ORIGINAL ARTICLE
Investigation of the accuracy of BeiDou, QZSS and QZSS/BeiDou satellites configuration for short, medium and long baselines in the Asia-Pacific regions
 
 
 
More details
Hide details
1
Department of Geomatic Engineering, Yildiz Technical University, 34220 Esenler, Istanbul, Turkiye
 
 
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article
 
 
Submission date: 2024-03-22
 
 
Final revision date: 2024-06-01
 
 
Acceptance date: 2024-06-03
 
 
Publication date: 2024-07-15
 
 
Corresponding author
Atınç Pırtı   

Department of Geomatic Engineering, Yildiz Technical University, 34220 Esenler, Istanbul, Turkiye
 
 
Reports on Geodesy and Geoinformatics 2024;118:17-21
 
KEYWORDS
TOPICS
ABSTRACT
The field of satellite navigation has seen significant advancements due to the fast development of multi-constellation Global Navigation Satellite Systems (GNSS). Around 150 satellites will be in service when all six systems - GPS, GLONASS, Galileo, BeiDou, QZSS, and NAVIC - are launched by 2030, offering both enormous potential and advantages for research and engineering applications. This study used an experiment on the accuracy, particularly for short, medium, long baselines (Wide Lane ambiguity solution) of the BeiDou, QZSS and QZSS/BeiDou combinations. It showed that with the integration of BeiDou/QZSS static measurements in the study region millimetre-centimetre accuracy for short, medium, and long baselines can be attained. Based on the results of this study, it can be concluded that the 1st (QZSS/BeiDou), 2nd (BeiDou), and 3rd (QZSS) strategies feature different horizontal accuracies for all categories. The obtained results with different satellite configurations for the Fixed-Wide-Lane integer ambiguity solution are compared with each other. Accuracy at the short baseline (BeiDou, QZSS, and BeiDou/QZSS satellites) was obtained in the range of 0.5-0.7 cm. For the medium baseline, it was computed around 1.8-82 cm. For the long baseline, the accuracy was 5.6-13.3 cm.
REFERENCES (16)
1.
Ansari, K. (2023). Investigation of the standalone and combined performance of IRNSS and QZSS constellations over the Asia-Paci¬c region. Wireless Personal Communications, 130(4):2887–2901, doi:10.1007/s11277-023-10408-1.
 
2.
Ansari, K., Bae, T.-S., Seok, H.-W., and Kim, M.-S. (2021). Multiconstellation Global Navigation Satellite Systems signal analysis over the Asia-Paci¬c region. International Journal of Satellite Communications and Networking, 39(3):280–293, doi:10.1002/sat.1389.
 
3.
Dach, R. and Walser, P. (2015). Bernese GNSS Software Version 5.2. Astronomical Institute, University of Bern. https://www.bernese.unibe.ch/d....
 
4.
Hauschild, A., Steigenberger, P., and Rodriguez-Solano, C. (2012a). QZS-1 yaw attitude estimation based on measurements from the CONGO network. Navigation: Journal of The Institute of Navigation, 59(3):237–248, doi:10.1002/navi.18.
 
5.
Hauschild, A., Steigenberger, P., and Rodriguez-Solano, C. (2012b). Signal, orbit and attitude analysis of Japan’s first QZSS satellite Michibiki. GPS solutions, 16:127–133, doi:10.1007/s10291-011-0245-5.
 
6.
Hu, J., Li, P., Zhang, X., Bisnath, S., and Pan, L. (2022). Precise point positioning with BDS-2 and BDS-3 constellations: Ambiguity resolution and positioning comparison. Advances in Space Research, 70(7):1830–1846, doi:10.1016/j.asr.2022.06.056.
 
7.
Japan Aerospace Exploration Agency (2024). Interface specification for QZSS (IS-QZSS). https://qzss.go.jp/en/technica....
 
8.
Montenbruck, O., Steigenberger, P., and Hauschild, A. (2015). Broadcast versus precise ephemerides: a multi-GNSS perspective. GPS solutions, 19:321–333, doi:10.1007/s10291-014-0390-8.
 
9.
Montenbruck, O., Steigenberger, P., Prange, L., Deng, Z., Zhao, Q., Perosanz, F., Romero, I., Noll, C., Stürze, A., Weber, G., et al. (2017). The Multi-GNSS Experiment (MGEX) of the International GNSS Service (IGS)–achievements, prospects and challenges. Advances in space research, 59(7):1671–1697, doi:10.1016/j.asr.2017.01.011.
 
10.
Odijk, D., Nadarajah, N., Zaminpardaz, S., and Teunissen, P. J. (2017). GPS, Galileo, QZSS and IRNSS differential ISBs: estimation and application. GPS solutions, 21:439–450, doi:10.1007/s10291-016-0536-y.
 
11.
Odolinski, R., Teunissen, P., and Odijk, D. (2014). Combined GPS+BDS+Galileo+QZSS for long baseline RTK positioning. In Proceedings of the 27th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2014), pages 2326–2340.
 
12.
Odolinski, R., Teunissen, P. J., and Odijk, D. (2015). Combined BDS, Galileo, QZSS and GPS single-frequency RTK. GPS Solutions, 19:151–163, doi:10.1007/s10291-014-0376-6.
 
13.
Positional Accuracy Handbook (1999). Using the national standards for spatial data accuracy to measure and report geographic data quality. https://www.mngeo.state.mn.us/....
 
14.
Quan, Y., Lau, L., Roberts, G. W., and Meng, X. (2016). Measurement signal quality assessment on all available and new signals of multi-GNSS (GPS, GLONASS, Galileo, BDS, and QZSS) with real data. The Journal of Navigation, 69(2):313–334, doi:10.1017/S0373463315000624.
 
15.
Wolf, P. R. and Ghilani, C. D. (2012). Elementary surveying – An Introduction to Geomatics. Pearson Education: Upper Saddle River, NJ, USA.
 
16.
Yang, Y., Yang, Y., Hu, X., Chen, J., Guo, R., Tang, C., Zhou, S., Zhao, L., and Xu, J. (2020). Inter-satellite link enhanced orbit determination for BeiDou-3. The Journal of Navigation, 73(1):115–130, doi:10.1017/S0373463319000523.
 
eISSN:2391-8152
ISSN:2391-8365
Journals System - logo
Scroll to top