ORIGINAL ARTICLE
Application of GNSS antenna vibration simulator to validation of dynamic displacement detection systems
 
 
 
More details
Hide details
1
Department of Geodesy, University of Warmia and Mazury in Olsztyn, Oczapowskiego 2, 10-719, Olsztyn, Poland
 
 
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article
 
 
Submission date: 2025-02-17
 
 
Final revision date: 2025-07-22
 
 
Acceptance date: 2025-09-04
 
 
Publication date: 2025-09-19
 
 
Corresponding author
Radoslaw Baryla   

Department of Geodesy, University of Warmia and Mazury in Olsztyn, Oczapowskiego 2, 10-719, Olsztyn, Poland
 
 
Reports on Geodesy and Geoinformatics 2025;120:31-39
 
KEYWORDS
TOPICS
ABSTRACT
A Global Navigation Satellite System (GNSS) antenna vibration simulator was developed to support the validation of dynamic position sensing systems. Based on a stepper motor mechanism, the device generates controlled reciprocating motion through a connecting rod, offering a simple and user-friendly design. Field experiments were conducted to assess its performance, with motion parameters - displacement, velocity, and acceleration - measured and compared against theoretical sinusoidal models. The simulator was employed to evaluate GNSS+Inertial Measurement Unit (IMU) receivers and associated software designed for detecting and monitoring dynamic displacements. High-frequency GNSS data, collected under real-world conditions at the KGHM Cuprum R&D Centre in Lubin, Poland, were processed to extract antenna position time series and assess simulated motion accuracy. Fourier transform analysis of the displacement signals confirmed the simulator's effectiveness in replicating dynamic motion, demonstrating its suitability for testing GNSS-based displacement monitoring systems.
REFERENCES (16)
1.
Antonielli Benedetta, Sciortino Aless, ra, Scancella Stefano, Bozzano Francesca, Mazzanti Paolo. (2021). Tracking Deformation Processes at the Legnica Glogow Copper District (Poland) by Satellite InSAR—I: Room and Pillar Mine District. Land. 10 (6): 653-653. doi:10.3390/land10060653.
 
2.
Baryła R, Paziewski J, Wielgosz P. (2023). Prawo ochronne nr 72933 na wzór użytkowy pt.: Symulator drgań anten GNSS, zwłaszcza dla potrzeb wyznaczenia deformacji terenu (Protection right no. 72933 for the utility model entitled: GNSS antenna vibration simulator, especially for the purpose of determining terrain deformations).
 
3.
Burtan Zbigniew. (2017). The influence of regional geological settings on the seismic hazard level in copper mines in the Legnica-Głogów Copper Belt Area (Poland). E3S Web of Conferences. 24: 01004-01004. doi:10.1051/e3sconf/20172401004.
 
4.
Colosimo G., Crespi M., Mazzoni A. (2011). Real-time GPS seismology with a stand-alone receiver: A preliminary feasibility demonstration: Real-Time GPS Seismology. Journal of Geophysical Research: Solid Earth. 116 (B11302). doi:10.1029/2010jb007941.
 
5.
Dawidowicz Karol, Rapiński Jacek, Śmieja Michał, Wielgosz Paweł, Kwaśniak Dawid, Jarmołowski Wojciech, Grzegory Tomasz, Tomaszewski Dariusz, Janicka Joanna, Gołaszewski Paweł, Wolak Bogdan, Baryła Radosław, Krzan Grzegorz, Stępniak Katarzyna, Florin-Catalin Grec, Brzostowski Karol. (2021). Preliminary Results of an Astri/UWM EGNSS Receiver Antenna Calibration Facility. Sensors. 21 (14): 4639-4639. doi:10.3390/s21144639.
 
6.
Duff Damien, Valley Benoit, Milkereit Bernd, McGaughey W. (2011). Rock mass response to deep mining induced stress—research and tools development at the CEMI, Canada. Proceedings of the Fourth International Seminar on Strategic versus Tactical Approaches in Mining. 73-84. doi:10.36487/acgES_DASHrep/1108ES_DASH07ES_DASHduff.
 
7.
Ikpe Aniekan. (2020). Design Analysis of Reciprocating Piston for Single Cylinder Internal Combustion Engine. International Journal of Automotive Science and Technology. 4 (2): 30-39. doi:10.30939/ijastech..702219.
 
8.
Shirani Faradonbeh Roohollah, Taheri Abbas, Karakus Murat. (2022). The propensity of the over-stressed rock masses to different failure mechanisms based on a hybrid probabilistic approach. Tunnelling and Underground Space Technology. 119: 104214-104214. doi:10.1016/j.tust.2021.104214.
 
9.
Galos Krzysztof, Lewicka Ewa, Smakowski Tadeusz. (2010). Podstawowe trendy zmian w gospodarowaniu surowcami mineralnymi w Polsce na przestrzeni ostatnich dwudziestu lat (Basic trends in the management of mineral resources in Poland over the last twenty years). Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią PAN. (79): 7-30.
 
10.
Kluczyk Marcin. (2014). An analysis of the kinematics and dynamics of a shaft-piston system in a single cylinder four-stroke engine ZS. Scientific Journal of Polish Naval Academy. 198 (3). doi:10.5604/0860889x.1133254.
 
11.
Paszek Jacek. (2016). Analiza błędów losowych czujników bezwładnościowych przy pomocy metod wariancyjnych (Random error analysis of inertial sensors using variance methods). Przegląd Elektrotechniczny. 1 (1): 64-69. doi:10.15199/48.2016.01.14.
 
12.
Riley Charles. (2017). Dynamic Evaluation of Transportation Structures with iPod-Based Data Acquisition. National Institute for Transportation and Communities (NITC-ED-985). doi:10.15760/trec.166.
 
13.
Sainoki Atsushi, Maina Duncan, Schwartzkopff Adam Karl, Obara Yuzo, Karakus Murat. (2020). Impact of the intermediate stress component in a plastic potential function on rock mass stability around a sequentially excavated large underground cavity. International Journal of Rock Mechanics and Mining Sciences. 127: 104223-104223. doi:10.1016/j.ijrmms.2020.104223.
 
14.
Szuflicki M, Malon A, Tymiński M. (2024). Bilans zasobów złóż kopalin w Polsce wg stanu na 31 XII 2023 r. (Balance of mineral resources in Poland as of December 31, 2023).
 
15.
Zheng Yuan-Guang, Huang Jing-Wen, Sun Ya-Hui, Sun Jian-Qiao. (2018). Building Vibration Control by Active Mass Damper With Delayed Acceleration Feedback: Multi-Objective Optimal Design and Experimental Validation. Journal of Vibration and Acoustics. 140 (4). doi:10.1115/1.4038955.
 
16.
(2015). Leica VADASE Autonomously detecting fast movements in real time. https://leica-geosystems.com/-/media/files/leicageosystems/products/flyer/leica_vadase_fly.ashx?la=en.
 
eISSN:2391-8152
ISSN:2391-8365
Journals System - logo
Scroll to top