CASE STUDY
Analysis of differences in accuracy of positioning tied to various CORS networks in Poland: Case study
 
More details
Hide details
1
Department of Integrated Geodesy and Cartography, Faculty of Geo-Data Science, Geodesy and Environmental Engineering, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland
 
 
Submission date: 2023-07-20
 
 
Acceptance date: 2023-11-14
 
 
Publication date: 2023-11-30
 
 
Corresponding author
Andrzej Uznański   

Department of Integrated Geodesy and Cartography, Faculty of Geo-Data Science, Geodesy and Environmental Engineering, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland
 
 
Reports on Geodesy and Geoinformatics 2023;116:47-60
 
KEYWORDS
TOPICS
ABSTRACT
Network Real Time Kinematic (NRTK) measurements are currently the most popular surveying method in geodesy. In most countries, there are networks of Continuously Operating Reference Stations (CORS), which form the core of the terrestrial infrastructure that allows for NRTK measurements. In many countries, including Poland, several CORS networks operate in parallel and independently. The paper presents the characteristics of the CORS network in Poland. The results of several day NRTK and Real Time Kinematic (RTK) test measurements performed tied to five CORS networks operating in Poland: ASG-EUPOS, NadowskiNET, SmartNet, TPINETpro, VRSNet.pl, were subjected to a comparative analysis. VRS, FKP, MAC and POJ streams were used in the test measurements. The research mainly concerned the possibility of the occurrence of systematic errors when NRTK and RTK measurements were tied to different CORS networks for the survey of the same points. Conclusions from the comparative analysis of the accuracy and precision of the NRTK and RTK measurement results for each coordinate were also included.
 
REFERENCES (39)
1.
Baarda, W. (1967). Statistical concepts in geodesy, volume 2. Netherlands geodetic commission, publ. on geodesy, new series.
 
2.
Baarda, W. (1968). A testing procedure for use in geodetic networks. Netherlands geodetic commission, publ. on geodesy, new series, 2(5):1–97.
 
3.
Bae, T.-S., Grejner-Brzezinska, D., Mader, G., and Dennis, M. (2015). Robust analysis of Network-based Real-Time Kinematic for GNSS-derived heights. Sensors, 15(10):27215–27229, doi:10.3390/s151027215.
 
4.
Baran, L. and Zieliński, J. (1997). Geodetic reference frame in Poland — national report for 1996. In Report on the Symposium of the IAG Subcommission for Europe (EUREF) held in Sofia, 4 — 7 June 1997, Verlag der Bayerischen Akademie der Wissenschaften, Astronomisch-Geodätische Arbeiten, Heft Nr 58, München.
 
5.
Berber, M. and Arslan, N. (2013). Network RTK: a case study in Florida. Measurement, 46(8):2798–2806, doi:10.1016/j.measurement.2013.04.078.
 
6.
Brown, N., Geisler, I., and Troyer, L. (2006). Rtk rover performance using the Master-Auxiliary Concept. Journal of Global Positioning Systems, 5(1–2):135–144.
 
7.
Brown, N. and Keenan, R. (2005). Take it to the max! – an introduction to the philosophy behind Leica Geosystems’ Spider-NET revolutionary network RTK software and algorithms. Leica Geosystems White Paper, 06.2005.
 
8.
Cui, J., Tang, W., Jin, L., Deng, C., Zou, X., and Gu, S. (2018). An improved ionosphere interpolation algorithm for network RTK in low-latitude regions. GPS solutions, 22:1–11, doi:10.1007/s10291-018-0778-y.
 
9.
Dabove, P. (2019). The usability of GNSS mass-market receivers for cadastral surveys considering RTK and NRTK techniques. Geodesy and Geodynamics, 10(4):282–289, doi:10.1016/j.geog.2019.04.006.
 
10.
Dai, L., Han, S., Wang, J., and Rizos, C. (2001). A study on GPS/GLONASS multiple reference station techniques for precise real-time carrier phase-based positioning. In Proceedings of the 14th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 2001), Salt Lake City, UT, September 2001, pages 392–403.
 
11.
Edwards, S., Clarke, P. J., Penna, N., and Goebell, S. (2010). An examination of network RTK GPS services in Great Britain. Survey Review, 42(316):107–121, doi:10.1179/003962610X12572516251529.
 
12.
Euler, H., Keenan, C., and Zebhause, B. (2001). Study of a simplified approach in utilizing information from permanent reference station arrays. In Proceedings of the 14th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 2001), Salt Lake City, UT, September 2001, pages 379–391.
 
13.
Fotopoulos, G. and Cannon, M. (2001). An overview of multi-reference station methods for cm-level positioning. GPS solutions, 4:1–10, doi:10.1007/PL00012849.
 
14.
Garrido, M., Giménez, E., Armenteros, J., Lacy, M., and Gil, A. (2012). Evaluation of NRTK positioning using the RENEP and RAP networks on the southern border region of Portugal and Spain. Acta Geodaetica et Geophysica Hungarica, 47:52–65, doi:10.1556/AGeod.47.2012.1.4.
 
15.
Gillins, D., Heck, J., Scott, G., Jordan, K., and Hippenstiel, R. (2019). Accuracy of GNSS observations from three real-time networks in Maryland, USA. Vol. 15 of Proc. FIG Working Week, Hanoi, Vietnam, April 22–26.
 
16.
Gordini, C., Kealy, A., Grgich, P., Hale, M., and Gordini, C. (2006). Testing and evaluation of a GPS CORS network for real time centimetric positioning – The Victoria GPSnet. In Proceedings of the IGNSS2006 Symposium, Tweed Heads, Australia, 17–21 July.
 
17.
Grejner-Brzezinska, D. A., Kashani, I., and Wielgosz, P. (2005). On accuracy and reliability of instantaneous network RTK as a function of network geometry, station separation, and data processing strategy. GPS Solutions, 9:212–225, doi:10.1007/s10291-005-0130-1.
 
18.
Gumus, K. (2016). A research on the effect of different measuring configurations in Network RTK applications. Measurement, 78:334–343, doi:10.1016/j.measurement.2015.10.022.
 
19.
Janssen, V. and Haasdyk, J. (2011). Assessment of Network RTK performance using CORSnet-NSW. In Proceedings of the IGNSS2011 Symposium, Sydney, NSW, Australia, 15–17 November.
 
20.
Koivula, H., Kuokkanen, J., Marila, S., Lahtinen, S., and Mattila, T. (2018). Assessment of sparse GNSS network for network RTK. Journal of Geodetic Science, 8(1):136–144, doi:10.1515/jogs-2018-0014.
 
21.
Kudas, D. and Wnęk, A. (2019). Operation of ASG-EUPOS POZGEO sub-service in the event of failure of reference stations used in the standard solution – case study. Geomatics, Landmanagement and Landscape, (4):59–71, doi:10.15576/GLL/2019.4.59.
 
22.
Landau, H., Vollath, U., and Chen, X. (2002). Virtual Reference Station systems. Journal of Global Positioning Systems, 1(2):137–143.
 
23.
Lenz, E. (2004). Networked transport of RTCM via Internet Protocol (NTRIP) – application and benefit in modern surveying systems. In FIG Working Week, Athens, Greece, May 22-27.
 
24.
Martin, A. and McGovern, E. (2012). An evaluation of the performance of network RTK GNSS services in Ireland. In FIG Working Week, Rome, Italy, May 6–10.
 
25.
Öğütcü, S. and Kalayci, I. (2016). Investigation of Network-based RTK techniques: a case study in urban area. Arabian Journal of Geosciences, 9:1–12, doi:10.1007/s12517-015-2262-0.
 
26.
Prochniewicz, D., Szpunar, R., Kozuchowska, J., Szabo, V., Staniszewska, D., and Walo, J. (2020). Performance of network-based GNSS positioning services in Poland: A case study. Journal of Surveying Engineering, 146(3):05020006, doi:10.1061/(ASCE)SU.1943-5428.0000316.
 
27.
Rizos, C. (2002). Network RTK research and implementation – a geodetic perspective. Positioning, 1(2):144–150.
 
28.
RTCM (2004). RTCM 10410.0 Networked Transport of RTCM via Internet Protocol (Ntrip). Arlington Virginia USA.
 
29.
RTCM (2011). RTCM 10410.1 Standard for Networked Transport of RTCM via Internet Protocol (Ntrip) Version 2.0 with Amendment 2. Arlington Virginia USA.
 
30.
Schrock, G. (2010). The birthplace of VRS. The American Surveyor, 7:28–32.
 
31.
Specht, C., Specht, M., and Dąbrowski, P. (2017). Comparative analysis of active geodetic networks in Poland. International multidisciplinary scientific GeoConference: SGEM, Sofia, 17:163–176, doi:10.5593/sgem2017/22.
 
32.
Uznański, A. (1999). Ocena przydatności techniki RTK GPS w zastosowaniach inżynierskich (Assessment of the usefulness of the RTK GPS technique in engineering applications). PhD thesis, AGH University of Science and Technology, Kraków.
 
33.
Uznański, A. (2017). Analiza porównawcza jakości pomiarów RTN nawiązanych do wszystkich sieci referencyjnych w Polsce (comparative analysis of the quality of RTN measurements connected to all reference networks in Poland). Zeszyty Naukowo-Techniczne Stowarzyszenia Inżynierów i Techników Komunikacji w Krakowie. Seria: Materiały Konferencyjne, 112(1):167–181.
 
34.
Vollath, U., Landau, H., Chen, X., Doucet, K., and Pagels, C. (2002). Network RTK versus single base RTK – understanding the error characteristics. In Proceedings of the 15th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 2002), Portland, OR, September, pages 2774–2781.
 
35.
Wanninger, L. (2002). Virtual reference stations for centimeter-level kinematic positioning. In Proceedings of the 15th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 2002), Portland, OR, September, pages 1400–1407.
 
36.
Wei, E., Chai, H., An, Z., and Liu, J. (2006). VRS virtual observations generation algorithm. Journal of Global Positioning Systems, 5(1-2):76–81.
 
37.
Wübbena, G. and Bagge, A. (2002). RTCM Message Type 59-FKP for transmission of FKP. Geo++ White Paper, (2002.01).
 
38.
Wubbena, G., Bagge, A., and Schmitz, M. (2001). RTK Networks based on Geo++® GNSMART – concepts, implementation, results. In Proceedings of the 14th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 2001), Salt Lake City, UT, September, pages 368–378.
 
39.
Wübbena, G., Bagge, A., Seeber, G., Böder, V., and Hankemeier, P. (1996). Reducing distance dependent errors for real-time precise DGPS applications by establishing reference station networks. In 9th Int. Tech. Meeting of the Satellite Div. of the U.S. Institute of Navigation, Kansas City, Missouri, 17-20 September, pages 1845–1852. Institute of Navigation.
 
eISSN:2391-8152
ISSN:2391-8365
Journals System - logo
Scroll to top