, Vietnam, pages 18–38. Springer International Publishing, doi:10.1007/978-3-030-60269-7_2.
 
23.
Pavement Condition Diagnostics (2019). Pavement Condition Diagnostics (DSN), guide and reports. https://www.archiwum.gddkia.go....
 
24.
Regulation (2022). Regulation of the Minister of Infrastructure of 24 June 2022 on Technical and Construction Regulations for Public Roads. Act. Journal of Laws, No. 2022, Item 1518, Poland.
 
25.
Ren, H., Zhao, Y., Xiao, W., and Hu, Z. (2019). A review of UAV monitoring in mining areas: current status and future perspectives. International Journal of Coal Science & Technology, 6(3):320–333, doi:10.1007/s40789-019-00264-5.
 
26.
Vrublova, D., Kapica, R., Gibesova, B., Mudruňka, J., and Struś, A. (2016). Application of GNSS technology in surface mining. Geodesy and cartography, 42(4):122–128, doi:10.3846/20296991.2016.1268433.
 
27.
Wróblewska, M. and Grygierek, M. (2022). Assessment of visual representation methods of linear discontinuous deformation zones in the right-of-way. Applied Sciences, 12(5):2538, doi:10.3390/app12052538.
 
eISSN:2391-8152
ISSN:2391-8365
Journals System - logo
Scroll to top